MProve: A Proof of Reserves Protocol for Monero Exchanges

Arijit Dutta, Saravanan Vijayakumaran

Department of Electrical Engineering Indian Institute of Technology Bombay

IEEE S&B, Stockholm June 20, 2019

Cryptocurrency Exchanges

- Owning cryptocurrencies = Storing private keys
- Cryptocurrency exchanges
 - Store private keys for customers
 - Allow trading
- Risks for customers
 - Exchanges getting hacked
 - Incompetence, internal fraud, exit scams
 - Fractional reserve exchanges
- Proof of solvency is a possible solution
 - Proof of liabilities
 - Proof of reserves

Naive Proof of Reserves for Bitcoin

- Protocol steps
 - Create a transaction Tx which unlocks all owned UTXOs
 - Include a dummy input to make Tx invalid
 - Share Tx with the world.
- Why does it work?
 - Tx proves that exchange owns BTC equal to sum of amounts in unlocked UTXOs
 - Dummy input prevents misuse of Tx
 - Removing the dummy input will invalidate signatures
- Blockstream has released such a tool¹
- Drawback: Privacy is not preserved
 - Exchange may not want to reveal its UTXOs

¹https://blockstream.com/2019/02/04/

standardizing-bitcoin-proof-of-reserves/

Provisions Proof of Reserves Protocol

- Proposed by Dagher et al in 2015
- Exchange chooses a set $\ensuremath{\mathcal{P}}$ of UTXOs from the blockchain
 - It owns a subset \mathcal{P}_{own} of \mathcal{P} . Let $\mathcal{I}_{own} = \{i \mid P_i \in \mathcal{P}_{own}\}.$
 - $\ensuremath{\mathcal{P}}$ plays the role of the anonymity set
 - Each $P_i \in \mathcal{P}$ has an associated amount a_i
- Pedersen commitment to an amount a is given by

$$C(y,a) = yG + aH_{z}$$

where the dlog of H wrt G is not known and y is a blinding factor

- Exchange creates a Pedersen commitment C_i for each $P_i \in \mathcal{P}$
- It gives a zero-knowledge proof of the following statement

$$C_{i} = \begin{cases} y_{i}G + a_{i}H & \text{if } P_{i} \in \mathcal{P}_{\text{own}} \\ y_{i}G & \text{if } P_{i} \notin \mathcal{P}_{\text{own}} \end{cases}$$

Adding all the commitments gives a commitment to the total reserves

$$C_{\text{reserves}} = \sum_{i=1}^{|\mathcal{P}|} C_i = \sum_{i=1}^{|\mathcal{P}|} y_i G + \sum_{i \in \mathcal{I}_{\text{own}}} a_i H.$$

Solvency is proven via a range proof on C_{liabilities} – C_{reserves}

Transactions in Monero

- Suppose Alice wants to spend coins from an address P she owns
- Alice assembles a list $\{P_0, P_1, \dots, P_{n-1}\}$ where $P_j = P$ for exactly one j
- Alice knows x_j such that $P_j = x_j G$
- Key image of P_j is $I = x_j H_p(P_j)$ where H_p is a point-valued hash function
 - Distinct public keys will have distinct key images
- A linkable ring signature over $\{P_0, P_1, \ldots, P_{n-1}\}$ will have the key image I of P_j
 - Signature proves Alice one of the private keys
 - Double spending is detected via duplicate key images
- One cannot say if a Monero address belongs to the UTXO set or not

A fundamental requirement of any proof of reserves protocol for Monero is that it should prove that the key images of the exchange-owned addresses, which contribute to the total reserves commitment C_{reserves}, have not appeared on the blockchain.

Some Facts About Commitments

• Suppose *C* is a Pedersen commitment with amount *a* and blinding factor *x*

$$C = xG + aH$$

• One can prove that *C* is a commitment to the zero amount via a signature with public key *C*

$$C = xG$$

• If *C* is a commitment to a non-zero amount *a*, signature with *C* as public key will mean dlog of *H* is known

$$C = xG + aH = yG \implies H = a^{-1}(y - x)G$$

MProve Protocol

- Exchange chooses addresses $\mathcal{P} = (P_1, P_2, \dots, P_N)$ from the Monero blockchain
- It knows the private keys of $\mathcal{P}_{known} \subseteq \mathcal{P}$
- For each $P_i \in P$, it reads commitment C_i

$$C_i = y_i G + a_i H.$$

For $P_i \in \mathcal{P}_{known}$, the exchange knows y_i and a_i

• For each $P_i \in \mathcal{P}$, the exchange randomly picks z_i and generates C'_i as

$$C'_{i} = \begin{cases} z_{i}G & \text{if } P_{i} \in \mathcal{P}_{\text{known}}, \\ z_{i}G + C_{i} & \text{if } P_{i} \notin \mathcal{P}_{\text{known}}. \end{cases}$$

- For each *i* = 1, 2, ..., *N*, the exchange publishes a regular ring signature *γ_i* verifiable by the pair of public keys (*C_i*, *C_i C_i*)
- For each *i* = 1, 2, ..., *N*, the exchange publishes a linkable ring signature *σ_i* verifiable by the pair of public keys (*P_i*, *C'_i C_i*)
- The exchange publishes a commitment Creserves which satisfies the equation

$$C_{\text{reserves}} = \sum_{i=1}^{N} (C_i - C'_i).$$

MProve Intuition

- Output of an exchange
 - A list of one-time addresses P_1, P_2, \ldots, P_N and commitments C_1, C_2, \ldots, C_N .
 - The commitments C'_1, C'_2, \ldots, C'_N created by the exchange.
 - The regular ring signatures γ_i over public keys $(C'_i, C'_i C_i)$
 - The linkable ring signatures σ_i over public keys $(\dot{P}_i, \dot{C}'_i C_i)$
 - The commitment Creserves to the total reserves

$$C_{\text{reserves}} = \sum_{i=1}^{N} \left(C_i - C'_i
ight)$$

- When $P_i \notin \mathcal{P}_{known}$, the exchange has to create σ_i with z_i where $C'_i C_i = z_i G$
 - This implies $C_i C'_i$ is a commitment to the zero amount
 - No contribution to Creserves
- When P_i ∈ P_{known}, the exchange has to create γ_i with the private key corresponding to either C'_i or C'_i − C_i
 - If $C'_i = z_i G$, then $C_i C'_i$ contributes $a_i H$ to C_{reserves}
 - If $C'_i C_i = z_i G$, then $C'_i C'_i$ contributes nothing to C_{reserves}
- To avoid zero contribution to C_{reserves}, exchange has to sign with private key of P_i to create σ_i
 - Since σ_i reveals the key image of P_i, exchange cannot use an already spent address

Drawback

- Output of an exchange
 - A list of one-time addresses P_1, P_2, \ldots, P_N and commitments C_1, C_2, \ldots, C_N .
 - The commitments C'_1, C'_2, \ldots, C'_N created by the exchange.
 - The regular ring signatures γ_i over public keys $(C'_i, C'_i C_i)$
 - The linkable ring signatures σ_i over public keys $(P_i, C'_i C_i)$
 - The commitment Creserves to the total reserves

$$C_{\text{reserves}} = \sum_{i=1}^{N} (C_i - C'_i)$$

- When $P_i \in \mathcal{P}_{known}$, the linkable ring signature contains the key image I_i of P_i
 - A future transaction spending from P_i will contain the same I_i
 - Makes the transaction zero mix-in
 - Ring signature is rendered useless

MProve Simulation Results

$ \mathcal{P} $	$ \mathcal{P}_{known} $	Proof	Generat.	Verif.	Query
		Size	Time	Time	Time
1000	100	0.32 MB	0.70 s	0.65 s	0.048 s
1000	500	0.32 MB	0.69 s	0.69 s	0.048 s
1000	900	0.32 MB	0.68 s	0.67 s	0.048 s
10000	1000	3.2 MB	7.01 s	6.76 s	0.087 s
10000	5000	3.2 MB	6.92 s	6.76 s	0.087 s
10000	9000	3.2 MB	6.87 s	6.75 s	0.087 s
100000	10000	32 MB	71.79 s	67.85 s	0.545 s
100000	50000	32 MB	71.13 s	67.83 s	0.545 s
100000	90000	32 MB	70.39 s	67.82 s	0.545 s

Future Directions

- Remove the drawback
- Make the proofs smaller
- Increase the anonymity set
- Ensure that exchanges generate reserves proofs from the same blockchain state
- Better proofs of liabilities

References

- Provisions https://eprint.iacr.org/2015/1008
- MProve https://eprint.iacr.org/2018/1210
- MProve Simulation Code https://github.com/avras/ monero/tree/v0.14.0.2-mprove/tests/mprove

Thanks for your attention

Saravanan Vijayakumaran sarva@ee.iitb.ac.in