Motivation
- Restrict the processing to a small rectangular window
- Reduced complexity
- Efficient ROI compression
 - involving a rectangular bounding box

Problem Definition
- Use seam carving to
 - tightly fit ROI into a rectangular window
 - containing an unknown object of interest
 - minimizing the background contained
 - without any user input and
 - with no knowledge about ROI size

Possible Approaches
- Detect salient objects and fit a boundary
 - non-uniform saliency map
 - bounding box may contain a substantial part of the background
- Seam carving [Avidan et al.] performs
 - content-aware image resizing
 - image retargeting
- Object carving using existing seam carving requires the final image size

Algorithm Overview
- A seam is an 8-connected path from image left to image right (horizontal seam) or from top to bottom (vertical seam)
- Find seams that avoid objects of interest
- Remove vertical seams
- Remove horizontal seams
- Obtain a rectangular box around the object

Optimal Horizontal Seam
- Minimize cost function $C(Q)=\sum_{i=1}^{N}E(I(Q_i))$
- Energy (E) of pixels [Avidan et al.]
 - L1-norm of gradient
 - e-HoG
- Seams avoid textured regions
 - removes low-gradient object regions

Proposed Energy Function
- To retain the salient pixels in the image
 - incorporate saliency of pixels
 - discard image texture information
 - If saliency output S and
 - Texture removed image J

Texture Removal
\[\text{min} \sum (J^i - I)^2 + \lambda \left(\frac{D(i)}{L(i)+\delta} + \frac{D(i)}{L(i)+\delta} \right) \]
- Weighted sum of absolute x-gradients in a window around pixel- i. D_i
- Absolute weighted sum of x-gradients in a window around pixel- i: L_i [Xu et al. 2012]
- Texture removed image $J = \sum_{i\in\Theta} \alpha_i J^i$
- Histogram mass as weights α_i

Saliency Computation
- Superpixel segmentation of image [Achanta 2012]
- Color histogram of each superpixel as feature
- K-means clustering

Different Energy Functions
- The saliency output, the textured removed image and the proposed (PR) energy as the cost function separately

Results - Visual Comparison
- Plot cost for removing every seam
- Detect maximum curvature of the cost curve to find the optimal number of seams to be removed

Results - Inclusion and Exclusion Error
- We detect only the salient ROI.
- The optimal number of seams to be removed is computed from the image without any user input.
- Vertical and horizontal seam removal may be performed in any order.