EE 720: An Introduction to Number Theory and Cryptography (Spring 2020)
Lecture 16 - March 21, 2020
Instructor: Saravanan Vijayakumaran

1 Lecture Plan

- Properties of \mathbb{Z}_{N}^{*}
- Chinese Remainder Theorem

2 The Group \mathbb{Z}_{N}^{*}

- For any integer $N>1$, we define $\mathbb{Z}_{N}^{*}=\{b \in\{1,2, \ldots, N-1\} \mid \operatorname{gcd}(b, N)=1\}$.
- By the definition of the Euler phi function, the cardinality or order of \mathbb{Z}_{N}^{*} is $\phi(N)$.
- Theorem: For $N>1, \mathbb{Z}_{N}^{*}$ is a group under multiplication modulo N.
- Fermat's little theorem: If p is a prime and a is any integer not divisible by p, then $a^{p-1}=1 \bmod p$.
- Euler's theorem: For any integer $N>1$ and $a \in \mathbb{Z}_{N}^{*}$, we have $a^{\phi(N)}=1 \bmod N$.
- For an integer $e \geq 1$ and prime $p, \phi\left(p^{e}\right)=p^{e}\left(1-\frac{1}{p}\right)$.
- For distinct primes p, q, we have $\phi(p q)=(p-1)(q-1)$.
- For positive integers m, n such that $\operatorname{gcd}(m, n)=1$, we have $\phi(m n)=\phi(m) \phi(n)$.
- Proof will follow from the Chinese Remainder Theorem
- Theorem: If N is a prime, \mathbb{Z}_{N}^{*} is a cyclic group.
- Proof does not follow from Lagrange's theorem as $\phi(N)$ is composite.
- Since proof requires results which we have not discussed, we will omit it.

3 Chinese Remainder Theorem

- Definition: Groups G and H are isomorphic if there exists a bijection $\phi: G \rightarrow H$ such that

$$
\psi(\alpha \star \beta)=\psi(\alpha) \otimes \psi(\beta)
$$

for all $\alpha, \beta \in G$. Here \star is the binary operation in G and \otimes is the binary operation in H. If G and H are isomorphic, we write $G \simeq H$.

- Given groups G and H with group operations \star and \otimes respectively, we can define a new group $G \times H$ as follows. The elements of $G \times H$ are ordered pairs (g, h) with $g \in G$ and $h \in H$. The group operation \circ of $G \times H$ is defined as

$$
(g, h) \circ\left(g^{\prime}, h^{\prime}\right)=\left(g \star g^{\prime}, h \otimes h^{\prime}\right) .
$$

- Chinese Remainder Theorem: Let $N=p q$ where p, q are integers greater than 1 which are relatively prime, i.e. $\operatorname{gcd}(p, q)=1$. Then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{q} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}
$$

Moreover, the function $f: \mathbb{Z}_{N} \mapsto \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ defined by

$$
f(x)=(x \bmod p, x \bmod q)
$$

is an isomorphism from \mathbb{Z}_{N} to $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$, and the restriction of f to \mathbb{Z}_{N}^{*} is an isomorphism from \mathbb{Z}_{N}^{*} to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$.

- Example: $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$. This group is isomorphic to $\mathbb{Z}_{3}^{*} \times \mathbb{Z}_{5}^{*}$.

4 References and Additional Reading

- Sections 8.1.4, 8.1.5 from Katz/Lindell

