EE 720: An Introduction to Number Theory and Cryptography (Spring 2020)
Lecture 18 - March 27, 2020
Instructor: Saravanan Vijayakumaran
Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Plain RSA Numerical Example
- Primality Testing Algorithms

2 Plain RSA Example

- Recall that GenRSA is a PPT algorithm that on input 1^{n}, outputs a modulus N that is the product of two n-bit primes, along with integers $e, d>1$ satisfying $e d=1 \bmod \phi(N)$.
- Example: Suppose GenRSA outputs $(N, e, d)=(391,3,235)$. Note that $391=17 \times 23$ and $\phi(391)=16 \times 22=352$. Also $3 \times 235=1 \bmod 352$.
The message $m=158 \in \mathbb{Z}_{391}^{*}$ is encrypted using public key (391,3) as $c=158^{3} \bmod 391=$ 295.

Decryption of m is done as $295^{235} \bmod 391=158$.

3 Primality Testing

- But how to randomly generate n-bit primes required by GenRSA? Generate a random n-bit odd integer and check whether it is prime.
- Bertrand's postulate: For any $n>1$, the fraction of n-bit integers that are primes is at least $\frac{1}{3 n}$.
- So if we choose $3 n^{2}$ random n-bit integers, the probability that a prime is not chosen is at most

$$
\left(1-\frac{1}{3 n}\right)^{3 n^{2}}=\left(\left(1-\frac{1}{3 n}\right)^{3 n}\right)^{n} \leq\left(e^{-1}\right)^{n}=e^{-n}
$$

We have use the result that for all $x \geq 1$ it holds that $\left(1-\frac{1}{x}\right)^{x} \leq e^{-1}$.

- Fermat's little theorem: If p is a prime and a is any integer not divisible by p, then $a^{p-1}=1 \bmod p$.
- For $a \in\{1,2, \ldots, N-1\}$, if $a \notin \mathbb{Z}_{N}^{*}$ then $a^{N-1} \neq 1 \bmod N$, i.e. such an a is a witness for the compositeness of N. This is because $\operatorname{gcd}(a, N) \neq 1$ implies $\operatorname{gcd}\left(a^{N-1}, N\right) \neq 1$. Then $a^{N-1} \neq 1 \bmod N$. To see why, recall that the gcd of two integers is the smallest positive integer which can be written as a linear combination of those integers.
- But integers in the range $1,2, \ldots, N-1$ not belonging to \mathbb{Z}_{N}^{*} are rare. If N is prime, then there are no such integers as $\mathbb{Z}_{N}^{*}=\{1,2, \ldots, N-1\}$. For composite $N=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ where $p_{1}, p_{2}, \ldots, p_{k}$ are distinct primes and $e_{1}, e_{2}, \ldots, e_{k}$ are positive integers, the cardinality of \mathbb{Z}_{N}^{*} is $\phi(N)=p_{1}^{e_{1}-1}\left(p_{1}-1\right) \cdots p_{k}^{e_{k}-1}\left(p_{k}-1\right)$. Then the probability that a random element in $\{1,2, \ldots, N-1\}$ is in \mathbb{Z}_{N}^{*} is given by

$$
\frac{\phi(N)}{N-1} \approx \frac{\phi(N)}{N}=\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
$$

If $p_{1}, p_{2}, \ldots, p_{k}$ are large primes, then this fraction is close to 1 . If they are small primes, then it is easy to check that N is composite and fancy primality testing algorithms are not required.

- With this context, let us focus on the integers in \mathbb{Z}_{N}^{*}. For an integer N, we say that the integer $a \in \mathbb{Z}_{N}^{*}$ is a witness for compositeness of N if $a^{N-1} \neq 1 \bmod N$.
- For $a \in\{1,2, \ldots, N-1\}$, if $a \in \mathbb{Z}_{N}^{*}$ then $\operatorname{gcd}(a, N)=1$ and $\operatorname{gcd}\left(a^{N-1}, N\right)=1$. This implies that $X a^{N-1}+Y n=1$ for some integers X, Y. So $X a^{N-1}=1 \bmod N$ but $a^{N-1} \bmod N$ may or may not be equal to 1 . So the a 's in \mathbb{Z}_{N}^{*} may or may not be witnesses.
- Theorem: If there exists a witness (in \mathbb{Z}_{N}^{*}) that N is composite, then at least half the elements of \mathbb{Z}_{N}^{*} are witnesses that N is composite.

Proof. Consider the subset H of \mathbb{Z}_{N}^{*} which consists of elements $a \in \mathbb{Z}_{N}^{*}$ satisfying $a^{N-1}=$ $1 \bmod N$. In other words, H is the set of elements in \mathbb{Z}_{N}^{*} which are not witnesses. H is a subgroup of \mathbb{Z}_{N}^{*} by the below Proposition. By the hypothesis, $H \neq \mathbb{Z}_{N}^{*}$. By Lagrange's theorem, the order of H is a proper divisor of $\left|\mathbb{Z}_{N}^{*}\right|$. Since the largest proper divisor of an integer m is possibly $m / 2$, the size of H is at most $\left|\mathbb{Z}_{N}^{*} / 2\right|$. So at least half the elements of \mathbb{Z}_{N}^{*} are witnesses that N is composite.

- Proposition 8.36: Let G be a finite group and $H \subseteq G$. If H is nonempty and for all $a, b \in H$ we have $a b \in H$, then H is a subgroup of G.
- Suppose there is a composite integer N for which a witness for compositeness exists. Consider the following procedure which fails to detect the compositeness of N with probability at most 2^{-t}.

1. For $i=1,2, \ldots, t$, repeat steps 2 and 3 .
2. Pick a uniformly from $\{1,2, \ldots, N-1\}$.
3. If $a^{N-1} \neq 1 \bmod N$, return "composite".
4. If all the t iterations had $a^{N-1}=1 \bmod N$, return "prime".

- But there exist composite numbers for which $a^{N-1}=1 \bmod N$ for all integers $a \in \mathbb{Z}_{N}^{*}$. These are called Carmichael numbers. The number $561=3 \cdot 11 \cdot 17$ is one such number.

4 References and Additional Reading

- Sections 8.2.1, 8.2.2 from Katz/Lindell

