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Abstract

Literacy assessment is an essential activity for education administrators across the globe.

Typically achieved in the school setting by testing a child’s oral reading, it is intensive

in human resources. While automatic speech recognition (ASR) technology is a potential

solution to the problem, it tends to be computationally expensive and also unreliable for

any conditions that deviate from those of the training data set utilized in the ASR acoustic

and language model building. A fluency measure that can be computed directly on the

acoustic signal can be beneficial. In this work, we investigate such a measure and evaluate

it in terms of the accuracy of prediction of reading skill as quantified by read text that is

manually labeled at the word level. We first automatically cluster readers based on the

lexical characteristics typical of different skill levels. Unsupervised clustering reveals the

following dominant classes: good readers (mostly correct words, some disfluencies, i.e.,

self-corrections), poor readers (missed and/or unintelligible speech). We next propose a

set of acoustic signal features to predict the word-decoding skill categories of interest from

the recorded speech. Pause statistics, syllable rate, and spectral and intensity dynamics

are found to be reliable indicators of specific types of oral reading deficits, providing useful

feedback by discriminating the different characteristics of beginning readers. Note that

these features do not require ASR or word boundaries to be known.
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Chapter 1

Introduction

Learning a language requires good feedback in both quality and quantity. Reading aloud

has traditionally been an essential instructional component in school curricula. Further,

oral reading can serve to evaluate, both a child’s word decoding ability and text compre-

hension [2]. The absence, or minimal occurrence, of word-level miscues such as deletions,

substitutions, and disfluencies reveals good word decoding skills. On the other hand,

comprehension is indicated by prosodic fluency, which a child typically acquires after

word decoding becomes easy enough to free up the necessary cognitive resources [3, 4, 2].

Assessment based on oral reading involves having an expert (such as a language teacher)

listen to the child reading a chosen text for attributes such as speech rate, correctly ut-

tered words, phrasing, and expressiveness. It is thus intensive in human resources. As

per ASER 2018, an annual survey by the education non-profit organization Pratham, [5],

only half (50.3 %) of the students in fifth grade (class V) in rural India can read texts

meant for the second grade (class II). One main reason for this is the dismal student to

teacher ratio due to which students are not given the required level of attention.

There have been attempts to use ASR to evaluate lexical miscues followed by automatic

analyses of the word-level segmentations for prosody evaluation [6, 7, 8]. In the reading

context, ASR benefits from language models tuned to the intended text. On the other

hand, due to the sensitivity to acoustic model training data mismatch, ASR is successful

only when the speaker and environment variability is controlled. In the school scenario,

diversity in skill levels and accents and, possibly also, background noise presence, affect

the performance of both the language and acoustic models (LM and AM) making ASR

unreliable, especially for the poor word decoders.

In this work, we investigate the possibility of using acoustic signal analyses to achieve a
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coarse categorization of word-decoding (i.e., lexical) abilities. The categories are obtained

by clustering frequencies of the specific types of lexical miscues in a corpus of manual

transcriptions of a large number of instances of distinct stories read by children across

reading skill levels. We propose to detect instances of poor word-decoding using the

appropriate cues obtained purely by acoustic signal analyses. It is expected that ASR

based evaluation would be useful as a second stage only for the good instances in terms

of expected near-adherence to the intended text. We thus expect to also benefit from

the computational savings of acoustic analyses over ASR based analyses for a significant

component of the test data.

Traditionally, word decoding skill is defined by the WCPM (words correct per minute)

as measured by listening to the read-out text. More recently, the manual scoring of

fluency has also been considered based on perceived phrasing and expressiveness [9]. Most

research groups working in automatic reading feedback and assessment have focused on

improving the performance of an ASR module for reading miscue detection and speech

rate measurement [10, 11, 12, 13, 14]. Research has also addressed reading skill prediction

using lexical [10] or prosodic [15] features or a combination [16] of both. Bolanos et

al. [16] consider a 2-stage evaluation, where the first stage separates the poor readers

from good readers, while the second stage discriminates the prosodically good from poor.

The features used in both stages are drawn from the same set of acoustic and lexical

features. In the present work, on the other hand, we propose an initial screening stage

involving lexical skill prediction with acoustic analysis alone.

Previous work has exploited fluency metrics such as speaking rate and pause lengths and

frequencies to predict non-native adult speaker proficiencies in communication settings

[17]. Fontan et al. [18] used low-level signal features to estimate speech rate and its

regularity in order to predict human ratings of fluency for Japanese learners of French.

While there are other examples of the correlation of computed acoustic signal features

with human expert rated fluency, none of these works attempt to predict specific word

decoding attributes from the prosodic analyses.

In the present work, we categorize a typical dataset of children’s read speech recordings

into classes discovered by the unsupervised clustering of the observed lexical miscues in the

manually generated transcriptions. We next investigate acoustic measures to predict the

so identified broad categories with a view to develop an automatic system that provides

useful descriptions of overall lexical skill. Experimental evaluation of the performance of

the system is followed by a critical discussion of the results.
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Chapter 2

Dataset

The data used in our study consists of recordings of short stories, by students in the

age group 9-13 years via an app designed in-house. The students are learning English as

an additional language and studying in 6th-8th standards in schools in rural areas. As

mentioned above, our evaluation system could be particularly useful for children in rural

areas where there is a lack of skilled English teachers and other learning and evaluation

facilities like the internet. For the same reason, we expect a more extensive range of

reading proficiency among students in rural areas, whereas those in the urban areas are

expected to have mostly good proficiency level. The story content is tailored to be easily

read by an average 6-8-year-old, but we see a rather wide range of reading proficiency in

our data due to the child’s acute lack of exposure to the language.

These stories are present in a video karaoke form, provided by Bookbox [19], and were

set up on a specially created android app for recording by Sensibol [20]. This app presents

the story in video karaoke mode with roughly one sentence per video screen. The student

also has the option to shadow the reference speaker, i.e., attempt to mimic the speech

of the reference audio. This feature can give rise to the interference of the reference

audio with the student’s speech in some of the recordings. A snapshot of the app is

present in Figure 2.1. The words are highlighted in the sequence corresponding to an

average speaking rate, i.e., that of the reference audio. At the end of each sentence, the

video screen switches to that corresponding to the next sentence. All the recordings are

made at 16 kHz sampling frequency with a headset mic to minimize background noise

and are stored with metadata comprising the child’s credentials, story name, and date of

recording. This recording is then uploaded on a web-based interface, created by Sensibol,

after appropriate sentence-level segmentation. The information of time-stamps of where

3
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Figure 2.1: Snapshot of the mobile app with the video karaoke form of recording.

Figure 2.2: Manual transcription UI with colour-coded lexical miscues marked.

the video screen changes and a Voice Activity Detector (VAD) are used to segment the

sentences.

These segmented sentences of the audio, aligned with the intended story text are pro-

vided on the web-interface to facilitate manual transcription at the word level. Figure2.2

shows the web-based interface for manual transcriptions. A human transcriber carries

out word-level transcriptions using these segmented sentence-level recordings. Here, each

canonical text word is compared to the same word in the reference audio and marked in

different dimensions using color codes, as indicated in table2.1. Apart from the indicators

mentioned, the transcriber can also make an additional comment, for example, on the

type and level of noise. A stage of validation of these transcriptions follows next.

The substitutions mentioned in table 2.1 can be by one or more words. The substituted

word(s) are keyed in by the transcriber for future use in Automatic Speech Recognition

(ASR) Acoustic Model or Language Model training. Gibberish speech, marked red in the

manual transcriptions, is observed to occur typically as a sequence of several syllables with

no clear one-to-one correspondence to the expected words. This phenomenon is expected

to be difficult to discriminate from correct speech without ASR.

4
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Table 2.1: Indicators used for manual transcription

Indicator on the
Interface

Description

Green Correct - the word is pronounced correctly
Blue Disfluency - the word is uttered in incomplete

form or/and immediately corrected
Yellow Substituted - the word is perceived as a different

word(s)
Red Incorrect - unintelligible speech or gibberish
Word is struck
off

Missed - the word is skipped, i.e. not uttered at
all

As the recordings were taken in the school environment, they contain a lot of background

noise typically found in a school environment. The noise level ranges from fairly clean to

very noisy. The different noise types are summarized in table 2.2.

Table 2.2: Different noise types seen in our data

Noise type Descriptive characteristics
White noise, Wind, Rain variable intensity, white

noise like spectra
School Noise (children playing in
background, bell noise, etc.)

variable spectra

Background Talker, Babble non-stationary, speech-like

For our experiments, we select recordings belonging to 6 stories out of the total 18

available. These stories were selected to be of moderate difficulty level, to contain a

significant number of corresponding audio recordings and to represent variability in the

vocabulary. If the vocabulary is very repetitive, the student might learn to speak only

the recurring phrase correctly and give a false indication of higher reading proficiency by

speaking a significant fraction of the story correctly. For example, the phrase “Who does

it all? Vayu, the wind.” is repeated after every one-two sentences in the story “Vayu, the

Wind”.

The data used in our experiments includes 1090 recordings of 6 distinct stories, recorded

by 212 distinct students. Each story is between 10-40 sentences long. The recording

duration ranges from approximately 1 min to 6 min long. Detailed information about

this subset of data used in our experiments is mentioned in the Table 2.3.

In some recordings, after the student has finished reading the text, he/she can be heard

talking to the supervisor or to his/her friends in their L1 language, which is usually Hindi,

Marathi or Telugu in our case. To ignore this unwanted speech, we use the recording only

until the last video frame is present. As the recordings are supervised, we assume that

5
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Table 2.3: Data distribution when clustering is performed at the sentence group level

Story # recordings # distinct
students

# sentences per
story

story video
duration (min)

The moon and
the cap

322 115 21 1.5

The lion and
the fox

153 96 22 3.9

The flying
elephant

80 52 41 6

The musical
donkey

93 59 29 2.6

Bunty and
bubbly

387 109 16 2.1

The wind and
the sun

54 36 43 5.9

such unwanted speech is not present during the story video is playing.

6



Chapter 3

Lexical Clustering

We apply unsupervised clustering to discover possible underlying groupings of the stu-

dents. For this, we use K-means clustering algorithm implemented in the sklearn library

in python [21], and evaluate the system for different choices of K, i.e., the number of

classes. Section 3.1 describes the different input features used and section 3.2 gives a

brief recap of the K-means clustering algorithm. The quality of fit is evaluated using the

silhouette score, which is explained in section 3.3. Section 3.4 contains discussion on the

obtained results.

3.1 Input Features

We use the manual transcriptions, described in table 2.1, for categorizing the students

based on their English reading proficiency. The proportion of each audio-indicator present

in table 2.1, is computed and used as a feature for clustering the students. The audio

recording corresponding to the time interval for which this feature is computed is called

an “utterance and details about the computation follow below. An “utterance” can be

defined in different ways. For example, a single sentence or a group of sentences or the

whole story can be used as an “utterance”. More discussion on the best choice of utterance

is present in section 3.4.

The fraction of the different types of words transcribed on the Sensibol interface, table

2.1, with respect to the total words in the utterance is used to categorize the student.

These, along with the terminology used henceforth, have been explained below :

• C = fraction of correct words in the utterance

=
total # correct words in the utterance

total # words in the utterance

7
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• M = fraction of missed words in the utterance

=
total # missed words in the utterance

total # words in the utterance

• I = fraction of incorrect (gibberish) words in the utterance

=
total # incorrect (gibberish) words in the utterance

total # words in the utterance

• D = fraction of disfluent words in the utterance

=
total # disfluent words in the utterance

total # words in the utterance

• Sk = fraction of words substituted by k words in the utterance

=
total # words substituted by k words in the utterance

total # words in the utterance

By the transcriptions on the Sensibol interface, we have information about S1, S2, S3

and S>3.

Considering all the fractions mentioned above, we obtain an 8-dimensional feature vec-

tor. Along with this, we also examine some of the feature vectors obtained by meaningful

combinations of above fractions. Although we have information about S1, S2, S3 and

S>3 individually, their occurrence is very low and also, considering these 4 kinds of sub-

stitutions separately does not contribute to our task of categorizing the students, any

more than the combining them to form two features - “substituted by 1 word (S1)” and

“substituted by more than 1 words (Sm)”.

We can further combine disfluencies (D) and substituted by more than one words (Sm)

since the disfluencies can also be considered as “substituted by more than one word”

in the process of self-correction, and the number of occurrences of these two categories

is relatively low. Based on our observation that substitutions are mainly grapheme-to-

phoneme pronunciation errors prevalent with Indian language speakers learning English,

we further combine the fraction of correct words and words that are substituted by one

word. For example, the words “heard” and “herd” are pronounced similarly, as /hÇd/.

However, a student, who has never been taught the pronunciation of these words, can

pronounce “heard” as /hI@"rd/. Such cases are not a fair representation of the student’s

reading skills, and hence, we can combine S1 with C instead of penalizing the student.

The three different input feature vectors used are also summarised in table 3.1.

8
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Table 3.1: Input features considered for Lexical Clustering

Input feature vector Description
4-dimensional (A) C + S1, M , I, D + Sm

5-dimensional (B) C, S1, M , I, D + Sm

6-dimensional (C) C, S1, Sm, M , I, D

3.2 K-means Clustering

To categorize the students based on their reading proficiency level, we have used an

unsupervised clustering algorithm called K-means clustering. We have used the python

implementation in the sklearn library [21].

K-means clustering aims at clustering the data into K clusters. The mean of the data

points in each class, also called the cluster center, is taken as the prototype of the cluster.

The clustering algorithm is given below :

1. Choose any K points randomly in the data-space. These are the initial cluster

centers.

2. To assign a data-point, say P, to a cluster, take the Euclidean distance of P from

each cluster center and assign P to the cluster corresponding to the nearest cluster

center. Categorize all the data-points to get the K clusters.

3. For each cluster, find the mean of all the data points in the cluster. These are the

new cluster centers.

4. If the updated cluster centers in step 3 are different from the centers at the beginning

of step 2, perform step 2 again. Otherwise, the clustering is finished, and the required

K clusters are those obtained at the end of the last iteration of step 3.

To remove the effect of randomly initializing cluster centers in step 1, this whole clus-

tering is performed ten times, and the best clustering among these is taken as the final

clustering. Facility for performing this repetitive clustering is present in the used sklearn

implementation, where the best clustering is the best output of the ten runs in terms of

inertia, i.e., the within-cluster sum-of-squares.

3.3 Evaluation Metrics

Silhouette score is a very commonly used evaluation metric for unsupervised clustering

[22]. It captures the closeness of each sample to its own cluster compared to the other

9
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clusters. The score is a measure of how tightly grouped the clusters are, with a higher

value indicating tighter grouping.

This score is computed for each data-point. Thus, for a new test data-point, it indicates

the quality of clustering of that particular instance. It can be averaged over each class,

giving us an indication of the relative quality of clustering of each cluster. It can further

be averaged over all the data-points, used here, to give us an indication of the quality of

clustering of the entire data-set.

For any data-point i, belonging to the cluster Ci, the intra-cluster variation is captured

by a metric a(i) and the inter-class variation is captured by a metric b(i). These two are

then used to compute the silhouette score s(i) as explained below. Here, d(i, j) denotes

the euclidean distance between the data points i and j.

a(i) =
1

|Ci| − 1

∑
j∈Ci,j 6=i

d(i, j)

b(i) = mini 6=j
1

|Cj|
∑
j∈Cj

d(i, j)

s(i) =


b(i)− a(i)

max{a(i), b(i)}
if|Ci| > 1

0 if|Ci| = 1

s(i) is then averaged over all the data-points in the dataset, to get the silhouette score

of the entire dataset under the considered clustering.

silhouette score =

∑
i s(i)∑
i 1

The silhouette score ranges from -1.0 to 1.0. An analysis of different clustering scenarios

and the corresponding silhouette values reveals that higher score, ideally 1, indicates a

better clustering.

3.4 Results and Discussion

As mentioned above, we perform clustering using the different feature vectors mentioned in

table 3.1. We also vary the number of categories from 2 to 6. The most appropriate cluster

configuration is selected based on the interpretability of the clusters and the clustering

quality, assessed by the silhouette score.

10
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Figure 3.1: Average silhouette score versus number of clusters for the different feature
vectors considered. Result when an entire story recording is considered an utterance.

We first consider an “utterance” to correspond to an entire story recording. The figure

3.1 shows the silhouette score for the different clustering configurations considered. The

performance on using the 4D feature vector is significantly better than that using the other

two feature vectors, 5D and 6D. This performance seems consistent with our observation

that substitutions are mainly linked to valid attempts by the child that happen to be

mispronunciations. We consider only the 4D feature in our further usage (i.e., classification

using acoustic features, 5) and discussions as it performs the best among all others.

The obtained clusters in a 2-dimensional space of chosen 4D feature subset are shown in

figure 3.2. Cluster 0, denoted by purple color code, corresponds to speech that is predom-

inantly correct (or substituted by a single word). We call this class, CA. The remaining

two categories correspond to speakers with a lower proportion of C+S1 words. Cluster

1, denoted by blue color, is dominated by deletions or missing words and the cluster 2,

denoted by the yellow color code, is dominated by gibberish or incorrect speech. We call

these classes MA and IA, respectively. This observation provides the interesting insight

that children with weak word-decoding skills do not necessarily pause and struggle to de-

11
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Figure 3.2: Scatter plots showing 3 clusters obtained using the 4D feature when the entire
story recording in considered as an utterance.

code the individual words but can instead skim over the words while speaking a stream of

gibberish. The latter scenario would be expected to be challenging to discriminate phonet-

ically from correct speech without a powerful ASR system with a relatively unconstrained

language model. This interpretation along with the number of instances categorized in

each class is mentioned in Table 3.2. Due to the data available, the instances in the

incorrect (gibberish) class are considerably low.

Table 3.2: Centers of the three clusters obtained using 4D input feature vector. An
utterance is considered as the entire story recording.

Cluster Color code Interpretation number of
instances

CA Purple Predominantly correct words 687
MA Blue Predominantly missed words 329
IA Yellow Predominantly incorrect

(gibberish) words
56

This interpretation of the clusters is also confirmed by the cluster centers mentioned in

Table 3.3. CA has a significantly higher fraction of (C+S1) words compared to the other

two clusters. Hence, we say that this class represents the students who mainly speak

correctly. Similarly, MA and IA have significantly higher fractions of missed and incorrect

words, respectively, compared to the other two classes.

Apart from the silhouette score, the Euclidean distance between the cluster centers can

also help us in deciding the number of classes. For example, if the distance between a

pair of class centers is very less compared to that between any other pair, it is possible to

club them together, i.e., a smaller number of total clusters would be better suited to the

data. Table 3.4 shows the inter-cluster distance for the clustering into three classes using

12
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Table 3.3: Centers of the three clusters obtained using 4D input feature vector. An
utterance is considered as the entire story recording.

Cluster-
feature

(C+S1) M I D + Sm

0 0.85 0.07 0.02 0.06
1 0.53 0.31 0.03 0.12
2 0.34 0.14 0.49 0.02

a 4D feature vector. The distance between the cluster pairs 0-1 and 1-2 is comparable,

and that between the cluster pair 0-2 is slightly more but still comparable. Hence, the

inter-cluster distances do not indicate a reduction in the number of clusters in our case.

Table 3.4: Euclidean distance between centers of the three clusters in Table 3.3

Cluster pair Distance
0-1 0.40
1-2 0.54
0-2 0.69

Because of the variability in the reading styles and reading proficiency of the school

children, the boundaries between the three classes need not be very strict. For example,

in many cases, an utterance having 70 % correct and 30 % missed words has also been

clustered into MA, although one might expect it to be clustered in CA. This is clearly a

result of the data present and the clustering algorithm used. To deal with such cases, we

cluster into more number of classes, thus giving us some intermediate classes, instead of

just the three extremes seen here. Based on the classes observed and the application at

hand (for example, if there is a requirement on the fraction of correct, missed or incorrect

words for an utterance to be in any particular class), we can then interpret or combine

classes. Here, as this categorization is simply an initial screening of the students before

performing a fine-grained assessment of phrasing, prominence, etc., we can keep students

having 70 % correct and 30 % missed in the CA class. Although, utterance having 70

% correct and 30 % incorrect words can be kept in the IA class because such utterances

would give erroneous results when an ASR is used for further evaluation. An observation

of the maximum percentage of incorrect words where we obtain acceptable results from

the ASR can help to tune such thresholds.

In Figure 3.2, we see a large spread in the classes, especially in MA and IA. So, even

though MA can be said to primarily constitute of students having the highest fraction

of missed words, many of them also have a significantly high fraction of correct words

(C + S1). This also reflects from the cluster centers. The center of MA has a higher
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Figure 3.3: Scatter plots showing 2 clusters obtained using the 4D feature. An utterance
corresponds to the entire story recording.

Figure 3.4: Scatter plots showing 4 clusters obtained using the 4D feature. An utterance
corresponds to the entire story recording.

fraction of (C + S1) compared to that of M . This also motivates moving to a higher

number of classes, as explained below.

Table 3.5: Euclidean distance between the cluster centers of four clusters obtained using
4D input feature vector, as shown in figure 3.4.

Cluster 0 1 2 3
0 0 0.59 0.26 0.74
1 0.59 0 0.33 0.56
2 0.26 0.33 0 0.60
3 0.74 0.56 0.60 0

Let us look into the interpretability of the clusters obtained using the 4D feature vector

but with the number of clusters other than 3. Figure 3.3 shows that clustering into two

classes gives a class of good speakers and another of struggling speakers. The latter

category mainly comprises of the MA and IA in our 3-cluster clustering discussed above.

Clustering into 4 classes, shown in Figure 3.4 gives an intermediate class apart from those

14
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Figure 3.5: Scatter plots showing 5 clusters obtained using the 4D feature. An utterance
corresponds to the entire story recording.

having the highest fraction of (C+S1), of M or of I. Since, this class has a higher fraction

of (C+S1) compared to that of the other lexical features, i.e., M, I or D+Sm, we can

combine it with the class of good, i.e., correctly speaking students (indicated by purple

data-points, class 0). This is also supported by the Euclidean distance seen between the

4 cluster centers as mentioned in the table 3.5.

Similarly, we get two intermediate clusters when the clustering into five classes, and

three intermediate classes when the clustering into six classes is performed. These clusters

are shown in figures 3.5 and 3.6. In both these cases, combining the intermediate class

with any of the predominantly correct, predominantly missed or predominantly incorrect

classes, gives a very similar result as the original CA, MA and IA classes in the 3-classes

clustering. So, using the combination for classification is not very helpful. However,

still performing a 5-way or 6-way classification can help us as we would be absolutely

sure about the utterances classified in the extreme cases of correct (purple), missed (dark

blue) and incorrect (yellow) classes.

A further examination of these classes reveals that the student’s reading proficiency need

not remain constant during an entire utterance. i.e., the student can have certain sections

of the text with proper word decoding and can have very much trouble in word decoding

in certain other sections. This could be because of the difficulty level of the text and can

also be due to the student’s skill level. Hence, performing this assessment at a smaller

time-scale would provide more detailed feedback compared to comment for the whole

recording. With our data, the smallest time-scale for which we have the manual lexical

annotations is the individual sentences, where “sentences” are defined as the individual

lines appearing on the Sensibol GUI shown in figure 2.2. However, considering each
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Figure 3.6: Scatter plots showing 6 clusters obtained using the 4D feature. An utterance
corresponds to the entire story recording.

sentence as an utterance results in extremely short time intervals which are not sufficient

to meaningfully evaluate the reading proficiency. So, we consider sentence-groups, i.e,

chunks of sentences consisting of 20-30 words as an utterance. The different metrics of

the number of words metrics of the number of words per utterance and the number of

utterances is present in the table 3.6.

Table 3.6: Data distribution when clustering is performed at the sentence group level

Story # words per
utterance

# utterances
per story

Total #
utterances

The moon and the cap 27 - 30 5 1562
The lion and the fox 26 - 35 10 1347
The flying elephant 24 - 37 16 1248
The musical donkey 20, 28 - 35 8 727
Bunty and bubbly 22 - 29 5 1766
The wind and the sun 24 - 36 15 736

The results are seen similar to that in the story-level utterance scenario. The figure 3.7

shows the silhouette score for the different cluster configurations considered. As before,

the performance on using the 4D feature vector is the best among the other two feature

vectors, 5D and 6D, and so, we consider only the 4D feature in our further usage (i.e.,

classification using acoustic features, 5) and discussions.

Here, we see similar interpretation of the clusters as seen in the story-level case. Figure

3.8 shows the obtained clusters in 2-dimensional space of chosen feature subsets. We can

interpret the three classes emerging here as follows. Cluster 0, denoted by purple color

code, corresponds to speech that is predominantly correct (or substituted by a single

word). We call this class “CA”. Cluster 2, denoted by yellow color code, represents
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Figure 3.7: Average silhouette score versus number of clusters for the different feature
vectors considered.

utterances dominated by gibberish speech and cluster 1, denoted by blue color code,

represents utterances dominated by deletions or missing words. Here again, we call these

classes “IA” and “MA” respectively. These interpretations of the three classes is confirmed

by the centers locations as shown in table 3.8. This interpretation along with the number

of instances categorized in each class is mentioned in Table 3.7. Here also, the number of

instances in the incorrect (gibberish) class are considerably low due to the data available.

The euclidean distance between the centers is shown in table 3.9.

By the same motivation as before, we examine the clustering into number of clusters

different from 3. The results obtained are very similar to those obtained when an ut-

terance was taken to be the entire story recording. Figure 3.9 shows the clusters when

the clustering is performed into 2,4,5 and 6 classes respectively. All the interpretations

and observations from the story-level scenario hold here as well. When clustered into 2

classes, we obtain a set of good speakers, almost like the CA class when clustering into 3

clusters is performed and a class of poor speakers, which seems to be consisting of MA and

IA classes from the 3-way clustering. When clustering is done into 4, 5 or 6 classes, we
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Figure 3.8: Scatter plots showing 3 clusters obtained using the 4D feature.

Table 3.7: Centers of the three clusters obtained using 4D input feature vector. An
utterance is considered as the group of sentences.

Cluster Color code Interpretation number of
instances

CA Purple Predominantly correct words 5291
MA Blue Predominantly missed words 1799
IA Yellow Predominantly incorrect (gibber-

ish) words
449

Table 3.8: Centers of the three clusters obtained using 4D input feature vector

Cluster-
feature

(C+S1) M I D + Sm

0 0.88 0.06 0.03 0.03
1 0.51 0.38 0.08 0.03
2 0.32 0.13 0.54 0.01

Table 3.9: Euclidean distance between centers of the three clusters in Table 3.8

Cluster pair Distance
0-1 0.49
1-2 0.56
0-2 0.75

obtain intermediate classes apart from the extreme cases of predominantly correct, pre-

dominantly missed and predominantly incorrect (shown by purple, dark blue and yellow

color respectively in the respective figures).

We next investigate acoustic features, easily computed from a recorded child-story in-
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(a) 2 clusters (b) 4 clusters

(c) 5 clusters (d) 6 clusters

Figure 3.9: Scatter plots showing 2, 4, 5 and 6 clusters obtained using the 4D feature.

stance, that can provide cues for the three distinct lexical skill categories discovered from

the manual transcriptions.
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Chapter 4

Acoustic Feature Extraction

As mentioned in the previous chapter, we aim to categorize students based on their

English reading proficiency without the use of ASR, using only the acoustic features

derived from the audio. Features capturing pause behavior, syllable rate, and supra-

segmental variations such as intensity and spectral dynamics have been observed to be

useful for the task at hand. Table 4.1 lists these underlying attributes along with the

specific low-level features considered. The following sections discuss these features, along

with their importance and extraction.

Table 4.1: Description of extracted acoustic features

Attribute Feature
Pause mean, standard deviation (std), minimum, maxi-

mum of pause duration, pause freq, # pauses per
video frame

Syllable rate (SR) mean, std of relative # syllables, ratio of std and
mean, articulation rate (AR)

Dynamics Spectral centroid based (sp-dyn):
FDR, NMC, NMV
Intensity based (int-dyn): Macro-level variations
and micro-level fluctuations

4.1 Pause-based features

An indicator of poor word decoding by the student is a higher fraction of pauses in the

utterance. We detect silence regions using a VAD which is a combination of an Adaptive

Linear Energy Thresholding based VAD and a ZFF based VAD [23]. Pauses are then

defined as silences that exceed 200 ms. We compute the minimum, maximum, mean,

and standard deviation of pause duration across the utterance. We also find the pause
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Figure 4.1: Text spoken:“One night she had a dream”. The vertical green lines are the
time stamps where the video screen changes. The blue line shows the VAD decisions. The
black line shows the modified VAD decisions used for our computations.

frequency, defined as the number of pauses per second, i.e., the total number of pauses

divided by the total utterance duration. We also compute a feature, the pause frequency

in a video frame, i.e., the number of pauses in the utterance divided by the number of

video frames in the utterance.

A higher silence region in the audio can be a result of a struggle in word-decoding.

Because our recording system is video-karaoke based, it can also be because the student

quickly read the text given on the video screen and is now waiting for the screen to change

to read the other part of the text. To not penalize the student if the second reason the

case, we have taken a simple approach to ignore a pause just before the video change

boundary completely. If a video change boundary lies in a pause region, we ignore the

pause just before the boundary and the pause after the boundary is taken unchanged.

Figure 4.1 illustrates the same. Another approach could be to reduce only a fixed amount

from the pause before the video change boundary, but deciding this fixed amount is not

easy given the variability in our data.

4.2 Syllable rate based features

The syllables spoken by the student are important indicators of his/her proficiency level as

described below. Note that here we are merely interested in the syllables spoken, not the

“correctly” spoken syllables as we are not using an ASR. We compute the relative number

of syllables in each video interval, which is defined as the fraction of detected syllables

in the video interval to the number of syllables in the known text corresponding to the
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Figure 4.2: System block diagram for syllable detection. [1]

same interval. The relative number of syllables in a video frame should ideally be 1. As

the deviations increase on either side of 1, the proficiency level of the speaker can be said

to be decreasing. Ideally, we would expect a student struggling in word-decoding to have

the relative number of syllables less than 1. However, due to the “gibberish” phenomena

seen in our data, the relative number of syllables can be high even for struggling speakers.

In some cases, this ratio is even higher than 1 for a gibberish-speaking student. As

mentioned in section 3.1, substitutions by one word are combined with correct words for

all the experiments. So, the relative number of syllables can be greater than 1 even for

the correct class, CA. This ratio is expected to be low for the class with predominantly

deletions, MA.

The mean and standard deviation of the relative number of syllables are computed

across the video intervals corresponding to the utterance. We also compute the overall

articulation rate as the total number of syllables detected by the total speech duration of

the utterance.

As every syllable would have a vowel at its nucleus, we approximate the number of

syllables by the number of vowels. Now, for the accurate estimation of the number of

vowels, we estimate a representative weighted sub-band energy contour having peaks at

vowel locations. This system is shown in the figure 4.2. More details on this system can

be found in [1].

4.3 Spectral Centroid based features

On observing the data, we see that the gibberish speakers often repeat the phones spoken.

Because the phones, and so, the formants are repeated, we see a repetitive structure in

the frequency distribution of the audio. We use the spectral centroid to capture this. As

the name suggests, the spectral centroid is a form of average over the frequencies present

in the audio. The python implementation in the Librosa library is used [24]. We compute
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spectral centroid over the entire 0 - 8 kHz band from the short-time spectrum every 10

ms frame. It is quantized to 400 Hz bands. Silence regions are discarded based on VAD

decisions. We have also observed that spectral centroid lying in the region 2500 Hz to

3500 Hz, corresponds to silence or noise regions. So, these regions are also discarded.

For the remaining speech region in a given video interval, we count the most frequently

occurring spectral centroid band and the second most frequently occurring band, c1, and

c2 respectively.

Using c1 and c2, we compute the following features :

• Frequency distribution ratio (FDR): Ratio close to unity indicates energy distribu-

tion across the frequency range. Higher the ratio, higher is the single frequency band

dominance in the recording, a characteristic of incorrect speech where articulation

is relatively repetitive in nature.

FDR =
c1
c2

• Normalized mode count (NMC): It captures the dominance of the most frequently

occurring spectral centroid band in the speech regions of the utterance. As c1 would

be higher for incorrect (gibberish) speech compared to correct speech, this feature

is expected to be higher for the incorrect speech.

NMC =
c1

speech duration in utterance

• Normalized mode variation (NMV ): It measures the variation in the dominance

of highest occurring frequency in each video frame across the audio. This feature

is more useful for utterances at a larger time-scale, for example, at the story level,

as measures the consistency of the speaker over different video intervals. When the

length of the utterance reduces, this feature does not have much meaning. This is

also seen from the experimental results as mentioned in the section ??.

NMV = std(
c1

speech duration in utterance
)

4.4 Intensity based features

In the case of unintelligible speech, the dynamics are less prominent due to mumbling.

The intensity contours are more fluctuating in correct students and smoother in gibberish
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(a) Spectrogram for an utterance in CA. (b) Spectrogram for an utterance in IA.

(c) Spectral Centroid for an utterance in CA

class.
(d) Spectral Centroid for an utterance in IA
class.

(e) Normalized Log Intensity contour for an ut-
terance in CA class.

(f) Normalized Log Intensity contour for an ut-
terance in IA class.

Figure 4.3: Spectrogram, spectral centroid and log normalized intensity contours for an
utterance in class CA, shown in (a), (c) and (d); and for an utterance in class IA, shown
in (b), (d) and (f). Text spoken in the utterance in CA: “wife told them what had”. Text
spoken in the utterance in IA: “finally sond inda fon” (actual text: finally she found a
man)

speaking students. These inter-syllable and intra-syllable variations have been illustrated

in Figures 4.3e and 4.3f for an utterance in correct class and one in incorrect class respec-

tively. The features computed based on these observations are mentioned below. The

24



Predicting lexical skills from oral reading with acoustic measures

short time intensity contour computed across 10 ms frames exhibits different kinds of

dynamics at small and larger (i.e., across syllables) time scales. Intensity normalization

is performed at the video frame level followed by VAD based silence removal. We then

compute the following features :

• Intensity contour smoothness at syllable level: The intensity contour is averaged

over 300 ms windows. For each video interval, we compute the standard deviation

of the contour. Mean and standard deviation of this feature across the recording

capture the inter-syllable variation in intensity. This variation is less for the incorrect

speech compared to the correct speech, so we expect the mean to be low for incorrect

speech.

• Intensity contour smoothness at 10-40 ms level: We compute measures of the fluc-

tuations as the mean and standard deviation of the contour fluctuations in 50 ms

time windows. These contour fluctuations are found by averaging auto-correlation

of the short term energy computed over frame size of 10ms with lag up to 5 frames.

This averaged auto-correlation (ACRavg) is given by:

ACRavg =
1

lag

lag−1∑
k=0

∞∑
n=0

STE[n] · STE[n + k],

where STE[n] is short term energy for nth frame and padded with zeros wherever

necessary while computing the above ACRavg. These are expected to measure the

speaker’s intensity variations at a micro level. For smooth intensity contour, the

autocorrelation would be high and so, the mean of the averaged autocorrelation is

expected to be high for incorrect speech.

25



Chapter 5

Classification Results and Discussion

The acoustic features extracted above have been used to classify the students into three

classes - containing predominantly correct words ‘CA’, predominantly missed words ‘MA’

and predominantly incorrect (gibberish) words ‘IA’. We have used supervised classifi-

cation for this with the ground-truth training labels obtained from clustering. Random

Forest classifier, implemented in the sklearn library of Python, has been used for the

classification. We first perform the classification considering the entire story recording as

an utterance. However, as mentioned in section 3.4, the student’s performance might be

different in different parts of the story. We also look into the results of the classification

when sentence-groups are taken as utterances.

First, a single stage classifier is tested with the extracted features as input vector per

utterance. As some of the acoustics features were observed to be efficient in distinguishing

IA, we use a 2-stage classifier (P). It is expected to separate IA from the other two classes

in the first stage, and CA and MA in the second stage. In our data, the CA and IA

classes contain mostly speech as opposed to the MA class. This motivates another 2-stage

classifier (Q) to separate MA from CA and IA first, and then separate CA and IA. The

ground truth labels of the CA, MA and IA classes are obtained from the lexical clustering

as mentioned in section 3.4. The performance is evaluated using accuracy score, i.e., the

percentage of correctly classified instances among the total data-points present.
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5.1 Random Forest Classifier

A random forest classifier [25] is essentially an ensemble of multiple decision trees, where

each tree is trained, and the final output is the mode of the outputs of each of the decision

trees. This merging of the output from multiple trees provides a more accurate and stable

prediction. A decision tree classifier is exactly what is suggested by the name: a tree-

like decision-making model with a node representing a decision on the inputs, a branch

representing the outcome of that node’s decision and a final node with no branches, leaf

node, representing the output of the decision tree. To decide which feature to use while

splitting a node, the decision tree classifier uses the feature which contributes the most

in distinguishing the classes. Parameters like Gini impurity are used for this evaluating

the importance of a feature.

Apart from the forest created by an ensemble of the decision trees, a random forest adds

randomness to the model by considering only a random subset of features for splitting a

node, instead of the entire feature space as in a decision tree. This results in diversity

across the trees, generally resulting in a better model. Reducing the feature space and

building smaller trees also prevents overfitting.

Another quality of the random forest classifier is that we can find the relative impor-

tance of each feature for the prediction. The sklearn implementation used, measures the

feature importance by looking at how much the tree nodes, which use that feature, reduce

impurity across all trees in the forest. This score is computed for all the features after

training, and the computed feature importances are scaled so that their sum is 1. The

feature importances can help in selecting which features to use and which to drop from

the classification.

Because of the good prediction result and the ease of understanding and using the

hyperparameters, random forest classifier is considered a handy tool. With enough trees,

overfitting is also prevented.

5.2 Results

This section first shows the experimental results when story-level utterances are used.

The results using smaller sentence-group level utterances are presented next. For both

the cases, we first perform a single stage classification into the three classes, CA, MA and

IA. As the dynamics features are observed to be efficient in detecting ‘incorrect’ speech,

27



Predicting lexical skills from oral reading with acoustic measures

we also test a 2-stage classifier (P). It is expected to separate IA from CA and MA in the

first stage and to the separate CA and MA in the second stage. In our data, the CA and IA

classes contain mostly speech as opposed to the MA class. This motivates another 2-stage

classifier (Q) to separate MA from CA and IA first, and then separate CA and IA. For the

three classifier systems used, we have tried out different input feature combinations and

the results with the best performing classifiers are shown below.

We can also classify the students into two categories, viz., students with good word

decoding, those that were classified into CA, and students with poor word decoding, those

that were classified into MA or IA in our 3-way clustering. This is useful for us because we

can then perform further prosodic assessment for the students in the CA category using

an ASR, but using and ASR for utterances in MA and IA would give erroneous results.

This classification can be done is a single stage. It can also be done using the results from

the 3 way classification above. Using the best performing 3-way classifier, predictions

into classes MA and IA can be combined as they have been considered the same class.

Note that we are not re-training the classifier in this case. The following subsections

contain these results for both sentence-level utterances and for smaller sentence-group

level utterances.

5.2.1 Results for story-level utterances

The results when the entire story is considered as an utterance are presented first. 7-fold

cross validation has been used. Note that the data used for classification is kept unbiased

towards any class. In our data, we have the least number of instances for the incorrect

class. So, the data used for classification is limited by the number of instances in this

class. At the story-level, the instances in the three classes as mentioned in Table 3.2

have been considered. All the 56 instances in the incorrect class have been considered

for classification. 63 utterances corresponding to the missed class and 70 utterances

corresponding to the correct class have been considered. For the three classifiers, the best

performing configurations and their results are mentioned in Table 5.1.

The confusion matrix of the best performing scheme (P) in the Table 5.1 is shown in the

Table 5.2. The misclassifications are found to be more in the missed class compared to the

others; this is because whenever the students in the missed class spoke, they were correct

(largely) or incorrect. We can say that the missed class bridges the gap between correct

and incorrect. This can also be observed from the cluster plots in Figure 3.2. We have
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Table 5.1: Classifiers and obtained accuracies in 3-way classification. An utterance refers
to the entire story recording.

Classifier
Configuration

Feature Combination Accuracy

1-stage Pause features, SR features,
sp-dyn, int-dyn

65.7 %

2-stage (P) Stage 1: AR, sp-dyn, int-dyn,
#pauses per video frame
Stage 2: pause features,
SR features

68.3 %

2-stage (Q) Stage 1: pause features,
SR features, sp-dyn, int-dyn
Stage 2: sp-dyn, int-dyn,
SR features, pause freq

64.6 %

also observed that the correct class is more confined whereas the other two classes display

varying amounts of their respective characteristics. So, we expect more confusion in

classifying these. The dynamics features chosen, sp-dyn and int-dyn, are designed to pick

the incorrect (gibberish) speaking students from the others, improving the classification

of incorrect class. This motivated the two-stage classification (P). On the other hand, we

were unable to find similar tailored features for the missed class. Another performance

degrading parameter in our data is the presence of different kinds of noise, ranging from

white noise to background talkers. The features expected to classify ‘missed’ recordings

(pause features) are adversely affected by this. This explains the comparatively lower

accuracies for the missed class in Table 5.2.

Table 5.2: Confusion matrix for the highest accuracy classifier (P) of Table 5.1

Actual
Predicted CA MA IA

CA 51 7 12
MA 15 35 13
IA 7 6 43

The accuracy seen in the single stage 2-way classification is 69.3 % with confusion matrix

as shown in Table 5.3. Here, we have used 70 utterances for each of the two classes, the

CA class and students with poor word decoding with 35 utterances each for MA and IA.

Performing the 2-way classification using results from the best performing 3 way classifier

(P) above, gives 78.3 % accuracy with confusion matrix shown in Table 5.4.
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Table 5.3: Confusion matrix for the single-stage 2-way classification.

Actual
Predicted CA MA + IA

CA 49 21
MA + IA 22 48

Table 5.4: Confusion matrix for the 2-way classification using the best performing 3-way
classifier (P).

Actual
Predicted CA MA + IA

CA 51 19
MA + IA 22 97

5.2.2 Results for sentence-group-level utterances

The results considering a group of sentences as an utterance are presented now. As

each story level utterance is divided into sentence-group-level utterances, more utterances

in available for use. This data has also been mentioned in Table 3.6. 15-fold cross

validation is used. The random forest used consists of 500 trees. Here also, the data used

for classification is kept unbiased towards any class. As, we have the least number of

instances for the incorrect class, the data used for classification is limited by the number

of instances in this class. Out of the 449 instances in the IA class, some utterances are

removed due to very high noise and 435 utterances are used for the classification. 450

utterances of MA and 465 utterances of CA are used for the classification. The accuracies

seen here, mentioned in Table 5.5, are slightly less than those seen at the story level.

Table 5.5: Classifiers and obtained accuracies in 3-way classification. An utterance refers
to a group of sentences.

Classifier
Configuration

Feature Combination Accuracy

1-stage All except ratio of std and avg rel num
syl, NMV

62.88 %

2-stage (P) Stage 1: all except min, max pause
duration, NMV ,
# pauses / # video intervals
Stage 2: all except sp-dyn, syllable level
intensity in int-dyn

61.55 %

2-stage (Q) Stage 1: all except NMV
Stage 2: all except NMV

61.48 %

The confusion matrix for the best performing 1-stage classification has been shown in

the Table 5.6. The accuracy seen in the single stage 2-way classification into students with

good word-decoding, CA and students with poor word-decoding, MA and IA is 72.2% and
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the confusion matrix in shown in Table 5.7. Here, 465 utterances for each of the two

classes are used with 240 for MA and 225 utterances for IA. As done for story-level above,

we can use the best performing 3-way classifier and combine the predictions of classes MA

and IA as they have been considered the same class. Again, the classifier has not been

retrained. The accuracy obtained is 74.1 % and the confusion matrix is shown in Table

5.8.

Table 5.6: Confusion matrix for the 1-stage classifier in Table 5.5

Actual
Predicted CA MA IA

CA 294 84 87
MA 93 278 79
IA 86 72 277

As mentioned before, the feature NMV measures the variation in the dominance of

highest occurring frequency in each video frame across the audio. This was particularly

useful when the utterance considered was at the story level. However, the smaller sentence-

group-level utterance already captures these small scale variations and hence, this feature

was not found to be very useful.

Table 5.7: Confusion matrix for the single-stage 2-way classification.

Actual
Predicted CA MA + IA

CA 339 126
MA + IA 132 333

Table 5.8: Confusion matrix for the 2-way classification using the best performing 3-way
classifier.

Actual
Predicted CA MA + IA

CA 294 171
MA + IA 179 706

5.3 Discussion

This section contains a discussion on the results seen for the sentence-group level case.

The same discussion follows for the story-level case. Figure 5.1 shows the actual and

predicted classes in the lexical feature space. As can be seen, there is lesser confusion in

the area towards the extremes in the three lexical features (M, I, and C+S1) compared
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(a) I v/s (C+S1)

(b) M v/s (C+S1)

Figure 5.1: The actual and predicted classes are shown in the 2-dimensional lexical feature
space. As in Figure 3.8, the Purple color code is used for the CA class, the Blue color
code is used for the MA class and the Yellow color code is used for the IA class.

to that in the middle. The challenges in our data and aspects of the features considered,

which lead to errors in our results are discussed next.

Challenges in the data leading to errors in our categorization system:

• Video-karaoke form of recording: A significant challenge is the high amount

of variability in our data, especially that introduced by the video karaoke form of

recording. If the video screen changes and the student has still not finished speaking

the text, he/she can continue speaking it from memory in the next video screen. In

such a case, the lexical annotations need not match the acoustic characteristics of

both the video frames. On the other hand, a good student might finish speaking the

text before the video frame ends. In such a case, the pause before the video frame

boundary would not be due to the incompetence of the student. We are unable to

distinguish between such a pause and a pause just before the video frame where the
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student actually could not speak. As mentioned in section 4.1, we have removed

this pause completely from our pause feature computations. But this has caused

confusion in cases with pauses of the latter kind, i.e., where the pause just before a

video frame boundary is actually due to the student being unable to speak the text.

Due to this pause information being lost, some students in the MA category have

got misclassified into the CA category.

• Transcription system limitation: A simple energy-based VAD was used while

uploading the audios on the manual transcription interface. This VAD was later

upgraded to a more sophisticated ALED and ZFF based VAD [23]. In many cases,

some sections of the speech have also been removed by the VAD. These deducted

parts of the speech have not been shown on the interface for the lexical transcrip-

tions, and so, many words have been marked missed, even though the student has

spoken them. In such cases, the utterance should actually be in the class CA, and it

is also classified as CA, but because it has been marked MA in the lexical clustering,

it is counted as an error while computing the classifier accuracy.

• Presence of noise: As mentioned earlier, we have considered audios with low

noise for the CA and the MA class, but as we already had significantly less number

of audios for the IA class, we had considered all of them. This noise in the incorrect

audios leads to erroneous results from the feature computation blocks, which further

leads to erroneous classification.

Aspects of the features considered that lead to errors in our categorization system:

• Syllable detection block: The syllable detection block used has been currently

trained on clean data. As our data is noisy, it often gives more syllables than that

are actually present, hence, accounting for errors, especially the misclassification of

utterances in the class MA into classes CA or IA.

• Frequency dominance: The spectral centroid computed is based on the premise

that the students in IA speak repetitively. But some of them have spoken in a very

confident manner, along with modulations. For such cases, our dynamics based

features are not able to distinguish such audios from those in the CA class.

• Micro-level intensity variation: The feature importance obtained from the Ran-

dom Forest classifier shows that the micro-level variations in the intensity play a
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significant role in the classification. Many correctly speaking students have been

observed to have smooth intensity contours, i.e., very less micro-level intensity vari-

ations, which were primarily found to be characteristic of the speakers in IA class.

The cause for this is not completely clear yet.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

Based on the fact that beginning (second-language) readers come with diverse skill levels

in the word-decoding aspect of oral reading, we attempted to characterize the behaviour of

the population represented in our children’s reading data set. The best underlying clusters

in lexical miscues space turned out to correspond to good readers and two types of lower-

proficiency readers. It emerged that poor word decoders can not only skip words they

cannot recognize, but also resort to speaking gibberish (unintelligible stream unconnected

to the text). We proposed acoustic signal features to discriminate the incorrect (unintelli-

gible) speech from correct speech, and overall, achieve the categorization of speakers into

the 3 classes. Since the number of instances that were labeled incorrect was relatively

small, we had to restrict our test data set.

On observing that the student might have good word-decoding for certain parts of the

story but poor word decoding for certain other parts, we perform the analysis for smaller

utterances, i.e., dividing each story recording into chunks, each consisting of 20-30 words.

Reducing the time-scale also increased the data available to us by a significant amount.

Analysing at the sentence level would also increase the confusion as even the smaller

variations in the acoustic features, which were being averaged out earlier would play a

significant role now. Also, we now have much more extensive dataset compared to what we

had previously, adding to the variability in the training and testing data. The classification

accuracy seen at this sentence-group level is comparable to that obtained at the story-

level. Hence, with the added benefit of giving better feedback to the students and the

added difficulty in the data, a similar accuracy is clearly acceptable. Using the sentence-
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group level classification, we can make better comments on the reading proficiency of the

student. For example, we can say which fraction(s) of the story recording was spoken

correctly, incorrectly, or primarily missed by the student.

6.2 Future Work

• We can perform these experiments using enhanced, i.e., denoised, speech. It was

observed that both SEGAN-based speech enhancement and traditional signal pro-

cessing based speech enhancement distort the pitch and intensity in the speech

regions [26], [27]. Hence, extracting the acoustic features from the denoised speech

might not be accurate, but it can be examined. Instead of using the denoised speech

for acoustic feature extraction, we can use it for better speech-silence demarcation,

i.e., better VAD decisions.

• The video karaoke form of recording introduces a lot of complications. Perform-

ing this classification on read text, but where the text is not presented in video

karaoke form, could be very useful and much more insightful about the student’s

performance; independent of the effects introduced by the video-karaoke form of

recording.

• Currently the data used in classification is limited by the data available for the

IA class. More data would give a better insight in the student’s proficiency level.

We would also be able to use advanced machine learning techniques such as Deep

Neural Networks, Support Vector Machines, etc. More features can be introduced

to improve the performance. For example, we have not made use of the fact that

the speakers in the IA class had spectral centroids towards the lower ends of the

frequency spectrum.

• Probabilistic classification can be advantageous here because of the large variability

of the data. I.e., instead of a verdict of which class the utterance belongs to, we can

tell the probability of it being in the three classes.

• ASR output can be checked for the three classes obtained to verify that ASR per-

forms poorly on the IA and MA classes compared to the CA class.
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