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Abstract 

This thesis is motivated by a speech based access system for agricultural information 

(AgroAccess). In such systems it is important to know when the speech recognizer has made a 

mistake and adapt the conversation accordingly. We investigate different components that can 

be used to improve the performance of the dialog system. One of the problems addressed here 

is the implementation of a keyword spotting system along with effective post-processing 

schemes to reduce the number of false alarms. In the latter half of the report we concentrate 

solely on the different confidence measures that have been investigated and in some cases 

improved upon. We consider confidence measures based on acoustic score normalisation and 

N-best list evidence. We also describe an initial version of the utterance level confidence 

measure computation block for the AgroAccess system. 
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Chapter 1. Introduction 

1.1  Motivation 

Traditionally human agent / touch-tone based systems are used for providing service to the 

users through phone calls. Since it is difficult to handle large call volume with human agents, 

touch-tone systems were developed wherein users navigate through a series of alternatives 

using key presses before getting the required information. But the touch-tone systems become 

cumbersome when the choices are far too many to be selected via key presses (e.g. choosing 

destination airport using an airline ticket reservation system). With the advent of speech 

recognition technology it is a viable option to implement a dialog system for such purposes. 

Here, the users respond to the questions asked by the system and their answers are sent to a 

speech recognition and understanding unit so that a suitable action can be taken. Together, IIT 

Bombay and TIFR have built one such dialog system (referred to as AgroAccess system in 

this report) in Marathi for providing prices of agricultural commodities to farmers across 

Maharashtra. This report is about some of the research problems addressed while building the 

system. 

1.2  Marathi AgroAccess system 

1.2.1  Background 

For the people involved in agricultural commodity business, it‟s important to know the prices 

of various commodities in local markets (mandis). Indian Ministry of Agriculture has a web 

portal (http://agmarknet.nic.in/) for disseminating the latest commodity prices in local markets 

from all over India. The user can access the prices through a graphical user interface (Figure 

1). For uniformity, the names of commodities are written in English. An internet based 

interface like this may be difficult to access for an illiterate farmer. AgroAccess system tries 

to improve upon this by using a speech interface. Of course, since speech recognition is not 

100% accurate, the system is fallible. There are challenges such as different pronunciation 

styles (different accents due to dialectal variation) and non-stationary environmental noise. 

Through better dialog design, restricted vocabulary, and adopting/improving upon the existing 

techniques in speech research the system is being improved. 

http://agmarknet.nic.in/
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Figure 1: Agmarknet visual interface example. (Screenshots taken from http://agmarknet.nic.in/ ) 

1.2.2  System components 

Main software and hardware components of the system are shown in Figure 2. The system 

 

Figure 2: Various hardware and software components of AgroAccess system (Image partially taken from 

http://www.clipartmojo.com/) 

consists of a (Computer Telephone Interface (CTI) card connected to the telephone line via a 

modem. An open source software Asterisk [1] has been used to handle the incoming calls. A 

daily updated MySQL [2] database stores the reported prices of various agricultural 

commodities in all the mandis of all the districts of Maharashtra. There are overall 34 

districts, 280 mandis and 190 commodities in Maharashtra as reported on the Agmark website 

(crawled from yr. 2004-2011). Whenever a user calls, s/he responds to system‟s questions and 

gets the price of intended commodities in a desired Mandi. We use CMUSphinx toolkit [3] 

to build our speech recognition system. 

1.2.3  System call flow 

Overall call flow of AgroAccess is shown in Figure 3. There are 3 main nodes in the system 

call flow; namely district, mandi and commodity node (in that order). The system (through a 

dialog with user) first determines the user‟s district, then mandi and then the intended 

commodity. We follow this order to reduce size of recognition searchspace (~ language 

http://agmarknet.nic.in/
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model) at each node. For example, overall there are 196 commodities but on an average there 

are only 22 commodities per mandi. So, the commodity searchspace is reduced by using a 

mandi dependent language model (LM). This language model is created based on 

commodities reported in that mandi over the last 8 years (yr. 2004-2011).  

At a higher level, the user‟s speech is first sent to a recognizer and the output of the 

recognizer (a string of words) is further processed by the system to decide how to respond to 

the user. For example, when a commodity name is recognized, the system accesses the 

MySQL database and obtains the price information. Based on this decision, the system 

responds by playing concatenated pre-recorded speech prompts (rudimentary speech 

synthesis). 

1.2.4  System vocabulary 

The districts are single word entities whereas mandis and commodities are multiword entities. 

Number of words in a mandi‟s name varies from 1 to 3. The commodity names sometimes 

contain acronyms (e.g. LRA, DJVI). If acronyms are considered as a single word then 

commodity names contain from 1 to 6 words.  Overall there are ~1000 words in the system 

vocabulary but only those words that are present in the language model at a particular node 

can be recognized by the system. 

1.2.5  Design problems 

While building a dialog system application one faces the trade-off between having human-like 

interaction and the recognizer accuracy. If the user is given too much „freedom of speech‟, 

then the recognizer accuracy degrades drastically. 

Response Validity Check block: One important block of the call flow is the one which 

determines “Should the user response be accepted?” This block tries to deal with the error 

types in Table 1. All these 6 types of errors depend on the user behaviour, but to further 

compound the problem, the recognizer itself may make mistakes. With each recognizer 

hypothesis we associate the degree to which we trust it. This degree is called as confidence 

measure in speech recognition. 
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Table 1: Types of error creating situations 

Error 

Type 
Description 

1 The speaker didn‟t say anything, but there is background noise / babble which can 

get decoded as a valid sequence of words. 

2 Each word spoken by the speaker is out-of-vocabulary for the system. 

3 The user spoke out of vocabulary words along with the in-vocabulary words (e.g. 

Hello, what’s the price of tomato?) 

4 Speech disfluency, false-starts 

5 Speaker uttered the intended phrase only partially (e.g. Vaashi Navi instead of 

Vashi Navi Mumbai) 

6 Speaker spoke words in a phrase in a different order than that assumed in the 

system (e.g. Tomato Red instead of Red Tomato) 

 

Research problems that arise from these error creating situations are as follows –  

1. Classification problem: Here, we classify the recognition output as either correct or 

incorrect (not to be processed further) based on an utterance level confidence measure. If it 

is incorrect, then we again ask the user the same question. Error type 1, 2 and 4 can be 

handled with such binary decisions.  

2. Information extraction problem: Here, we don‟t directly pass a binary judgement on the 

complete recognition output, but rather try to find out the intended name of item 

(district/mandi/commodity) spoken by the user. The error types 1, 2, 3 and 4 (Table 1) can 

be handled by a keyword spotting system (+ confidence measures). The error types 5 and 6 

can be handled using task specific linguistic knowledge (in addition to other techniques). 

For handling these errors different structures for Response Validity Check block can be used. 

These make use of three of the different types of search graph structures (described next) that 

we can use/implement with the CMU-Sphinx toolkit. 
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Figure 3: AgroAccess system call flow 

 

1.2.6  Language model and search graphs 

Speech recognition can be considered as a Viterbi search over a word/phone graph. These 

word graphs are constructed based on the particular type of language model fed into the 
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decoder. Shown in Figure 4 is a (partial) search graph structure for a three word vocabulary 

using trigram language model (no backoff). In an n-gram language model, prior probability of 

a word is learned from a training transcription and it depends on n-1 previous words. If some 

trigrams are absent in the training transcription then those trigram probabilities are 

approximated using bigram probabilities. This type of LM is called as backoff trigram LM. 

 

Figure 4: (Partial) Trigram search graph 

    

If one is aware of the exact word sequences that the user will be speaking, then a simplified 

language model called as Finite State Grammar can be used. Figure 5 is an example of search 

graph for a finite state grammar for above trigram case. By default, all the branches emanating 

from a node are equiprobable (i.e. not learnt from training transcription). Note another 

important feature of this particular structure, there is no loop back. Only finite length word 

sequences can be recognized with this graph. Also sometimes the decoder can output a partial 

phrase or no phrase at all depending on the speech content. Even though we have not shown 

explicitly, in both n-gram and FSG based search, fillers (non speech sounds, including 

silence) can be recognized in between any two words. 
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Figure 5: FSG search graph 

There is another possibility, though traditionally it‟s not referred to as a language model as it 

can be implemented using a finite state grammar. It is a keyword spotting technique in which 

the search graph includes an optional allphone loop is present before and after the keyword 

(or key-phrase) node (see Figure 6). It can be written as <phone>* key-phrase <phone>* (* 

denotes zero or more). This kind of search graph can absorb any OOV words into the allphone 

loops. 

 

Figure 6: Keyword spotting search graph 

In Chapter 6 we describe Version 1.0 of the Response Validity Check block. The basic idea is 

that we use a preliminary hypothesis generator to generate one or more possible hypothesis 

phrases. A confidence measure computed for each word in each hypothesis is used to accept 

one of the hypotheses or reject all of them. 

Various preliminary hypothesis generator blocks differ mainly in the structure of the Viterbi 

search network and the network parameters (e.g. transition probability). We can use 3 

structures, namely, Finite State Grammar, Trigram language model and keyword spotting 

(word-filler network). The keyword spotting network has the ability to ignore out of 

vocabulary words in the search process itself.  

1.3  Thesis structure and contributions 

In Chapter 2 we review the literature on keyword spotting and various confidence measures. 

Experiments for building and evaluating acoustic keyword spotting framework are described 

in Chapter 3. In Chapter 4 and 5 we describe the implementation and obtain the 

performance of various word level confidence measures computed using following techniques 

based on 
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 Phone recognition based acoustic score normalisation (Chapter 4) 

 N-best list based confidence measures (Chapter 5) 

In Chapter 6, we describe the implemented Response Validity Check block. We conclude 

with Chapter 7. 

Thesis contributions are listed in Table 2. 

Table 2: Thesis contributions 

Problem considered Contribution Offline 

evaluation 

Integrated with 

AgroAccess? 

Keyword spotting + CMs  Implemented basic acoustic 

KWS framework + two post-

processing modules (CMs)  

Done on a small 

sentence 

database, with 4 

keywords  

No  

Confidence measures in 

Medium Vocabulary speech 

recognition  

Implemented a class of CMs + 

proposed some variants  

Done on 

AgroAccess 

speech database  

V 1.0 up and 

running. 

More intelligent information 

extraction  

-  -  No  

 

 



9 | P a g e  

 

Chapter 2. Literature Review 

In view of the nature of „Response Validity Check block‟ that was introduced in the first 

chapter, here we review the related previous efforts/achievements reported in literature. 

Initially, I started working on the keyword spotting problem. As noted in Section 1.2.5 a 

keyword system can help under the cases in which user embeds the intended item name with 

other OOV words. At that time the database for Agro-Access system was yet unavailable (the 

system building was still in the initial stages). As the field data became available, I 

concentrated on implementing and evaluating various word level confidence measures.  These 

confidence measures can be applied to prune the hypotheses generated by a keyword spotting 

system. The literature review has been divided in two parts, Sections 2.1, 2.2 and 2.3 are 

concerned with the review of the major approaches to KWS problem, followed by a 

description of performance metrics for a keyword spotting task. Section 2.4 reviews 

confidence measures in general. It is followed by a discussion on choices to be made while 

choosing confidence measure for a dialog system application.  

2.1  KWS problem definition  

The keyword spotting (KWS) task is to identify occurrences of certain keywords in an input 

speech stream. The accuracy with which the keyword boundaries are hypothesized is not that 

important but from an evaluation point of view, more than a certain amount of overlap 

(decided by the system designer) with the actual spoken keyword is required. During this 

process the KWS systems generate certain confidence scores associated with each hypothesis. 

The confidence scores are computed according to different confidence measures employed 

and are aimed at discriminating between true hits and false alarms. 

2.2  Approaches for keyword spotting 

There are 3 Main approaches to keyword spotting as described below. 

2.2.1  Large Vocabulary Continuous Speech Recognition (Word Index KWS) 

This is the most obvious approach to keyword spotting. The Large Vocabulary Continuous 

Speech Recognition (LVCSR) systems aim at recognizing all the words spoken in the input 

speech. The KWS task reduces to searching in the word level hypothesis produced by LVCSR 

system [10]. The recognizer output could be either in the form of 1-best hypothesis, N-best 
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list or word lattice. All of these can be termed as word level indexing methods. An example of 

a word lattice is shown in Figure 7. 

 

 

Figure 7: A word lattice created after recognition; in each hypothesis (denoted by a circle) the recognized word  

and its starting frame are shown; <s> and </s> denote start and end of the utterance respectively. Image created 

by porting the lattice file to GraphViz software. 

 

In the context of keyword spotting from large audio archives, word level indexing is done 

offline. When the user queries for a keyword, an online search is performed through the word 

index. One drawback is that if the queried keyword is absent from the recognizer vocabulary, 

it is impossible to locate it. Hence a large recognizer dictionary has to be maintained and 

updated from time to time. Another drawback of LVCSR is that a statistical language 

modelling of speech has to be done to improve the word recognition performance. Large 

amount of domain specific text data is required for language modelling. 

2.2.2  Indexing and searching sub-word content (Phone Index KWS) 

In this approach, phonetic content present in the speech is encoded in the form of 1-best or 

phone/syllable lattice. The phone sequence corresponding to the keyword to be searched is 
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first obtained either from a predefined dictionary or by using a grapheme-to-phoneme 

converter.  Phone recognition accuracy is generally lower than word recognition due to lack 

of knowledge about plausible phone sequences. To account for errors in phone recognition, an 

approximate search is run through the phone index. James et al. [5] have proposed a dynamic 

programming based lattice search technique. Here, the keyword phones were labelled as 

either „strong‟ or „weak‟. The strong phones are those which must be present in hypothesized 

lattice segment whereas weak phones could be deleted or substituted. Further improvement in 

lattice based search was proposed in [6]. Here, each phone sequence in the lattice is scored 

against the keyword phone sequence using Minimum Edit Distance (MED, also known as 

Levenshtein distance) metric. A threshold is kept on MED to compensate for the phone 

recognition errors. 

2.2.3  Acoustic keyword spotting (Acoustic KWS) 

Acoustic KWS uses the continuous speech recognition framework with a crucial difference 

that instead of trying to recognize all the words in speech (like LVCSR), models are build for 

keywords and all the non-keyword speech in general. Roehlicek et al. [7] proposed a HMM 

recognition network in which keyword and non-keyword models are kept in parallel in the 

recognition network. They trained whole-word models for keywords using keyword instances 

in the training data. The non-keyword models were trained on segments from keyword 

instances themselves. As they are kept in parallel, keyword and non-keyword models compete 

with each other during recognition. Rose and Paul [8] generalized this system and modelled 

the keywords as concatenation of subword models. They proposed various methods for 

building non-keyword (filler) models, such as training filler models specifically on non-

keyword speech and using a monophone loop (all monophones in parallel) structure as a 

model of non-keyword speech. More details about Rose and Paul system are in Section 3.4    

For good performance, the filler models should match the non-keyword speech more closely 

than the keyword models. In order to reduce the number of keyword false rejections, in [9] it 

has been proposed to use filler models from another language. For their Japanese KWS 

system they build keyword models from Japanese triphones and filler models from English 

monophones. Their results show that while phone HMMs trained on English cover the 

Japanese non-keyword intervals efficiently, they do not absorb the keywords (causing false 

rejections) when competing with Japanese KW models. 
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2.2.4  Comparison of the three approaches for keyword spotting 

See Table 3 for a brief comparison of the three KWS approaches. In [10] Szoke et al. have 

compared LVCSR, phone-lattice and acoustic KWS techniques. They found that the best 

accuracy is provided by LVCSR system by searching in word lattices and refining the search 

results using a confidence score derived from forward and backward lattice path likelihoods. 

The FOM performances were found to be in the order LVCSR > Acoustic KWS >> Phone 

lattice KWS. In [11] Szoke et al. have proposed a hybrid word-subword spoken term 

detection (general form of KWS in which a multiword query is searched for) system which 

merges the word and phone lattices and is shown to perform better than the individual 

systems in isolation. 

Table 3: Comparison of LVCSR, Phone index based and Acoustic KWS 

 LVCSR Phone index 

based KWS 

Acoustic KWS 

Vocabulary Pronunciations of both 

keywords and non-

keywords have to be kept 

in the dictionary 

Only phones Only keyword 

pronunciations have to 

be kept in the 

dictionary 

Offline task  Word indexing Phone indexing 

The KWS process has 

to be re-run on the 

whole audio when new 

keywords have to be 

searched. 

Online  task Searching through word 

index is very fast but 

disadvantage is that any 

keyword not part of 

vocabulary cannot be 

recovered. 

Fuzzy search 

through phone 

index has to be 

performed which 

is slower, but 

advantage is that 

any keyword can 

be searched 

Critical issues Domain specific Statistical 

language modelling, 

comprehensive vocabulary 

Phone recognition 

accuracy 

Modelling of non-

keyword speech 

Suitable for 

searching in 

Large audio archives and 

short utterances in spoken 

dialog systems when the 

vocabulary is very 

comprehensive and 

statistical language model 

is available. 

Large audio 

archives where no 

knowledge about 

keyword/ non-

keyword 

vocabulary is 

available.  

Short utterances in 

spoken dialog systems. 
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2.3  Performance metrics for KWS 

In keyword spotting literature various kinds of metrics have been used for performance 

evaluation. Here we briefly define each of them. 

Input to a keyword spotting system is speech and a keyword set (list of keywords to be 

searched for in the speech). The output of a keyword spotting system is a list of keyword 

occurrences with start time and end time information for each occurrence. If there is more 

than a certain amount of overlap between a hypothesized keyword and corresponding 

keyword in the ground truth, then it is considered as a true hit, otherwise a false alarm is 

declared. Overlap value is the choice of the system designer and is usually > 50%. 

The keyword spotting system aims at finding all occurrences of all the keywords from a 

keyword set. If there are total 𝑁𝐺  keywords occurrences in the ground truth and 𝑁𝐻  of them 

have been detected at a certain system operating point, then the hit rate (𝐻𝑅) is given as in 

Equation 1. 

 
𝐻𝑅 = 100

𝑁𝐻

𝑁𝐺
 

(1)  

False rejection rate (𝐹𝑅) is the converse of hit rate and is given as (100 − 𝐻𝑅). The False 

alarm rate (𝐹𝐴) of a KWS system at a particular operating point is given as in Equation 2 

 
𝐹𝐴 =

𝑁𝐹

𝑆𝐾𝑊𝑇
 (2)  

Here, 𝑁𝐹  is the total number of false alarms that occurred in a test dataset of duration T hours, 

𝑆𝐾𝑊  is the size of the keyword set. Unit of false alarm rate is FA/KW/Hour. It is better to 

include approximately equal number of occurrences of all the keywords in the test dataset; 

otherwise the results could be biased by performance on a few keywords from the keyword 

set only. An alternative measure of incorrect detections is false acceptance rate (FAR) which 

is computed as in Equation 3. 

 
𝐹𝐴𝑅 = 100

𝑁𝐹

𝑁𝐺
 (3)  

The Figure of Merit (FOM) [7] of a KWS system is defined as the average hit rate taken over 

false alarm rates ranging from 0 FA/KW/Hour to 10 FA/KW/Hour. Higher the FOM, better 
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the system is. FOM can be used compare systems which output a confidence score / which 

have some easily tuneable system parameters. FOM is not a good measure for comparing 

systems where achieving very high hit rate is more important than very low false alarm rate. 

This is because usually operating regions for very high hit rate and very low false alarm rate 

are separate. 

The Receiver Operator Characteristic (ROC) curve for a KWS system is obtained by 

plotting „hit rate Vs false alarm rate‟ or „hit rate Vs false acceptance rate‟. It gives a graphical 

indication of system performance over a large range of tuning parameters. 

Equal Error Rate (EER) is another metric for comparing tuneable KWS systems. It is 

defined as the false rejection rate (FR) at that point on the „false rejection rate Vs false 

acceptance rate‟ curve where FR = FA. Lower the EER, better the system is. Though it can be 

used to compare two systems, generally KWS systems are not operated at the EER. 

2.4  Review of confidence measures 

Definition: Confidence measure (CM) denotes the degree to which a recognition hypothesis 

is to be trusted. Depending on the feature(/s) used, CM may be confined to [0, 1] range, or it 

may take any real value. Confidence measures can be computed at phone, word or sentence 

level. In the literature, the confidence measure problem appears in various forms (as a post 

processing scheme in keyword spotting [8], for finding new words in the lexicon [12], 

utterance verification [13], dialog management [14], [15] and as a standalone problem by 

itself [16]. Below we give an overview of various classes of confidence measures. Surveys on 

this problem can also be found in [17], [18]. 

2.4.1  Decoder based features and their combination 

During decoding (and during latter passes in a multipass recognition system), the Viterbi 

search process generates different kinds of information which can help to distinguish correct 

hypotheses from incorrect hypotheses. These features are listed in Table 4. Here, we are only 

referring to word level CMs. 
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Table 4: List of Decoder based features 

Sr 

No. 

Feature Description and comments 

1 Number of phonemes in word [19] This is not a decoder generated feature, but still 

is a valid predictor of correctness. It is observed 

that longer words (those with more phonemes) 

are more often decoded correctly than shorter 

words. Greater the number of phones, more the 

confidence. 

2 Word duration [16], [20], [21] A word hypothesis is likely to be wrong if the 

hypothesis duration deviates too much from its 

mean duration (which may be computed from 

the mean of durations of constituent phones). 

Smaller the deviation from mean duration, more 

the confidence. 

3a Normalised log-likelihood acoustic 

score [8] 

It‟s the duration normalised log likelihood 

acoustic score of a word. Higher the score, 

more the confidence.  

3b Mean log-likelihood score [14] Average log-likelihood (i.e. acoustic score) of 

all repeating and overlapping instances of a 

particular word hypothesis in an n-best list. 

Higher the score, more the confidence. 

3c CM based on probability distribution 

of acoustic likelihood scores [16] 

Since best possible likelihood score for one 

GMM may differ from another, rather than 

using raw likelihoods, we need to compensate 

for this difference between GMMs. It helps to 

compute area under the likelihood distribution, 

between mean of the distribution and raw 

likelihood obtained from the recognizer. 

Smaller the area, more the confidence. This CM 

is obtained at frame level, and augmented to 

give word level score. 
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4 Standard deviation in loglikelihood 

scores [14] 

Standard deviation in acoustic scores across all 

the nbest hypotheses within the duration of the 

word hypothesis. Higher the deviation, more 

the confidence. 

5 Weighted combination of acoustic 

and language model scores [22] 

Higher the combined score, more the 

confidence. 

6 N-gram language model backoff 

behaviour [23], [24], [25] 

Based on whether the word trigram/bigram 

existed in the training data, a score is given to 

the word hypothesis (trigram gets highest 

score). Higher the score, more the confidence.  

7a N-best purity / N-best word-rate 

[14], [26] 

Fraction of the n-best list hypotheses in which 

the word appears in (roughly) the same time 

duration. Higher the fraction, more the 

confidence. 

7b Measure of N-best impurity [27] A measure of how similar the phones 

hypothesized in the n-best hypotheses are to the 

phones in top word hypothesis. The measure 

could be phonologically based or based on 

phone confusion matrix on training data. 

Greater the value of similarity metric, more the 

confidence. 

8 Difference between acoustic (+ 

possibly language model) scores of 

adjacent n-best hypotheses [28] 

Higher the difference between top and next-best 

hypothesis, more the confidence on the top 

hypothesis. 

9a Hypothesis density at the word 

beginning, word end [19], [29] 

Larger the number of different hypothesis in a 

word lattice at specific time (word 

beginning/end) more the confidence of the word 

hypothesis is low. 

9b Average hypothesis density [29] Hypothesis density averaged over complete 

word duration. Greater the density, more the 

confidence.   
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9c Number of active senones [30] Number of active senones (i.e. those above 

pruning threshold) near the hypothesized word 

end. Larger the number, smaller the confidence. 

9d Phone perplexity [25] Average number of phones searched along the 

frames where the recognized word is 

hypothesized. Larger the number, smaller the 

confidence. 

10 Acoustic score entropy [30] Framewise entropy of acoustic scores computed 

over complete phoneset; averaged over the 

word duration. Higher the entropy, lesser the 

confidence. 

11 Acoustic stability / LM jitter [27], 

[30] 

Word lattice is rescored multiple times (approx. 

equivalent to decoding the test utterance 

multiple times) for different combinations of 

the language weight and word insertion penalty. 

Fraction of times a hypothesized word occurs in 

(roughly) the same time segment across the 

multiple hypotheses is computed. Larger the 

fraction, more the confidence. 

12a Phonetic match at frame level [26] Two decodings, one at word level another at 

phone level are performed. Percentage of 

frames in which phone in the word hypothesis 

matches with the phone in phone level 

hypothesis indicates confidence in the word 

hypothesis. Greater the percentage, more the 

confidence. 

12b Phonetic match at phone level [26], 

[27] 

Same as above, but the percentage is computed 

over number of phones, instead of number of 

frames. Phonetic match is can also be computed 

using phonologically based similarity measure 

and/or phone confusion matrix based distance 

measure. Greater the percentage, more the 

confidence. 
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13 Distance between HMM states [31] Two decodings, one at word level another at 

phone level are performed. Using Kullbac-

Leiber measure, frame level distance between 

state level hypotheses of word and phone 

decoders is computed and averaged over the 

word duration. Smaller the distance, more the 

confidence. 

 

As can be seen from Table 4, the number of decoder based features is large. There is a 

gradation across these features but none of these features is very good/self-sufficient in terms 

of performance. Hence, some authors have tried to combine some of these features (and some 

other features based on posterior probability computation) using machine learning techniques. 

Chase [22] has experimented with 4 different ways of combining features, namely decision 

trees, generalised linear models (GLMs), generalised additive models (GAMs) and neural nets 

and found that GAMs perform better than the rest.  Zhang and Rudinky [26] combined the 

features using Support Vector Machines, decision trees and neural nets and reported that 

SVMs performed better. In [30] neural nets and linear classifiers were used for combination 

and neural nets were found to work better. 

2.4.2  CMs based on posterior probability computation  

The decoder hypothesizes a word sequence hypothesis based on Maximum A posteriori 

Criterion (MAP) rule. Let this hypothesis be denoted by 𝑊 . If O is the observation vector of 

MFCCs corresponding to input speech and 𝚿 is the set of all possible word sequences then 

 𝑊 = argmax
𝚿

𝑃 𝑊|𝑂  
(4)  

Here, P(W|O) i.e. posterior probability of the word sequence, can be computed as 

 
𝑃 𝑊|𝑂 =  

𝑃 𝑂 𝑊 . 𝑃(𝑊)

 𝑃 𝑂 𝑊 𝚿 𝑃(𝑊)
 (5)  

The denominator term in above equation as it remains constant, irrespective of what the word 

hypotheses are. Hence it is ignored during decoding; nevertheless, it is required for 

computation of posterior probability of hypothesized word sequence and is a good candidate 
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for confidence measure. The posterior probability can be computed in different ways as 

below. 

Using parallel phone decoder [8], [10]: Equation 5 can be approximated as (assuming each 

word sequence is equiprobable and relaxing the constraints on possible phone sequences) 

 
𝑃 𝑊|𝑂 ≈  

𝑃 𝑂 𝑊 

 𝑃(𝑂|𝑭)𝝓
 (6)  

Here, 𝝓 is the set of all possible phone sequences. The denominator in the above equation can 

be further approximated by the maximum term in the summation as below 

 
𝑃 𝑊|𝑂 ≈  

𝑃 𝑂 𝑊 

max
𝝓

𝑃(𝑂|𝐹)
 (7)  

The denominator max𝐹 𝑃(𝑂|𝐹) can be computed using a phone/filler decoder. If 𝑊  is the 

word sequence (𝑤1,𝑤2, … , 𝑤𝑛 ) then, for each word, the posterior probability can be computed 

as in Equation 8. 

 
𝑃 𝑤𝑖|𝑂𝑤 𝑖

 ≈  
𝑃 𝑂𝑤 𝑖

 𝑤𝑖 

max
𝜙

𝑃(𝑂𝑤 𝑖
|𝐹)

 (8)  

Using N-best list [32], [33]: N-best list is a list of hypotheses having total score (acoustic + 

language model scores) within a certain threshold of the total score of the top hypothesis. It is 

created by sphinx3 decoder in two steps. First, a word lattice is created during Viterbi search 

process. Next, the n-best list is created by processing the word lattice with A* search. N-best 

list can be used to given a confidence measure as described next. Equation 5 can be 

approximated using an n-best list as follows, 

 
𝑃 𝑊|𝑂 ≈  

𝑃 𝑂 𝑊 . 𝑃(𝑊)

 𝑃 𝑂 𝑊 𝑾𝒏𝒃𝒆𝒔𝒕
𝑃(𝑊)

 (9)  

Here, 𝑾𝒏𝒃𝒆𝒔𝒕 is the set of utterance level hypothesis from n-best list. If a particular word 

belongs to a subset of n-best list (in approximately the same location) then the following 

confidence metric based on n-best list (𝐶𝑛𝑏𝑒𝑠𝑡  ) seems reasonable to use 
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𝐶𝑛𝑏𝑒𝑠𝑡 (𝑤𝑖) =  

 𝑃 𝑊|𝑂 𝑾𝒏𝒃𝒆𝒔𝒕:𝑤 𝑖∈𝑊

 𝑃 𝑊|𝑂 𝑾𝒏𝒃𝒆𝒔𝒕

 (10)  

Using word lattice: Wessel et al. [32], [34] computed the posterior probability more 

sophisticatedly using the word lattice which is a more compact representation of all possible 

word hypotheses. They computed it by using a forward backward algorithm to compute the 

ratio of sum of the scores of all paths going through a node, normalized by the sum over all 

paths through the lattice. In [32] they show that this approach performs better than n-best list 

based approach. But note that this approach is more computationally expensive as compared 

to n-best list approach. 

In general, on a LVCSR task (e.g. large lattice size) it is accepted that word lattice based CM 

outperforms all other posterior probability based methods as well as the other decoder based 

features. Of course, their combination always helps.  

2.4.3  CMs based on statistical hypothesis testing formulation 

These CMs mainly come from utterance verification literature. Here the problem is 

formulated as a choice between two complementary hypotheses. 

H0: The hypothesized word is correct 

H1: The hypothesized word is incorrect 

A likelihood ratio test is performed by taking ratio of likelihoods of these two hypotheses. In 

[13] Sukkar has proposed a discriminative training technique for modelling subword HMMs. 

Here, corresponding to each subword, an anti-subword model is trained. During keyword 

verification a likelihood ratio between null and alternative hypotheses is computed for each 

component subword using subword and anti-subword models.  

The anti-model of a subword is discriminatively trained on the speech that was misrecognized 

as that subword. The confidence score of a keyword hypothesis is taken to be average of all 

the confidence scores of the component subwords. It was shown that this system performed 

better than the likelihood ratio scoring method [8] based on taking difference between word 

and sub-word recognition output scores. 

2.4.4  CMs based on additional features from acoustic signal  

1. Phone specific features: In their keyword spotting system Ma et al. [35], [36] used an 

artificial neural network (ANN) based phone recognizer to provide phone information and 
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manner attributes for each small segment within a word hypothesis. As a first step they use 

phone durational constraints to reject some false alarms. Next, they perform manner and place 

attribute based rejection based on some manual rules on frequent confusion pairs in 

development set. For example, they observed that sometimes “nine” is getting recognized as 

“one”. So those segments hypothesized as “one” whose manner attribute sequence didn‟t 

contain glide are rejected. They also used signal processing based features. For example, 

when they observed that “five” and “nine” are getting confused often they used low frequency 

energy ratio and a voicing detector to decide whenever either of them was recognized. 

Similarly, they used different spectral features specific to each confusion pair as a confidence 

measure. 

2. Other spectrographic features: In [37] they present a method to capture patterns of high-

energy tracks (seams) in spectrograms. They hypothesize that these seams could potentially 

carry relatively invariant signatures of underlying sounds. Their task is discriminative word 

spotting for which they train these patterns on exemplars of words in vocabulary and classify 

a word based on an SVM classifier.   

2.5  Which CMs to use? 

One should choose the CMs given constrains of the task. Following questions are needed to 

be answered for a good choice of CMs 

1. Is the vocabulary size so small (and fixed) so that word specific discriminative training 

can be done? 

2. How much decision delay can be afforded (What is the computational effort involved in 

computation of CMs)? 

3. What are the linguistic constraints of the task (Whether semantic knowledge about words 

can be used)? 

4. If a combination of CMs is to be used, which CMs should be combined? 

Even though so many different kinds of CMs have been reported in the literature, to quote 

Jiang [17], overall performance of CMs (even the best ones) remains fairly poor, which 

largely limits their applications. 
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Chapter 3. Keyword Spotting (KWS) Experiments 

3.1  Database for KWS experiments 

An acoustic KWS system using phone models requires following 4 types of datasets.  

1. Phonetic training set – Used for training the phone HMMs.  

2. Phonetic test set – Used for tuning the phone recognition system parameters.  

3. Keyword spotting development set – Used for tuning the KWS system parameters (e.g. 

word insertion penalty).  

4. Keyword spotting test set – Used for testing the KWS system.  

The acoustic conditions (background noise level, channel characteristics) of all these sets 

should match with each other. 

Currently, we are using the TIFR Hindi database (TIFR-Hin) [38] for all the experiments. 

Developed on the lines of the TIMIT database, it comprises phonetically rich Hindi sentences 

uttered by 100 native speakers of Hindi. Each speaker utters 8 unique and 2 common 

sentences. The speech is recorded in quiet at 16 kHz, 16 bit PCM mono format. Total duration 

of the database is 75 minutes. The database includes phonetic (time-aligned) and word level 

(not time-aligned) transcriptions. The complete phone set of the database comprises of 94 

phones / sub-phones. These were divided in 37 classes based on considerations such as 

acoustic similarity, amount of training duration available for each phone. The 37 class phone 

set includes 10 vowels, 4 nasals, 4 semi-vowels, 4 fricatives, 10 stop/affricate bursts, and 1 

general model each for unvoiced stop/affricate closures, voicebar of the voiced stops, glottal 

pause, flaps and long silence. For convenience, we refer to both phone and sub-phone models 

as phone models. 

Our keyword set contains 4 keywords (dhobin, bartan, katghar and dakshin) each occurring 

100 times in the 2x100 common sentences of TIFR-Hin. The ground truth locations of the 

keywords were obtained by searching the phone sequences (corresponding to the 

pronunciation variants of the keywords) in the time-aligned phonetic transcripts. One 

drawback from the evaluation point of view is that all the keywords always occur in the same 

left and right word context. But since different speakers speak the keywords differently, a 

large number of pronunciation variants were observed for each keyword. So the dataset seems 

good on the count of speaker variability. 
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Due to lack of sufficient amount of separate test dataset we had to overlap the 4 datasets as 

described as follows -  

1. Phonetic training set – The 37 phone HMMs were trained on 8 non-common sentences 

from 76 speakers (total duration of around 45 minutes) of TIFR-Hin. 

2. Phonetic test set – Phone recognition parameters were tuned on the test set comprising 

8x24 non-common sentences of 24 speakers (separate from the training set) of TIFR-Hin. 

The phone recognition accuracy was 64%. 

3. Keyword spotting development set  – 500 sentences from TIFR-Hin were used as the 

development set. These included 100 keyword carrying sentences (with 4x50 keyword 

occurrences) and 400 keyword-free sentences. The parameter tuning procedure is 

described in Section 3.4.2. 

4. Keyword spotting test set – All the 1000 sentences of TIFR-Hin were taken as the test 

set. These contain 200 keyword carrying sentences (100 occurrences of each of the 4 

keywords). 

3.2  Keyword spotting system description 

A Multistage KWS system has been implemented (see Figure 8). Its various components are:    

1. Baseline system (An acoustic KWS system after Rose and Paul [8]) – The baseline system 

is tuned to operate at a very high recall and as low number of false alarms as possible. 

2. Refinement stages – The refinement stages aim at scrutinizing baseline hypotheses in 

order to reduce the number of false alarms using various confidence measures without 

significantly decreasing the hit rate. Two separate refinement stages are implemented (one 

based on Isolated Word Recognition and one using re-recognition with KW-Filler 

network). Also preliminary work on a burst detection based refinement stage is described. 
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Figure 8: Overall KWS system configuration - the baseline and refinement stages 

3.3  Feature extraction and phone HMM training 

Feature extraction is the first step before both HMM training and recognition. The feature 

extraction module extracts 13 Mel-frequency Cepstral Coefficients (MFCCs), from each 25 

msec of Hamming windowed pre-emphasized (alpha = 0.97) input audio at the frame rate of 

100 fps. Cepstral mean normalization is applied where normalization is done over the whole 

utterance. Total 39 i.e. 13 MFCCs (including energy coeff.) + 13 delta + 13 delta-delta 

coefficients are used as an observation vector for a frame. 

37 context independent phone HMMs (3 state, left-to-right topology, no skip transition) were 

trained on the phonetic training set using the SphinxTrain tool from the CMUSphinx toolkit 

[3]. The GMM parameters such as number of Gaussians per mixture and phone recognition 

parameters such as word insertion penalty (WIP) were optimized by experimenting on the 

phonetic test set. Note that during recognition, each phone is considered as a monophone 

„word‟; hence the WIP parameter is applicable for phone recognition also. More information 

about WIP and other tuning parameters is given in Section 2.4.2. 

3.4  Baseline System 

The baseline system is composed of two blocks, a keyword-filler network (KW-Filler n/w) 

block and a filler network block as shown in Figure 8. Both the blocks are standard HMM 

based continuous speech recognition systems in which frame synchronous Viterbi search is 

+ 

- .. 
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run on the respective recognition networks. These blocks are implemented using the Sphinx-3 

decoder [3].  

3.4.1  Configuration of KW-Filler and Filler Networks  

In the KW-Filler block, the non-keyword speech is modelled by a sequence of monophones 

and the keyword HMMs are concatenation of suitable monophone models (as per the 

pronunciation dictionary). For an input speech utterance the KW-Filler block outputs a stream 

of keyword and filler hypotheses along with the log-likelihood score and timing information 

for each hypothesis. The log-likelihood score of each keyword hypothesis is duration 

normalized and a confidence score 𝑆𝐾𝑊 is computed as in Equation 11. 

 
𝑆𝐾𝑊 =

log 𝑃(𝑂𝐾𝑊|𝐾𝑊)

𝑁𝐹𝐾𝑊
 (11)  

Here, OKW  is the sequence of observation vectors corresponding to the audio segment within 

which the keyword KW was hypothesized and NFKW  is the number of frames in this segment. 

Even after duration normalization, the keyword likelihood scores exhibit a large variation. A 

further score normalization using the score of fillers overlapping with the decoded keyword 

was proposed in [8]. These fillers are obtained by passing the complete speech utterance 

through a filler network. This normalization can be viewed as a likelihood ratio test between 

keyword probability and filler probability for a hypothesized segment. The normalized score 

SLR  is given as in Equation 12. 

 
𝑆𝐿𝑅 = 𝑆𝐾𝑊 − 𝑆𝐹 (12)  

In our implementation, 𝑆𝐹  was obtained from a filler network (each filler being a 

monophone). It is computed as per Equation 13. 

 
𝑆𝐹 =

 𝑓𝑟𝑎𝑐 ⋅ 𝑆(𝐹,𝑖)
𝑚
𝑖=1

𝑁𝐹𝐾𝑊
 (13)  

Here, 𝑆(𝐹,𝑖) is the log-likelihood score of the i
th

 filler overlapping with the keyword hypothesis 

and 𝑓𝑟𝑎𝑐 is the fraction of the filler which overlaps with the keyword (see Figure 9). 
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Figure 9: Outputs of KW-Filler network and parallel filler network block 

Shown in Figures 10 and 11 are the score distributions for true hits and false alarms with 𝑆𝐾𝑊 

and 𝑆𝐿𝑅 as confidence scores. These plots show that 𝑆𝐿𝑅 is a better discriminator of true hits 

and false alarms than 𝑆𝐾𝑊. 

 

Figure 10: Distribution of confidence score SKW over true hits and false alarms obtained on the KWS 

development set. The pdf has been smoothened in Matlab 

 

Figure 11: Distribution of confidence score SLR over true hits and false alarms obtained on the KWS 

development set. The pdf has been smoothened in Matlab 
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3.4.2  Parameter tuning of KW-Filler network 

We assume no knowledge about either the monophone sequence/distribution in the non-

keyword speech or the number of occurrences of each keyword in the database. Let 𝑁𝑚  and 

𝑁𝐾𝑊  be the number of monophones and keywords in the KW-Filler network. A priori 

probability of the monophone branch is 𝑃𝑚  (see KW-Filler n/w in Figure 8), a priori 

probability of each monophone is then 𝑃𝑚 𝑁𝑚  and that of each keyword is (1 − 𝑃𝑚 ) 𝑁𝐾𝑊 . 

The decoder hypothesizes a keyword-filler sequence 𝑊 = ( 𝑊1, 𝑊2, . . . , 𝑊𝑁) for a given 

utterance as per the maximum likelihood criterion [39] in Equation 14.  

 

𝑊 = argmax
𝑊

( log  𝑃 𝑂𝑊𝑖
 𝑊𝑖 +  𝐿𝑊

𝑁

𝑖=1

 log 𝑃 𝑊𝑖 +  𝑁 log(𝑊𝐼𝑃

𝑁

𝑖=1

)) (14)  

Here, 𝑂𝑊𝑖
corresponds to the sequence of observation vectors for the segment in which word 

𝑊𝑖  is hypothesized, 𝑃 𝑊𝑖  is the a priori probability of the word 𝑊𝑖 , 𝐿𝑊 is the language 

weight and 𝑊𝐼𝑃 is the word insertion penalty. The dynamic ranges of 𝑃 𝑊𝑖  (which comes 

from a discrete distribution) and 𝑃 𝑂𝑊𝑖
 𝑊𝑖  (which comes from continuous mixture Gaussian 

distribution) are vastly different. The LW parameter (> 1) acts as a balancing factor between 

the dynamic ranges of language model and acoustic model probabilities so that an 

(approximately) equal importance is given to both. But in doing so it reduces the cost 

associated with each word that is added to the hypothesis (due to its multiplication 

with 𝑃 𝑊𝑖 , which is a negative number). If the cost to add a word decreases, the decoder will 

hypothesize a greater number of shorter words in the hypothesis. To compensate for this side-

effect, a word insertion penalty (𝑊𝐼𝑃) is introduced. Thus, for each word added to the 

hypothesis, log(𝑊𝐼𝑃) cost is added to the total hypothesis score. In speech recognition 

systems, the optimal values of 𝐿𝑊 and 𝑊𝐼𝑃 parameters are empirically decided on the 

development set via a time consuming process [40].   

Unlike LVCSR based keyword spotting systems, where 𝑃 𝑊𝑖  is determined by a statistical 

language model trained on a large amount of text data, in acoustic KWS systems the a priori 

probability of keywords has to be derived empirically [41]. We tuned three parameters 𝑃𝑚 , 

𝐿𝑊 and 𝑊𝐼𝑃 of the baseline system to achieve very high hit rate and false alarm rate as low as 

possible on the KWS development set. First of all, LW and WIP were kept at their default 

values (9.5 and 0.7) in Sphinx-3 decoder. Since likelihood of a keyword occurring at any 

point in speech is smaller than that of the non-keywords,  𝑃𝑚  was varied from 0.8 to 0.95 in 

the steps of 0.05 to find out its value which gives minimum number of false alarms. At  𝑃𝑚  = 
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0.95, lowest number of false alarms was observed. Then, optimal values of 𝑊𝐼𝑃 and 𝐿𝑊 were 

searched for. First, 𝐿𝑊 was varied from 1-10 and then 𝑊𝐼𝑃 was varied from 1-12 keeping 𝐿𝑊 

at its best value, based on hit rate and number of false alarms). We are aware that sequential 

optimization is sub-optimal but in future experiments we will try to perform a joint 

optimization of these parameters. The criterion of optimization was to achieve very high hit 

rate (99%) on the KWS development set and number of false alarm as low as possible. 

Following general observations were made during the tuning process. 

1. False alarm rate decreases with increase in  𝑃𝑚  and 𝑊𝐼𝑃. Greater  𝑃𝑚  means that fillers 

will be favoured to a keyword; hence the number of false alarms can be reduced by 

increasing 𝑃𝑚 . Very large 𝑊𝐼𝑃 results in large number of short words (i.e. fillers) in the 

hypothesis. A small 𝑊𝐼𝑃 causes a large number of longer words (i.e. keywords) in the 

hypothesis. This can be explained as follows (assuming 𝑊𝐼𝑃 > 1). During the Viterbi 

search, a word lattice is formed which represents various hypotheses at different points in 

the speech. Finally backtracking is done to retrieve the highest scoring path through this 

lattice. When 𝑊𝐼𝑃 is very large, the lattice is mainly populated with fillers. This is 

because, in order to add a word to the lattice, its score has to cross a certain threshold. 

Larger WIP adds up to the scores of the words and helps shorter words to cross the 

threshold earlier than competing longer words during the search process. 

2. False alarm rate increases with increase in 𝐿𝑊 (𝐿𝑊 varied from 1-10). But hit rate either 

increases or decreases with 𝐿𝑊, depending on the value of 𝑊𝐼𝑃 (see Table 5). At low 𝑊𝐼𝑃 

values (e.g. 1), hit rate increases with 𝐿𝑊 and saturates at 100%. While at higher 𝑊𝐼𝑃 

values (e.g. 10), the hit rate reaches a maximum value (< 100%) and then starts decreasing 

with further increase in 𝐿𝑊. In both the cases (low and high 𝑊𝐼𝑃), at 𝐿𝑊 is increased to 

very high values (> 20) both hit rate and false alarm rates start decreasing from their 

maximum values and reach zero. 

It is important to achieve very high hit rate at this stage because if some keywords go 

undetected at this stage then they cannot be recovered by the later stages (which are aimed at 

reducing the number of false alarms). 
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Table 5: Effect of LW on hit rate and false alarm rate for different values of WIP. Numbers are obtained from 

experiments on the KWS development set 

LW 

WIP = 1 WIP = 12 

Hit rate 

(%) 

False alarm rate 

(FA/KW/Hour) 

Hit rate (%) False alarm rate 

(FA/KW/Hour) 

1 81.5 3.16 41 0.00 

2 59.5 50.12 60 1.19 

3 99 113.45 74 1.58 

4 100 270.16 84 4.74 

5 100 452.23 91 12.25 

6 100 615.55 96 23.72 

7 100 779.55 92 38.34 

8 100 865.20 85 49.41 

9 100 985.11 79 60.88 

110 100 1150.10 69 71.55 

3.5  Isolated Word Recognition (IWR) block 

Tajedor et al. [28] have proposed a refinement stage based on isolated word recognition. The 

motivation behind this approach is as follows. Since the Viterbi search computes an optimal 

path for the entire utterance, all the keyword hypotheses are influenced by all other 

hypotheses over the utterance. In order to obtain a confidence measure exclusively based on 

the hypothesized speech segment (𝑂𝐾𝑊), in the IWR block, the acoustic log-likelihood scores 

log 𝑃(𝑂𝐾𝑊|𝐾𝑊𝑖) are computed for all the keywords 𝐾𝑊𝑖  in the keyword set. These scores are 

then sorted in a decreasing order. Based on this list, the decision logic block decides whether 

to accept or reject the baseline hypothesis. Two confidence measures (CMs) that are 

implemented are as follows -  

1. Exact Match - Let 𝐾𝑊𝑘  be the k
th

 keyword in the sorted score list. If the top-scoring 

keyword (𝐾𝑊1) in the list is the same as the baseline hypothesis, then the hypothesis is 

accepted. 

2. Difference of log-likelihoods - If the „Exact Match‟ condition is satisfied, then two scores 

(𝑑𝑖𝑓𝑓12  and 𝑑𝑖𝑓𝑓13) are computed as in Equation 15 and 16. 

 
𝑑𝑖𝑓𝑓12 = log 𝑃( 𝑂𝐾𝑊|𝐾𝑊1) − log 𝑃( 𝑂𝐾𝑊|𝐾𝑊2) (15)  

 
𝑑𝑖𝑓𝑓13 = log 𝑃( 𝑂𝐾𝑊|𝐾𝑊1) − log 𝑃( 𝑂𝐾𝑊|𝐾𝑊3) (16)  
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If 𝑑𝑖𝑓𝑓12≥ T1 and 𝑑𝑖𝑓𝑓13≥ T2 then the baseline hypothesis is accepted. The thresholds T1 and 

T2 were decided based on the experiments on the development set. The difference of log-

likelihood CM is motivated by the following argument. If the baseline hypothesis is a true hit, 

then both 𝑑𝑖𝑓𝑓12  and 𝑑𝑖𝑓𝑓13  would be of greater magnitude than the case when it is a false 

alarm. For a false alarm, the log-likelihood scores would not exhibit much variation over the 

keywords as it may not be acoustically similar to either of them. 

3.6  Re-recognition with KW-Filler network 

The isolated word recognition system is constrained to output one of the keywords as top 

scorer. This was observed to cause false alarms when the hypothesized speech segment was 

phonetically very similar to one of the keywords. For example, when the actual spoken word 

was gharghar, the isolated word recognizer gave highest likelihood for the keyword katghar. 

The diff12 and diff13 confidence measures do not seem well equipped to handle such false 

alarms as the keyword likelihood is high due to phonetic similarity. Hence we replaced the 

IWR stage with a “KWHYP-Filler network” block. In this network, the baseline keyword 

hypothesis (KWHYP) is kept in parallel with all the monophones. The a priori probability of 

the keyword is kept the same as in the baseline  (1 − 𝑃𝑚 ) 𝑁𝐾𝑊  so as not to cause more 

alarms than the baseline system. 

It might seem that using the same KW-Filler network concept in both 1
st
 and 2

nd
 stage might 

not bring any advantage to the system. But the Viterbi search process in the baseline is not 

optimal for keyword recognition as it tries to maximize the path likelihood over the entire 

utterance while coming up with keyword/filler hypotheses. This drawback could possibly be 

overcome by re-recognition of hypothesized segments (either by IWR or modified KW-Filler 

network). In a sense the re-recognition approach is an optimized way of sliding-window 

search in audio. Here one does not have to slide the window over the entire utterance, but only 

the segments hypothesized by a baseline system. 

3.7  Refinement stage based on burst detection 

So far, we have discussed the methods to reduce the number of false alarms has by using the 

likelihood scores given by the Viterbi search based on phone HMMs trained on MFCC 

features. To investigate the possibility of using acoustic features of individual phones as a 

confidence measure, we decided to first look for the presence of burst in the keyword 

hypothesis. There are other acoustic features corresponding to each phone in Hindi, but 

presently we are using bursts. 
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For each keyword in our keyword set, certain strong stop bursts were observed. For example 

– /k/ and /t/ in Katghar (/k/ /a/ /t/ /vb/ /g/ /a/ /r/) 

Keyword katghar had the most number of false alarms with the baseline system, and was 

chosen for testing. The decoder provides the boundaries of each phone in the hypothesis. In 

this method, all the hypothesized bursts are extracted with 30ms extra duration on each side of 

the boundary. This boundary judgment was based on the analysis of burst boundaries obtained 

during phone recognition. To find out the presence of burst, rate-of-rise (ROR) of energy in 

the frequency band 3500 Hz to 5000 Hz is computed (similar to [42]). Energy in this band is 

used as bursts have high energy in this band. Energy in this band is computed every 1ms, 

using a Hamming window of length 6ms. ROR at i
th 

frame is computed as  

 
𝑅𝑂𝑅 𝑖 = 𝐸 𝑖 − 𝐸(𝑖 − 𝑘) (17)  

Here, the timestep of 10 ms is used (i.e. i-k = 10). Value of ROR is expected to be large at the 

burst onset. In all the hypothesized katghar segments maximum value of ROR was computed 

for the two bursts (/k/, /t/) within respective phone boundaries. All the true hits and false 

alarms were sorted in decreasing order of maximum RORs, separately for the two bursts. This 

was done to decide a threshold value on ROR to separate true hits from false alarms. 

Following observations (Table 6) were made after counting number of false alarms for whom 

maximum ROR is greater than maximum ROR of the 10
th

 false rejection. 

Table 6: Observations on the /katghar/ hypotheses 

Initial number of false alarms at 

the output of baseline system 

before 10
th

 false rejection  

Number of false alarms before 10
th

 false rejection (after application 

of burst detection) 

/k/ /t/ 

160 70 65 

 

3.8  Experiments and results 

The results reported here are for the KWS test data which is the entire TIFR Hindi database. 

A keyword hypothesis is considered as a true hit if it overlaps more than 70% duration of the 

same keyword in the ground truth. The evaluation is performed in two ways. We report the 

Figure of Merit (FOM) performance metric. For FOM computation, the threshold on SLR score 

was varied to compute hit rate at various false alarm rates. FOM results are given in Table 7. 
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Table 7: FOM results on KWS test set 

System 

Index 

 

System Configuration 

FOM 
Maximum 

hit rate 

FA/KW/Hour 

at maximum 

hit rate 
First Stage Second Stage 

1 KW-Filler n/w  51.27 99 66 

2 KW-Filler n/w IWR (Exact Match CM) 53.6 98.2 56 

3 KW-Filler n/w 
IWR (Exact Match and 

Difference of log-likelihoods) 
56.7 91.5 36 

4 KW-Filler n/w KWHYP-Filler n/w 58.6 95.25 34 

 

The other evaluation involved counting the actual number of true hits for the whole test set. 

Here, for each system SLR  scores of all true hits and false alarms are sorted in a descending 

order. Then SLR score is thresholded at each false alarm. The total number of true hits 

appearing in the list before 10
th

, 20
th

, … , 50
th

 false alarm are reported. Unlike FOM, here 

cumulative numbers of false alarms of all the keywords are considered. This table is useful for 

knowing where to set the operating point of the system. 

Table 8: Number of hits before n
th

 false alarm [Total number of keyword occurrences in ground truth = 400] 

System 

Index 

 

Cumulative number of false alarms (all keywords) 

10 20 30 40 50 

1 112 192 234 263 271 

2 141 195 241 261 288 

3 136 225 264 281 299 

4 160 213 268 292 306 

 

From Table 7 and 8 it can be seen that the system performance has improved with the 

introduction of each refinement stage. The FOM performance of the KW-Filler re-recognition 

system is slightly better than the „difference of log likelihoods‟ CM and also the maximum hit 

rate achieved is higher. This could be attributed to the flexibility in KW-Filler network to 

output a sequence of monophones instead of other keywords as in IWR block.     
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Chapter 4. Confidence Measure Experiments: Normalisation 

of Acoustic Score 

4.1  Introduction  

Recall the filler/phone recognition based keyword spotting post processing scheme (Equation 

13). The same scheme is justified in a different way below. As previously discussed in 

Section 2.4.2, posterior probability of a word can be computed using a parallel phone decoder 

using Equation 18. 

 𝑃  𝑤𝑗 |𝑂𝑤𝑗
 ≈  

𝑃  𝑂𝑤𝑗
 𝑤𝑗  

max
𝐹

𝑃(𝑂𝑤𝑗
|𝐹)

 
(18)  

Equation 18 can be rewritten (with duration normalisation) as below to give formula for frame 

level phone decoder normalization based confidence measure 𝐶𝑁𝐿𝑆
𝑓

 

 𝐶𝑁𝐿𝑆
𝑓

(𝑤) =   
𝑎𝑆𝑐𝑜𝑟𝑒 𝑂𝑘  𝑝𝑛𝑤 ,𝑖

𝑘  − 𝑎𝑆𝑐𝑜𝑟𝑒 𝑂𝑘  𝑝𝑛𝑝
𝑘 

𝑁𝑤

𝑁𝑤

𝑘=1

 
(19)  

Here, 𝑝𝑛𝑤 ,𝑖
𝑘  corresponds to the HMM state of the i

th 
phone belonging to the decoded word, in 

the k
th

 frame of the word. Similarly 𝑝𝑛𝑝
𝑘  is the HMM state of the parallelly decoded phone in 

the same k
th

 frame. The acoustic score difference is normalized with Nw, i.e. number of frames 

of the hypothesized word W. The term 𝑎𝑆𝑐𝑜𝑟𝑒 𝑂𝑘  𝑝𝑛  is acoustic score of corresponding to 

feature frame 𝑂𝑘  (assumed 1 dimensional for simplicity), computed on the probability 

distribution function of one of the states corresponding to the phone 𝑝𝑛. It is given by 

Equation 20 as 

 𝑎𝑆𝑐𝑜𝑟𝑒 𝑂𝑘  𝑝𝑛 = log 𝑃𝑡𝑟𝑎𝑛𝑠  +   −
1

2
(log 2𝜋𝜎𝑗  

2 +   
𝑥 − 𝜇𝑗

𝜎𝑗
 

2

+  log(𝑤𝑡𝑗 ))

𝑀

𝑗 =1

 (20)  

Here, 𝑃𝑡𝑟𝑎𝑛𝑠  is the state transition probability corresponding to transition of states between 

current frame and next frame; 𝜇𝑗 , 𝜎𝑗  𝑎𝑛𝑑 𝑤𝑡𝑗  are the mean, standard deviation and mixture 

weight respectively of the j
th

 Gaussian mixture density corresponding to the HMM state 

decoded in current frame. Total M Gaussian densities are present in the GMM.  
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Due to similarity between the decoded phones in the phone decoder hypothesis (𝑝𝑛𝑝
𝑘) and 

phones belonging to the decoded word (𝑝𝑛𝑤 ,𝑖
𝑘 ), the magnitude of the normalized word score 

is comparatively lower for a correct hypothesis than for an incorrect hypothesis. This is our 

baseline word score normalization. 

Even though duration normalization is already applied, Cox and Rose [19] observed that the 

performance of the score normalization based confidence measure further improves when 

hypothesized words are grouped according to number of phones in them. Here, we will be 

evaluating on the confidence measure for a group of words with 5 phones, as they are most 

frequent in our database.  

4.2  Database and evaluation criterion 

4.2.1  Various subsets of Agmark Marathi database 

This telephone speech database was collected and transcribed as a part of the DIT project. For 

more details about data collection see [43]. Speech data in the form of short phrases 

(mandi/commodity names) and Marathi sentences has been collected from 1500 speakers. 

Speakers are from all the 34 districts of Maharashtra. The database is recorded under realistic 

conditions; many utterances contain noise and/or background speech. As the database was 

still being collected and transcribed as the experiments in this report were carried out, 

following 2 subsets of the database were used for overall experimentation. The short phrases 

were originally recorded for duration of 3 – 5 seconds. Using a speech – silence segmentor 

[44] (implemented by TIFR team) the silence segments of more than 300 ms are chopped off 

before using this data for training/testing.  The subsets of the Agmark database are listed in 

Table 9. 

Table 9: Agmark Marathi databases 

Name of database 
Number of 

speakers 
Duration 

Nature of 

speech 
Male:Female ratio 

marathiAgmark850 850 ~9 Hrs. 
Short phrases 

(1-3 words) 
80:20 

marathiAgmark1500 1500 ~20 Hrs. 
Short phrases 

(1-3 words) 
83:17 

 

For the experiments described in this chapter we used marathiAgmark850 database. It 

contains 24,617 short Marathi utterances (3-6 sec). The vocabulary size is 1084 words. 

The CMUSphinx toolkit [3] has been used for training and testing the system. Sphinx3.8 

decoder was used. For feature extraction, Hamming window of size 25.6 msec and frame rate 
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of 100 frames/sec was used. 39 MFCCs (13 cepstral + 13 delta + 13 double-delta) were 

extracted from each frame. Total 64 CD phones and 6 CI fillers were been trained. The 

triphone HMMs (3 states per model, no skip states) were trained which shared 500 senones 

among them. Each senone was modeled with 16 Gaussian mixture densities with a diagonal 

covariance matrix. 

The database marathiAgmark850 was divided in 2 parts - 

1. 567 speakers (850x2/3) data for training CD triphone models which are used to do phone-

loop as well as word decoding (Referred to as 567spkrSubset). 

2. 283 speakers (850x1/3) data for testing confidence measure (Referred to as 

283spkrSubset).  

In another experimental configuration, the phone models for phone-loop decoder were trained 

on the complete 850 speaker data. More details about configuration of the experiments are in 

Section 4.4. 

4.2.2  Evaluation criterion 

Word level decoding is done on 283spkrSubset (unseen data). Then, baseline word score 

normalization 𝐶𝑁𝐿𝑆
𝑓

 is applied and an ROC curve (Probability of Correct Acceptance Vs 

Probability of Wrong Acceptance) is obtained. To obtain the ROC curve, score threshold is 

varied over its complete range and following quantities are computed for each value of the 

threshold – 

 
𝑃 Correct Acceptance =  

No. of correct word hypotheses with score > 𝑡𝑟𝑒𝑠𝑜𝑙𝑑

Total No. of word hypotheses
 

(21)  

 
𝑃 Wrong Acceptance =  

No. of insertions/substitutions with score > 𝑡𝑟𝑒𝑠𝑜𝑙𝑑

Total No. of word hypotheses
 

(22)  

For comparison, similar curves are drawn for the other proposed variants of score 

normalisation. 

4.3  Proposed modifications in the acoustic score normalization technique 

4.3.1  Phone-level score normalization  

The baseline word score normalization gives equal importance to each frame. But as it turns 

out, each phone has a different duration, so scores of longer duration phones (e.g. Vowels) 

dominate the word score. The baseline confidence measure is mainly affected by the 
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normalized frame scores in which such long duration phones are present. To reduce this bias, 

instead of considering each frame independent of another, per phone normalised scores were 

computed and added together to give normalized word score. Similar idea was used by Rivlin 

et al. in [45] in the context of computing phone posterior probability. 

The expression for Phone level normalized score 𝑆𝑁𝐿𝑆
𝑝

 is given by  

 

𝑆𝑁𝐿𝑆
𝑝

(𝑝𝑛𝑤 ,𝑖) =   
𝑎𝑆𝑐𝑜𝑟𝑒 𝑂𝑘  𝑝𝑛𝑤 ,𝑖

𝑘  − 𝑎𝑆𝑐𝑜𝑟𝑒 𝑂𝑘  𝑝𝑛𝑝
𝑘 

𝑝𝑛𝑤 ,𝑖
𝐸𝑛𝑑 − 𝑝𝑛𝑤 ,𝑖

𝑆𝑡𝑎𝑟𝑡 + 1

𝑝𝑛𝑤 ,𝑖
𝐸𝑛𝑑

𝑘=𝑝𝑛𝑤 ,𝑖
𝑆𝑡𝑎𝑟𝑡

 (23)  

Here, 𝑝𝑛𝑤 ,𝑖
𝑆𝑡𝑎𝑟𝑡  and 𝑝𝑛𝑤 ,𝑖

𝐸𝑛𝑑  correspond to the start and end frame respectively of the phone 

belonging to the decoded word. Normalized acoustic scores of all phones are clubbed together 

to get phone level score normalization 𝐶𝑁𝐿𝑆
𝑝

 (Equation 24). 

 

𝐶𝑁𝐿𝑆
𝑝

(𝑤) =  
1

𝑁𝑝𝑛 ,𝑤
 𝑆𝑁𝐿𝑆

𝑝
(𝑝𝑛𝑤 ,𝑖)

𝑁𝑝𝑛 ,𝑤

𝑖=1

 (24)  

Here, 𝑁𝑝𝑛 ,𝑤  is the total number of phones in the word 𝑤.  

To further bring phone dependence into picture following modifications were done. 

4.3.2  Phone accuracy based normalization 

Phone recognition was done on the training data (567spkrSubset) using the acoustic models 

prepared from the same data. On this data, accuracy of each phone 𝑝𝑛 was computed as- 

 
A(𝑝𝑛) =  

No. of frames correctly decoded frames of 𝑝𝑛

Total No. of frames of 𝑝𝑛
 

(25)  

We have less confidence (about phone identity) in those frames in which a low accuracy 

phone has been decoded. For each phone, the normalized acoustic scores 𝑆𝑁𝐿𝑆
𝑝

 (Equation. 23) 

are scaled by a factor [2 −  A 𝑝𝑛 ] so that, the normalized acoustic score is decreased by a 

larger amount for low accuracy phones, than that for high accuracy phones. The formula for 

phone accuracy based normalization is given by Equation 26. 

 if 𝑆𝑁𝐿𝑆
𝑝

 𝑝𝑛𝑤 ,𝑖 <  0 

      𝐶𝐴
𝑝 𝑤 =  

1

𝑁𝑝𝑛 ,𝑤
 C1 ⋅  2 − A 𝑝𝑛𝑤 ,𝑖  ⋅ 𝑆𝑁𝐿𝑆

𝑝
 𝑝𝑛𝑤 ,𝑖 

𝑁𝑝𝑛 ,𝑤

𝑖=1
   

else 

     𝐶𝐴
𝑝 𝑤   =  𝐶𝑁𝐿𝑆

𝑝  𝑤                                                                             

(26)  
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Constance C1 was used to adjust the dynamic range of scaling. Its value was kept at 6 

(obtained after some trial and error). The reason we are applying scaling only if 

𝑆𝑁𝐿𝑆
𝑝

 𝑝𝑛𝑤 ,𝑖 <  0  is that a non-negative 𝑆𝑁𝐿𝑆
𝑝

 denotes that the phone has been decoded with 

high confidence and further scaling is not required. 

4.3.3  Phone F-Score based normalization  

F-Score of a phone is a distance measure between two acoustic score distributions, one from 

the correctly recognized frames of that phone and another from the wrongly recognized 

frames. For computing F-Score, the reference phone level transcript for the training data 

(567spkrSubset) is force-aligned to the audio. Similarly, the phone decoder output transcript 

is also force-aligned. For each phone, frame-level normalized acoustic score 𝐶𝑁𝐿𝑆
𝑓

 is computed 

(difference between reference and hypothesized frame scores). F-Score gives an indication of 

the discriminative power of a phone (criterion being the acoustic score distributions). Its 

formula is - 

 Fscore(𝑝𝑛) =  
μcorrect − μwrong

σcorrect +  σwrong
 (27)  

Here, μcorrect  and σcorrect  are the mean and standard deviation of the acoustic score distribution 

obtained from the correctly recognized frames. Similarly, μwrong  and σwrong  are obtained from 

the wrongly recognized frames. 

Figure 12 shows acoustic score distributions coming from correctly and incorrectly frames of 

the phone /b/. Note the peakedness of correct frame score distribution Vs the spread of wrong 

frame score distribution. 

 

Figure 12: Acoustic score distributions of phones /e/ and /b/. These distributions are used to 

compute the F-Score of the corresponding phones. 
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Interestingly, some phones have negative Fscore. These mainly are the phones with small 

frequency in the data. Since Fscore are negative for some phones, the scaling factor applied 

for each phone has to be changed accordingly so that finally the phone Fscore based 

normalisation 𝐶𝐹
𝑝 𝑤  is given by 

 if 𝑆𝑁𝐿𝑆
𝑝

 𝑝𝑛𝑤 ,𝑖 <  0 

𝐶𝐹
𝑝 𝑤 =  

1

𝑁𝑝𝑛 ,𝑤
 C1 ⋅ (2 −

Fscore 𝑝𝑛𝑤 ,𝑖 − 𝑚𝑖𝑛𝐹𝑠𝑐𝑜𝑟𝑒

maxFscore − minFscore
) ⋅ 𝑆𝑁𝐿𝑆

𝑝
 𝑝𝑛𝑤 ,𝑖 

𝑁𝑝𝑛 ,𝑤

𝑖=1

 

else 

      𝐶𝐹
𝑝 𝑤 =   𝐶𝑁𝐿𝑆

𝑝  𝑤                                                                           

(28)  

The scaling factor ensures that the normalized acoustic scores of phones are decreased by a 

larger amount for phones with smaller F-Score, than those with larger F-Score. Here, too, 

scaling is applied only when phone-level normalized acoustic score is negative. Constance C1 

was used to adjust the dynamic range of scaling. Its value was kept at 6 (with some trial and 

error). 

4.3.4  Phone confusion matrix based normalization  

A phone confusion matrix was obtained on the training data (567spkrSubset). Phone 

confusion between a reference/ground truth phone 𝑝𝑛𝑟𝑒𝑓  and a hypothesized phone 𝑝𝑛𝑦𝑝  is 

computed as in Equation 29. 

 
PC(𝑝𝑛𝑟𝑒𝑓 , 𝑝𝑛𝑦𝑝 ) =  

No. of frames in which 𝑝𝑛𝑟𝑒𝑓  was substituted as 𝑝𝑛𝑟𝑒𝑓

Total No. of frames of 𝑝𝑛𝑟𝑒𝑓
 (29)  

If a pair of phones is highly confusable (e.g. /i/ and /ii/) then the normalized acoustic score 

should be decreased by a smaller amount than the case in which the phones that are highly 

distinct (e.g. /i/ and /th/). A symmetric distance measure between two phones can be defined 

in terms of entries in the phone confusion matrix as in Equation 30. 

 D 𝑝𝑛𝑟𝑒𝑓 , 𝑝𝑛𝑦𝑝  =  1 − 𝑃𝐶(𝑝𝑛𝑟𝑒𝑓 , 𝑝𝑛𝑦𝑝 ) ⋅ (1 − 𝑃𝐶(𝑝𝑛𝑦𝑝 , 𝑝𝑛𝑟𝑒𝑓 )) (30)  

Note that this distance measure can be applied only over those contiguous frames over which 

a single phone is present in both word decoder and phone decoder hypothesis. Let there be 

𝑁𝑠𝑒𝑔 ,𝑤  such segments in a hypothesized word 𝑤.  

Thus, we obtain another scaling scheme based on phone confusion matrix as below 
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 if 𝑆𝑁𝐿𝑆
𝑝

 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑤 ,𝑗  <  0 

       𝐶𝑃𝐶
𝑝  𝑤 =  

1

𝑁𝑠𝑒𝑔 ,𝑤
 C1 ⋅ (2 − 𝐷 𝑝𝑛𝑤 ,𝑗 , 𝑝𝑛𝑝 ,𝑗  ) ⋅ 𝑆𝑁𝐿𝑆

𝑝
 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑤 ,𝑗  

𝑁𝑠𝑒𝑔 ,𝑤

𝑗=1
 

else 

      𝐶𝑃𝐶
𝑝  𝑤 =   𝐶𝑁𝐿𝑆

𝑝  𝑤                                                                           

(31)  

Here, 𝑝𝑛𝑤 ,𝑗  is the phone belonging to the word in j
th

 segment, and 𝑝𝑛𝑝 ,𝑗  is the corresponding 

phone in the phone decoder output. Here, too, scaling is applied only when segment-level 

normalized acoustic score is negative. Also C1 is kept at 6 here as well. 

4.4  Experiments, results and discussion 

In order to test the 5 confidence measures (𝐶𝑁𝐿𝑆
𝑓

, 𝐶𝑁𝐿𝑆
𝑝 , 𝐶𝐴

𝑝 , 𝐶𝐹
𝑝 , 𝐶𝑃𝐶

𝑝
) we run experiments 

under 2 different configurations as described in Table 10. Basic motivation behind these two 

configurations is that we have to see the effect of phone recognition performance on the 

implemented CMs. In configuration1, phone recognition performance is better because the 

test data is a subset of training data. Also, since we are using different models for phone and 

word recognition, the acoustic scores are not consistent. In order to obtain consistent scores 

we do phone/word alignment with models trained on 567spkrSubset. 

Table 10: Details of Configuration 1 and Configuration 2 

 Configuration 1 Configuration 2 

Test data (word level 

decoding) 

283spkrSubset (1/3 part) of 850 speaker 

database 

-same as config1- 

Phone models for word 

level decoding 

500 senone, 16 Gaussian CD phone 

HMMs trained on 2/3 of the 850 speaker 

data (567spkrSubset) 

-same as config1- 

 

 

 

 

Phone models for phone 

level decoding 

500 senone, 16 Gaussian CD phone 

HMMs trained on complete 850 speaker 

data 

500 senone, 16 Gaussian 

CD phone HMMs trained 

on 2/3 of the 850 speaker 

data (567spkrSubset) 

Language model for 

word level decoding  

Backoff trigram LM trained on complete 

850 speaker data 

-same as config1- 

Language model for 

phone level decoding 

Bigram phone LM, derived from 

complete 850 speaker data was used for 

Bigram phone LM, derived 

from 567spkrSubset was 
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phone recognition. Also during phone 

decoding, the +babble+ filler was 

removed from filler dictionary as it was 

causing lot of substitutions. 

used for phone recognition. 

+babble+ removed from 

filler dictionary. 

Phone models for word 

level alignment 

500 senone, 16 Gaussian CD phone 

HMMs trained on 567spkrSubset 

-same as config1- 

Phone models for phone 

level alignment 

500 senone, 16 Gaussian CD phone 

HMMs trained on 567spkrSubset 

-same as config1- 

WIP for word decoding Is set based on word decoding of 

567spkrSubset using models created 

from the same data. WIP for word 

decoding = 25 

-same as config1- 

WIP for phone decoding Is set based on performance on 

567spkrSubset, when models were 

trained on the same 567spkrSubset. 

Criterion was that approx. equal 

deletions and insertions should occur. 

WIP for phone decoding = 5000 

-same as config1- 

 

Since the phone models used for phone decoding are different under the two configurations, 

we obtain phone recognition results on 283spkrSubset (Table 11). 

Table 11: Phone recognition on 283spkrSubset speaker database under Configuration1 and Configuration2 

Phone recognition result Configuration1 Configuration2 

% Correct       77.8 54.0 

% Substitution   11.2 31.0 

% Deletions   11.0 15.0 

% Insertions 4.2 9.2 

% Phone Accuracy 73.6 44.8 

 

ROC curves for 5 phone words: The hypothesized words were categorized according to 

number of phones in them. Words with 5 phones are most frequent in the database and are  
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considered here for performance evaluation. Plots are shows in Figures 13 and 14. 

Discussion: The proposed word score modifications showed more improvement when the 

phone recognition performance was high (77.8% correct, 73.6% accuracy). When phone 

recognition was done using models derived from a separate data, correctness and accuracy 

dropped (54% correct, 44.8% accuracy). In this case the improvement in performance was 

marginal (for probability of correct recognition > 0.6), as seen in the ROC curves. Note that 

this area (probability of correct recognition > 0.6) corresponds to the case when normalized 

word scores are very negative. I had tried the allphone mode in sphinx3 which is supposed to 

work with CD models for phone recognition, but it only gave 2% improvement in correctness. 

Why the shapes of ROC curves differ for the two configurations? 

Both the ROC curves can be divided in 3 parts. Consider the ROC curve corresponding to 

𝐶𝑁𝐿𝑆
𝑝

 (phone level normalisation) in both the figures for the below explanation. 

1. Part1: The middle straight line like part, it corresponds to hypotheses words with 

normalized near zero scores. Roughly, It goes from 0.35 to 0.8 (Y-Axis value) in Figure 13 

and 0.3 to 0.5 in Figure 14.  Smaller part1 in Figure 14 means that number of correct 

hypotheses with near zero scores is much less under configuration 2, than under configuration   

Figure 13: ROC plots (283spkrSubset) using configuration 1 

(phone decoding using models trained on complete database), 

Total no. of correct words = 2768, Total no. incorrect words = 

1040 

Figure 13 Figure 14: ROC plots (283spkrSubset) using configuration 2 

(phone decoding using models trained on 576spkrSubset), 

Total no. of correct words = 2768, Total no. incorrect words = 

1040 
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2. Part2: The rise in lower left corner – it corresponds to hypotheses words with more 

than zero normalized score. The lower-left-rise corresponds to 0 to 0.2 (X-axis) in Figure 13 

and 0 to 0.1 (X-axis) in Figure 14. This means that the number of incorrect hypothesis with 

high positive normalized scores is less under configuration 2. 

3. Part3: The slow rise in upper right corner – It corresponds to hypotheses words with 

less than zero normalized scores. For Figure 13, it lies between 0.85 – 1 (Y-axis) and 0.25 – 1 

(X-axis). In Figure 14, it lies between 0.5 to 1 (Y-Axis) and 0.2 to 1 (X-Axis).  

This means, the number of correct hypotheses words with lower normalized scores are much 

less under configuration 1 than under configuration 2. The reason is mismatch between 

phones from word decoder and phones from phone decoder (due to poor phone recognition 

under configuration 2.) 

Figure 15 shows effect on score distributions. As the scaling is applied only when normalized 

score is negative, all the distributions get scattered to left (ideally correct score distributions 

should have drifted so much to the left.) This also explains why the ROC curve is better with 

the modifications in the left most part of ROC curve (i.e. high threshold on the score) and 

worse in the rightmost part (i.e. smaller threshold on the score). 

 

Figure 15: Fraction of words Vs Normalised word scores for 𝐶𝑁𝐿𝑆
𝑓

 (baseline) and  𝐶𝐹
𝑝
 (F-Score based 

normalization), under configuration 2. 
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Which among these is the best scheme for acoustic score normalization? 

Confidence measure 𝐶𝑃𝐶
𝑝

 seems better in Part1 and Part2 of the ROC curve in Figures 13 and 

14 but seems equal /slightly worse than  𝐶𝐹
𝑝

 in upper-right region (Part3) of the ROC curve.  

Improvement due to 𝐶𝑃𝐶
𝑝

 in Part1 and Part2 can be explained as follows: These correspond to 

the words for which phone recognition output closely matched with word decoder output. So 

these are examples of good/ideal articulations (w.r.t. training data). Phone recognizer is less 

likely to make mistakes for these words. Hence if it is an incorrect word hypothesis, with just 

1 or 2 phones mismatched (e.g. reference word Haapus Vs hypothesis word Kaapus), then the 

phone decoder is likely to hypothesize a different but correct phone. Here, knowledge about 

phone confusability is more useful than only the phone accuracy of the decoded word‟s 

phones (𝐶𝐴
𝑝
). 

 Ineffectiveness of scaling modifications in Part3 of the ROC curve is because in this region 

the phone recognizer is making more mistakes. So any scaling modifications which take help 

of phone decoder are not that useful. 
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Chapter 5. Confidence Measure Experiments: Using N-best 

list evidence 

5.1  Confidence measures using N-best list 

5.1.1  Various formulations for posterior probability from N-best list [26] 

As seen in Section 2.4.2 posterior probability for each word in top hypothesis is can be 

obtained with following formula- 

 
𝐶𝑛𝑏𝑒𝑠𝑡 (𝑤𝑖) =  

 𝑃 𝑊|𝑂 𝑾𝒏𝒃𝒆𝒔𝒕:𝑤 𝑖∈𝑊

 𝑃 𝑊|𝑂 𝑾𝒏𝒃𝒆𝒔𝒕

 (32)  

Here, the relation 𝑾𝒏𝒃𝒆𝒔𝒕: 𝑤𝑖 ∈ 𝑊 signifies a subset of n-best hypotheses which contain the 

same word as top hypothesis in an overlapping position. Any non-zero overlap is allowed. 

This will be easier to understand from Figure 16. 

 

Figure 16: Example n-best list for an utterance. Here, for computing 𝐶𝑛𝑏𝑒𝑠𝑡  of the word HAAPUS in the top 

hypothesis, hypotheses 1, 2 and 5 are considered in the numerator of Equation 32, while all the 5 hypotheses are 

considered while computing the denominator.  

Equation 32 can be rewritten (after taking language weight into consideration) 

 
𝐶𝑛𝑏𝑒𝑠 𝑡(𝑤𝑖) =  

 𝑃 𝑊 𝑙𝑤 𝑃 𝑂|𝑊 𝑾𝒏𝒃𝒆𝒔𝒕:𝑤 𝑖∈𝑊

 𝑃 𝑊 𝑙𝑤 𝑃 𝑂|𝑊 𝑾𝒏𝒃𝒆𝒔𝒕

 (33)  
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Here, lw is the language weight. The probabilities 𝑃 𝑊  and 𝑃 𝑂|𝑊  are very small and are 

not handled directly (to prevent loss of precision); instead we do all the computations in the 

log domain as in Equation 34. Base of the logarithm (base) is 1.0003 for Sphinx decoder. 

 
𝐶𝑛𝑏𝑒𝑠𝑡 (𝑤𝑖) =  

 base(α⋅𝑙𝑤 ⋅log 𝑃 𝑊 + 𝛽 log 𝑃 𝑂|𝑊 )
𝑾𝒏𝒃𝒆𝒔𝒕:𝑤 𝑖∈𝑊

 base(α⋅𝑙𝑤 ⋅log 𝑃 𝑊 + 𝛽 log 𝑃 𝑂|𝑊 )
𝑾𝒏𝒃𝒆𝒔𝒕

 (34)  

Here, 𝛼 𝑎𝑛𝑑 𝛽 are the individual scaling factors for language model score and acoustic score 

(in addition to language weight). We used the relation 𝛽 = 1 − 𝛼 in our experiments. 

5.1.2  N-best word rate [14], [26] 

Another confidence metric we use is N-best word rate 𝐶𝑛𝑏𝑒𝑠𝑡
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 is computed as follows. First, 

for a given word 𝑤𝑖  belonging to the top level n-best hypothesis, we find all the words in all 

the n-best hypotheses (𝑤𝑘
𝑛𝑏𝑒𝑠𝑡 ) that have non-zero overlap with  𝑤𝑖 . Then  𝐶𝑛𝑏𝑒𝑠𝑡

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛
 is given 

by 

 
𝐶𝑛𝑏𝑒𝑠𝑡

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑤𝑖 =
Number of 𝑤𝑘

𝑛𝑏𝑒𝑠𝑡  that are same as 𝑤𝑖  

Total number of wk
nbest

 (35)  

Thus, we have more confidence about those words which repeat a lot in the n-best list.  

5.2  Database description 

Phone models used in these equations were 500 senone, 16 Gaussian CD phone HMMs 

trained on 2/3
rd

 of the 850 speaker data (567spkrSubset). For word decoding, backoff trigram 

LM trained from the complete 850 speaker data was used. Test data was 283spkrSubset 

(remaining 1/3
rd

 of) of 850 speaker database. 

5.3  Experiments, results and discussion 

ROC curves were obtained for 5 phone words in the test data (as done in Chapter 4), for three 

different values of 𝛼 parameter (whereas 𝛽 = 1 − 𝛼).  Language weight was 9.5 

Case1:  𝛼 = 0.5 

Here, both 𝑃 𝑊  and 𝑃 𝑂|𝑊  contribute towards computation of posterior probability.  
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Case2:  𝛼 = 1 

Here, only language probability 𝑃 𝑊  contributes towards computation of posterior 

probability. 

Case3:  𝛼 = 0 

Here, only acoustic probability 𝑃 𝑂|𝑊  contributes towards computation of posterior 

probability. 

Also, ROC curve for 𝐶𝑛𝑏𝑒𝑠𝑡
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 was also obtained. 

Figure 17 shows the ROC curves obtained using n-best list based CMs, for comparison 

purpose ROC curve obtained with phone confusion matrix based score normalisation 𝐶𝑃𝐶
𝑝

 

(Equation 31). 

 

Figure 17: ROC curves for 𝐶𝑛𝑏𝑒𝑠𝑡
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 , 𝐶𝑃𝐶 ,
𝑝

  and 𝐶𝑛𝑏𝑒𝑠𝑡  ( at 𝛼 =  0, 𝛼 = 0.5 and 𝛼 = 1) for 

testing on 283spkrSubset. Total number of (5 phone) hypothesized words = 3808, total 

number of correct words = 2768; total number of incorrect words = 1040. 

As observed in Figure 16, the confidence measures based on n-best list are all better than 

𝐶𝑃𝐶
𝑝  that was used previously. This is expected taking into consideration that success of 𝐶𝑃𝐶

𝑝
 

depends on a good phone recognition performance. Also, theoretically, expression for 



47 | P a g e  

 

posterior probability using n-best list is more correct than the expression for posterior 

probability using parallel phone recognition as in the latter case we assume that each word 

sequence is equiprobable (Equation 6). 

Most surprising thing is that the performance of 𝐶𝑛𝑏𝑒𝑠𝑡  is best when  𝛼 = 1 i.e. only language 

probability 𝑃 𝑊  is used towards computation of posterior probability. This could be 

happening because of 2 reasons. Firstly, since we are using backoff trigram grammar for word 

recognition, there is a possibility that multiple words are recognized (even due to small 

amount of babble) causing lots of insertions. These insertions together with the correctly 

recognized words form sequences which were not seen in the training data. So for the inserted 

words, the language model probability is bound to be low. Performance of 𝐶𝑛𝑏𝑒𝑠𝑡
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 is only 

slightly better than that of 𝐶𝑛𝑏𝑒𝑠𝑡  (𝛼 = 1 𝑜𝑟 0.5). Given the simplicity of its expression, it is 

seems to be a good confidence measure. 

Figure 18 shows the histograms obtained for the two CMs (𝐶𝑛𝑏𝑒𝑠𝑡
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 𝑎𝑛𝑑 𝐶𝑛𝑏𝑒𝑠𝑡  (𝛼 = 1)) for 

on 283spkrSubset (unseen data). Here we consider all the words (irrespective of number of 

phones in them) hypothesized on the test data. In the upper inset, note the sudden rise in the 

fraction of correctly decoded words when CM value is increased beyond 99%. Two sudden 

peaks in the distribution for  𝐶𝑛𝑏𝑒𝑠𝑡  at 0.35 and 0.5 are puzzling and may be due to some 

specific words in the database. 

 

Figure 18: Fraction of total number of words Vs corresponding %CM values obtained for 

𝐶𝑛𝑏𝑒𝑠𝑡
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 𝑎𝑛𝑑 𝐶𝑛𝑏𝑒𝑠𝑡  (𝛼 = 1)  
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Chapter 6. AgroAccess System Level Experiments 

The Version 1.0 of Response Validity Check block has been implemented in the following 

way in the AgroAccess system. I decided to use N-best fraction 𝐶𝑛𝑏𝑒𝑠𝑡
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 and N-best 

posterior probability   𝐶𝑛𝑏𝑒𝑠𝑡  (𝛼 = 1 ) CMs after they proved to be better than acoustic score 

normalisation based on phone recognition. Of course, there better ways of combining various 

confidence measures (e.g. decision trees, linear discriminant analysis), but as of now we went 

ahead with a simple scheme. Both these CMs need n-best list in order to generate them. But 

N-best list is created only when we use n-gram LM (and not FSG, n-best list creation module 

has not yet been written for sphinx3 decoder). Sometimes (rarely), the A* search which 

creates N-best list, fails to create N-best list (reason yet unknown, may be because of some 

lattice traversal problem). In such a case, we assume that the utteranceConfidence is 1. 

Another thing is that the top-level N-best list hypothesis doesn‟t always match the decoder 

o/p. We consider the top-level N-best list hypothesis for CM analysis, whenever it is 

available. 

Phone triphone HMMs (2000 senones, 16 Gaussians) used in the AgroAccess system have 

been trained on the marathiAgmark1500 database. The number of senones and Gaussians 

were optimized based on 3 fold cross-validation experiments. 

The pseudo code for Response Validity Check block is as given below (Refer to Figure 3 to 

put things into perspective) –  

---------------------------------------------------------------------------------------------------------------- 

If (speechDetector(inputWavFile) == 0)  // i.e. speech detector doesn’t find any speech  
 utteranceConfidence = 0 
elseif (A* search failed) 
 utteranceConfidence = 1 
else 

 foreach 𝑤𝑜𝑟𝑑𝑖  in top-level N-best hypothesis 

  if (  𝐶𝑛𝑏𝑒𝑠𝑡 < 0.98   &&  𝐶𝑛𝑏𝑒𝑠𝑡
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

< 0.49 ) 

    𝒘𝒐𝒓𝒅𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 𝒘𝒐𝒓𝒅𝒊  = 𝟎 

   elseif (𝐶𝑛𝑏𝑒𝑠𝑡
𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

< 0.60) 

   𝒘𝒐𝒓𝒅𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 𝒘𝒐𝒓𝒅𝒊  = 𝟎. 𝟓 

  else 

   𝒘𝒐𝒓𝒅𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 𝒘𝒐𝒓𝒅𝒊  = 𝟏 

endfor 
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utteranceConfidence = 
Σi𝑤𝑜𝑟𝑑𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  𝑤𝑜𝑟 𝑑𝑖 

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑤𝑜𝑟𝑑𝑠  𝑖𝑛  𝑦𝑝𝑜𝑡 𝑒𝑠𝑖𝑠
 

If the sequence of words in hypothesis is not valid (due to n-gram search, insertions may occur / the 
speaker may have spoken words in a different sequence) 

 System rejects utterance 

elseif utteranceConfidence < 1.00 

System rejects utterance 

else 

System accepts utterance 

-------------------------------------------------------------------------------------------------------------- 

The CM threshold values used in the above algorithm were obtained by trial and error on 

demo system (more sophisticated approach is necessary). Based on informal testing, the 

system seems to reject OOV words reasonably well. But it still gets confused a lot when the 

spoken utterance is phonetically very similar to other word in LM (Solapur and Kolhapur).  

Another problem with this scheme is that if the user has spoken both in vocabulary and OOV 

words, then the utterance level CM may have a low value (due to OOV words) so we may 

have to reject the complete utterance. More systematic experiments on improving and 

evaluating the performance of this block are planned in immediate future. 
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Chapter 7. Conclusions and Future Work 

7.1  Conclusion 

This thesis started off with the introduction of Marathi AgroAccess system and described one 

aspect (Response Validity Check block) where various confidence measure techniques are 

needed.   

In this thesis we reported experiments done in building a keyword spotting system. We learnt 

from those experiments that parameter tuning of an acoustic KWS is very time consuming, at 

the same time critical for the system. The KWS system should include a good post-processing 

module.  Two post-processing modules were implemented, one based on Isolated Word 

Recognition and another using re-recognition with KW-Filler network. Latter one gave 7% 

increment in the Figure of Merit metric (w.r.t the baseline method).  

We experimented with various forms of acoustic score normalisation techniques trying to 

bring phone dependence into picture and showed improvement in the performance over a 

baseline score normalisation scheme. We also evaluated two n-best list based confidence 

measures. Overall n-best list based CMs were superior to score normalisation based CMs. 

We described the AgroAccess system and how confidence measures can be useful in the 

system. Though, this work is not yet complete at the time of writing this draft. 

7.2  Future work 

Implement more sophisticated confidence measures (for example posterior probability from 

word lattice) 

More generalized scheme of confidence measure that can take into account various problem 

cases is needed to be useful in AgroAccess system. Also investigation into usefulness of 

keyword spotting block can be done. 

Sphinx3 decoder does not create n-best list during finite state grammar search. Need to 

implement this module as FSG gives better performance than trigram LM based recognition, 

in an application like AgroAccess where syntax is simple. After implementing this module, n-

best list based CMs can be used in conjunction with FSG decoding. 
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