EE 720: An Introduction to Number Theory and Cryptography (Spring 2020)
Lecture 19 - March 31, 2020
Instructor: Saravanan Vijayakumaran
Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Miller-Rabin Primality Test

2 Recap

- Fermat's little theorem: If p is a prime and a is any integer not divisible by p, then $a^{p-1}=1 \bmod p$.
- One strategy for checking whether an odd integer $N>1$ is prime or not is to choose a random integer a from $\{1,2,3, \ldots, N-1\}$ and computing $a^{N-1} \bmod N$. If $a^{N-1} \neq 1 \bmod N$ then we have deduced that N is not a prime because it violates Fermat's little theorem. If $a^{N-1}=1 \bmod N$, then we get no information about the primality of N, i.e. N may or may not be prime.
- For $a \in\{1,2, \ldots, N-1\}$, if $a \notin \mathbb{Z}_{N}^{*}$ then $a^{N-1} \neq 1 \bmod N$, i.e. such an a is a witness for the compositeness of N.
- But integers in the range $1,2, \ldots, N-1$ not belonging to \mathbb{Z}_{N}^{*} are rare.
- For an integer N, we say that the integer $a \in \mathbb{Z}_{N}^{*}$ is a witness for compositeness of N if $a^{N-1} \neq 1 \bmod N$.
- Theorem: If there exists a witness (in \mathbb{Z}_{N}^{*}) that N is composite, then at least half the elements of \mathbb{Z}_{N}^{*} are witnesses that N is composite.
- By the above theorem, if there exists a witness that N is composite, then a randomly chosen $a \in\{1,2, \ldots, N-1\}$ will be a witness for the compositeness of N probability is at least half. So if we choose t distinct integers $a_{1}, a_{2}, \ldots, a_{t}$ independently and uniformly from $\{1,2, \ldots, N-1\}$ then the probability that $a_{i}^{N-1}=1 \bmod N$ for all $i=1,2, \ldots, t$ is $\frac{1}{2^{t}}$.
- To say it in another way, if a witness exists that N is composite, then with probability $1-\frac{1}{2^{t}}$ we will get $a_{i}^{N-1} \neq 1 \bmod N$ for at least one of the t values of a_{i}.
- If we choose a t like 100 or 200 and get $a_{i}^{N-1}=1 \bmod N$ for all i, then we can be fairly confident that N is prime. But this works only if somehow we know that there exists a witness for the compositeness of N.
- But there exist composite numbers for which $a^{N-1}=1 \bmod N$ for all integers $a \in \mathbb{Z}_{N}^{*}$. These are called Carmichael numbers. The number $561=3 \cdot 11 \cdot 17$ is one such number.

```
Algorithm 1 Generating a random \(n\)-bit prime
    Input: Length \(n\)
    Output: A uniform \(n\)-bit prime
    for \(i=1\) to \(3 n^{2}\) do
        \(p^{\prime} \leftarrow\{0,1\}^{n-2}\)
        \(p:=1\left\|p^{\prime}\right\| 1\)
        Run the Miller-Rabin test on \(p\)
        if the output is "prime," then
            return \(p\)
    return fail
```


3 Miller-Rabin Primality Test

- The Miller-Rabin algorithm takes two inputs: an integer p and a parameter t (in unary format) that determines the error probability. It runs in time polynomial in $\|p\|$ and t.
- Theorem: If p is prime, then the Miller-Rabin test always outputs "prime". If p is composite, then the algorithm outputs "composite" except with probability at most 2^{-t}.
- The algorithm for generating a random n-bit prime using the Miller-Rabin test is shown in Algorithm 1.
- Lemma: We say that $x \in \mathbb{Z}_{N}^{*}$ is a square root of $1 \operatorname{modulo} N$ if $x^{2}=1 \bmod N$. If N is an odd prime, then the only square roots of 1 modulo N are $\pm 1 \bmod N T$
- The Miller-Rabin primality test is based on the above lemma.
- By Fermat's little theorem, if N is an odd prime $a^{N-1}=1 \bmod N$ for all $a \in\{1,2, \ldots, N-1\}$. Suppose $N-1=2^{r} u$ where $r \geq 1$ is an integer and u is an odd integer. Then

$$
a^{u} \bmod N, a^{2 u} \bmod N, a^{2^{2} u} \bmod N, a^{2^{3} u} \bmod N, \ldots, a^{2^{r} u} \bmod N
$$

is a sequence where each element is the square of the previous element. In other words, each element is the square root modulo N of the next element. Since the last element in the sequence is a 1 , by the above lemma the previous elements can only be ± 1. For prime N, one of two things can happen:

- Either $a^{u}= \pm 1 \bmod N$. In this case, the remaining sequence has only ones.
- Or one of $a^{2 u} \bmod N, a^{2^{2} u} \bmod N, a^{2^{3} u} \bmod N, \ldots, a^{2^{r-1} u} \bmod N$ is equal to -1 .
- We say that $a \in \mathbb{Z}_{N}^{*}$ is a strong witness that N is composite if both the above conditions do not hold. Stated explicitly, $a \in \mathbb{Z}_{N}^{*}$ is a strong witness that N is composite if
- $a^{u} \neq \pm 1 \bmod N$ and
$-a^{2^{2} u} \neq-1 \bmod N$ for all $i \in\{1,2, \ldots, r-1\}$.
If we can find even one strong witness, we can conclude that N is composite.

[^0]```
Algorithm 2 The Miller-Rabin primality test
 Input: Odd integer \(N>1\) and parameter \(1^{t}\)
 Output: A decision as to whether \(N\) is prime or composite
 if \(N\) is a perfect power then
 return composite
 Compute \(r \geq 1\) and odd \(u\) such that \(N-1=2^{r} u\)
 for \(j=1\) to \(t\) do
 \(a \leftarrow\{1, \ldots, N-1\}\)
 if \(a^{u} \neq \pm 1 \bmod N\) and \(a^{2^{2} u} \neq-1 \bmod N\) for \(i \in\{1, \ldots, r-1\}\) then
 return composite
 return prime
```

- We say that a integer $N$ is a prime power if $N=p^{r}$ where $r \geq 1$ and $p$ is a prime.
- Theorem 8.40: Let $N$ be an odd number that is not a prime power. Then at least half the elements of $\mathbb{Z}_{N}^{*}$ are strong witnesses that $N$ is composite.
- Proof in Katz/Lindell on pages 309, 310. Left for self-study exercise.
- An integer $N$ is a perfect power if $N=\hat{N}^{e}$ for integers $\hat{N}$ and $e \geq 2$. There exists a polynomial time algorithm to check that a given integer is a perfect power. If $N$ is a perfect power, it is composite. If $N$ is not a perfect power and it is not a prime, it cannot be a prime power. So the hypothesis of the above theorem will be satisfied.
- The Miller-Rabin test is given in Algorithm 2 .


## 4 References and Additional Reading

- Sections 8.2.1, 8.2.2 from Katz/Lindell


[^0]:    ${ }^{1}$ Note that $-1 \bmod N=N-1 \in \mathbb{Z}_{N}^{*}$

