

978-1-4799-2361-8/14/$31.00 ©2014 IEEE

Better Phone Alignment for Confidence

Measures in Voice Based Querying

Nikul Prajapati, Hitesh Tulsiani, Jigar Gada and Preeti Rao

Department of Electrical Engineering,

Indian Institute of Technology Bombay,

Mumbai 400076, India

{nicool, hitesh26, prao}@ee.iitb.ac.in

Abstract—Voice-based querying for information is a

powerful technology that can hugely enhance the scope

of information retrieval systems by enabling their

remote access via the ubiquitous mobile phone.

Information retrieval based on automatic speech

recognition however is challenging due to the

environment noise and speaker idiosyncrasies typical of

real-world scenarios. Wherever possible, strong domain

constraints on the language model are used to minimize

the impact of signal degradation on recognizer

performance. This can lead to grossly mismatched

utterance and hypothesis occasionally, a situation that

must be detected to protect the call from irrecoverable

errors. We consider the revalidation of recognition

hypotheses via confidence measures derived from forced

alignment using an independent decoder. We show that

our FST based aligner can accurately reject incorrect

decoder hypotheses while being particularly robust to

the phenomenon of incomplete utterances.

Keywords—Automatic Speech Recognition,

Confidence measures, Incomplete utterances, CMU-

Sphinx, Open-FST.

I. INTRODUCTION

The effective exploitation of the vast available

digitized information today depends entirely on access

technologies. While the web offers efficient search

and retrieval with text-based querying, voice-based

querying can lead to a manifold increase in reach.

Mobile phone penetration is high and growing

throughout the country, with a considerably larger

presence than internet in rural areas. Speech-based

systems involve automatic speech recognition (ASR)

at the front-end of the information access system. A

well-designed dialog can elicit spoken queries that are

decoded by the ASR and presented in the form of text

for the search. The retrieved information is converted

to speech via a TTS system.

Our work is motivated by an on-going project on

providing telephone speech based access to a database

that provides up-to-date agricultural commodity prices

in markets across Maharashtra. The interactive voice

response (IVR) system is equipped with an ASR

front-end and a back-end that downloads, on a daily

basis, prices of agricultural commodities from a

website (http://agmarknet.nic.in/) maintained by the

Ministry of Agriculture, Government of India. A

simple dialog elicits spoken queries from the user

regarding the market and commodity of interest. The

ASR is based on an MFCC-HMM framework built

using the Sphinx toolkit [1]. The acoustic models and

N-gram language model (LM) are trained on specially

collected data obtained by field recordings of domain-

specific utterances including realistic queries by 1500

native Marathi speakers [2]. The speech database

comprises of the names of 32 districts, 279 markets

and over 300 unique commodities. A phone-based

recognition system is used in order to facilitate the

easy inclusion of new commodity names in future.

Some mandi and commodity names are multiword.

Manual transcription at the word level has been

carried out on the entire data making it valuable for

research, development and testing of ASR systems.

Challenges in the ASR system design include the

speaker diversity due to the distinct dialects of native

Marathi speakers across the state as well as the

presence of a variety of background acoustic noise in

the received speech arising from the caller’s

environment. Training data that represents multiple

dialects helps to reduce speaker dependence. As for

the degradation due to noise, a LM that represents the

restricted domain vocabulary can help improve the

performance. Strong LM constraints however can

give rise to incorrect decoder hypotheses when the

acoustics are poorly matched to any grammatically

valid word sequence such as occurs when SNR is poor

or when an out-of-vocabulary word is uttered.

Confidence measures are a way of rescoring the

decoder hypotheses. Typically new knowledge

sources or, at least, new estimates of the same acoustic

and linguistic attributes are computed on one or more

rmuser
Typewriter
Appeared in proceedings of NCC, 2014

rmuser
Typewriter

Dictionary Transcription

LM generator

using FST

Adjacency list

generator

Viterbi

algorithm

Back-tracing to

find best path

AM

Audio

MFCC

Adjacency
list

AM Hashmap &
Parameters

Dictionary
Hashmap

State level

tree

Phoneme

level FST

Dict and AM

loader

Phoneme and

word level

segmentation

MFCC feature

extraction

Fig. 1. Block Diagram of Cyborg forced aligner

Fig. 2(a). Word Grammar of ‘laal gahuu’

rank-ordered (N-best) decoder hypotheses. The

purpose is to choose the best hypothesis from the

available N-best list which comprises close,

competing options using an independent method from

that used to obtain the N-best list itself. The

Confidence Measure (CM), as the name indicates, can

also be used as a value indicating the match between

the utterance and the decoder hypothesized state

sequence. Based on the degree of match, the

hypothesis is either accepted or the dialog system

prompts the user for a confirmation. In the present

work, we investigate the computation of a confidence

measure on the decoder output word sequence using

an independent aligner built by us.

In our previous work on confidence measures [3],

we have shown the effectiveness of a combination of

acoustic likelihood and phone duration features in the

context of rejecting out-of-vocabulary words. Their

computation needs accurate duration estimates and

hence depends on phone alignment accuracy.

Accurate phone alignment depends on several factors

including the acoustic features extracted in the ASR

front-end, the acoustic models, and the extent of

match of the utterance acoustics with the models’

training data.

In order to obtain a modular and flexible

framework for experiments on rescoring, we develop

an aligner based on FST where separate transducers

are constructed for the language model, lexicon and

phone context-dependency expansion. These are then

combined into a single static network that serves to

define the search space in the Viterbi engine. Acoustic

models are not part of the network. Typically, such a

“static network expansion” leads to a huge search

space. Since we are confined to forced alignment with

a word-level transcription, the search space is anyhow

limited to incorporating simple word loop with

beginning-interword-end silences or fillers, and

allowing for multiple pronunciations. The “integrated”

FST network is input to the Viterbi engine (tree-trellis

search) along with the extracted acoustic features and

previously trained acoustic models. Several options

for experimentation with independently modified sub-

modules are now possible. In the next section, we

describe the design and implementation of our FST

based aligner (affectionately named “Cyborg”). This

is followed by a presentation of experiments that

evaluate the phone alignment performance.

II. THE CYBORG ALIGNER

Fig. 1 shows a block diagram of our FST based

forced aligner. In the overall ASR system, the Cyborg

aligner follows the main decoder. Trained acoustic

models (AM), dictionary and the utterance

transcription, as obtained from the decoder hypothesis,

are used to obtain a phone level segmentation of the

input audio signal. The individual modules are

described next.

A. MFCC feature extraction

This stage is responsible for processing the raw

audio stream sampled at 8KHz sampling rate into a

cepstral stream with a 13 MFCC coefficients per 10

ms frame. The CoMIRVA [4] library routine is used

with data window duration of 25.625 ms. The feature

vector is augmented with delta and double-delta

coefficients implemented at the decoding stage.

B. Dictionary and acoustic models loader

Acoustic models required for phone alignment are

Fig. 2(b). Pronunciation lexicon of ‘laal gahuu’

Fig. 2(c). Minimised Phoneme FST of ‘laal gahuu’

0 SIL, 1

1 l, 2

2 aa, 3

3 l, 4

g, 6 4 SIL, 5

5 g, 6

6 a, 7

7 h, 8

u, 9 8 uu, 9

10 NIL, -1

9 SIL, 10

State ID/

Index

Right

Context

Fig. 3. Adjacency List of ‘laal gahuu’

trained using SphinxTrain [1]. The models are

triphone (context dependent) HMMs (Hidden Markov

Model) with GMMs for the observation vector

distribution. The Gaussians are assumed to have

diagonal covariance matrices. The Sphinx binary

acoustic model files contain the means, variances,

mixture_weights, transition_matrices are converted to

Cyborg compatible binaries while model definition

file (mdef) and the dictionary, which are in text

format, are stored in hash maps for efficient access.

C. Generating FST to deal with alternate

pronunciation and fillers

FST are automata in which each transition in

addition to its usual input label is augmented with an

output label from a possibly new alphabet. FST have

been generated in Cyborg using Open FST library [5]

for reducing the search space. Search space for a

forced aligner is in terms of considering alternate

pronunciations and fillers in between the words. By a

pre-compilation of the search space, FST is expected

to help improve decoding efficiency [6].

Composition, Determinization and Minimization is

performed on Word Grammar file and Pronunciation

Lexicon file, which are obtained from transcription

and dictionary, to generate phoneme level FST. Fig.

2(a) shows Word Grammar with all the possibilities of

transcription ‘laal gahuu’, taking in to account fillers

(e.g: babble, horn, silence & other human speech

disfluencies) and alternate pronunciation of each word

present in ‘laal gahuu’ and Fig. 2(b) shows

Pronunciation Lexicon which represents the mapping

of phoneme sequence to words present in transcription

considering alternate pronunciation and fillers for ‘laal

gahuu’. Minimized phoneme FST is shown in Fig.

2(c). In the present example of ‘laal gahuu’, for

simplicity, we have only considered silence filler

(SIL).

D. Adjacency list for FST

Adjacency list is an efficient data structure to store

and access the neighboring vertices of the minimized

FST. Adjacency list helps to obtain next possible

triphone(s) given the current triphone during Viterbi

search.

Suppose the current triphone is ‘l-aa-l’ where the

base phone is ‘aa’ and left and right context are both

‘l’. From the Adjacency List shown in Fig. 3, index

following the phone ‘aa’ (base phone) is 3. So we go

SIL

l

SIL

SIL

aa aa l

aa

SIL

l

l

l aa SIL l SIL g

l SIL g SIL g a aa

SIL

l

SIL

aa

l

l

a

SIL

g

a

uu

h

aa

l

l

aa

l

aa

aa

SIL

g

l

SIL

aa

l h

SIL

g

a

u

u

h

SIL

g

a

uu

uu

a

SIL

g

a

u

h

t1

t2

t3

t4

t5

t6

t17

t18

t34

t35

t49

t52

l

l

Time Frame

P

Fig 4. Viterbi tree for ‘laal gahuu’

to index 3 where the phone listed is‘l’. So now our

base phone becomes ‘l’ while ‘aa’ becomes the left

context. To find the right context of ‘l’, we check the

index following ‘l’ which is 4. At index 4 there are

two possibilities i.e either ‘SIL’ or ‘g’. Hence the next

triphone can be either ‘aa-l-SIL’ or ‘aa-l-g’. Index in

the Adjacency List are the State-Ids of FST.

E. Viterbi algorithm implementation using tree

Viterbi algorithm is implemented using a tree data

structure to obtain the best possible alignment. Unlike

other standard implementations of forced aligner

where the last state of transcription is assumed to be

the best possible match with the last audio frame,

Cyborg aligns the last frame of audio with the state

actually having the highest forward probability at that

time. This is similar to the work reported in [7].

Let Q = q1q2…qN be a set of states corresponding

to subphones. The probability to go from state i to

state j is represented by aij and the emission

probability i.e the probability of a cepstral feature

vector (ot) being generated from state i is represented

by bi (ot). The forward probability i.e. probability of

being in state j after seeing the first t observations is

[8]:

The observation vector is comprised of the 13

MFCCs computed earlier and augmented by delta and

acceleration coefficients computed here. Since the

classifier used is GMM the emission probability

corresponding to observation vector x̄ is given by

[8]:

where M is the number of Gaussians in the mixture

and D is the number of elements in the feature vector;

μki and σki refer to the mean variance of i
th

element of

k
th

 mixture respectively and ck is the weight of each

mixture. Since using probabilities can result in

numeric underflow, log of both emission probability

and forward probability is taken.

During Viterbi search, a simplification is applied

to tree generation which consists of deleting the less

probable duplicated hypotheses [9]. For example, in

the Viterbi tree depicted in Fig. 4, we see that at t3

time frame, four states occur but ‘l’ is repeated. Hence

the hypothesis having lower forward probability is

deleted, which in this case happens to be generated

from parent ‘l’. Like pruning (described next) this step

simplifies the tree at the cost of possible loss of

optimality in the search.

Further, pruning is carried out at each level using

beam search to eliminate highly unlikely paths [9].

Log forward probabilities of all the active paths at a

particular level are compared and maximum

among them is obtained. This maximum log

forward probability obtained is then added to log of

beam search coefficient and all the paths whose log

forward probability is less than beam width (beam

width = log of beam search coefficient + Maximum

log forward probability at particular level) are

pruned. Pruning of one of the path after t17 time

frame is shown in Fig. 4 with cross (×).

F. Back-tracing to find best path

The maximum forward probability is obtained and

that path is back traced. Consider for example the

utterance to be aligned is ‘laal’ but the transcription

given is ‘laal gahuu’ having corresponding Viterbi

search tree as shown in Fig. 4. As seen from tree,

Viterbi search has generated various possible paths

that can get aligned with the audio. Among all these

paths some of the paths have phoneme sequence

corresponding to ‘laal gahuu’, which is same as

transcription, but since the utterance is only ‘laal’ the

forward probability of that path would be low. On the

other hand the path having phoneme sequence of

‘laal’ would have higher forward probability score and

hence that path is chosen as the best path for aligning.

If instead the utterance to be aligned is ‘laal

gahuu’ then one of the path with phoneme sequence

corresponding to ‘laal gahuu’ would have the highest

forward probability. In the same way if the utterance

to be aligned was ‘laal gahuu deshii’ even then the

path having the highest forward probability would be

‘laal gahuu’ but in that case filler would come in to

play and ‘deshii’ would get replaced by some filler.

III. EXPERIMENTS

The accuracy of forced alignment can be tested via

the performance of confidence measures that depend

on phone segmentation. For example, a confidence

measure computed from the forced alignment can

exploit the fact that words which are incorrectly

decoded typically have abnormal phone durations [3].

We present experiments on the recorded call data

comprising commodity names where the decoder

hypothesized transcription is aligned with the

utterance. A phone duration based confidence

measure is applied to detect incorrectly decoded

words.

A. Performance of duration based confidence

measure

Assuming that each phone has a duration

distribution that is Gaussian about a mean value that is

computed across all occurrences of that phone in the

database, the CM was computed for a word as the

fraction of phones whose durations fall outside the

corresponding middle 75% percentile range of the

distribution. A threshold is applied to the CM to

identify correctly decoded words. On a dataset of

2000 words, a CM threshold of 0.4 discriminates the

wrongly decoded words from the correctly decoded

words as shown in Table 1. This indicates that the

achieved phone-level forced alignment with Cyborg is

reasonable. A more sophisticated duration based CM

is expected to improve the results further.

TABLE 1. Classification of correct and wrong words by system

 System Output

Ground Truth
Correct Wrong

Correct 86.21% 13.79%

Wrong 54.64% 45.36%

B. Handling incomplete utterances

One problem that is observed in the call data is the

occurrence of incomplete utterances by speakers due

to unexpected appearance of the recording end beep or

due to the onset of a loud noise that masks out the

latter part of a speaker’s utterance. In such cases, the

decoder hypothesis may turn out to contain more

words than actually present in the utterance due to the

constraints of the N-gram LM. The forced alignment

of the utterance with a longer state sequence than

actual is problematic with traditional forced alignment

generally failing. This is due to the last time frame

being forced to align with the final state in the

transcription states sequence as observed with the

Sphinx forced aligner, for instance. On the other hand,

Cyborg is expected to handle this condition gracefully

due to its modified back-tracing algorithm as

described in Sec. II. Fig. 5 shows an example of

alignment of the incomplete utterance “laal” with the

transcription corresponding to the commodity name

“laal gahuu”. We note that Cyborg correctly identifies

the actual words in the utterance while the Sphinx

aligner hypothesizes more words than are present. In

the former, the best path in the tree of Fig. 4 (marked

as P) corresponded to the end state of phone SIL

whose parent is /l/. Since there are no restrictions on

the end state, a word can even end midway.

Fig. 5. Alignment using Sphinx and Cyborg aligner for

utterance ‘laal’ (a) Waveform (top) (b) Spectrogram (centre)

(c) Word level alignment using Sphinx and Cyborg (bottom)

To have non-visible rules on your frame, use
the MSWord “Format” pull-down menu, select
Text Box > Colors and Lines to choose No Fill
and No Line.

An experimental demonstration of alignment

performance on incomplete utterances appears in

Table 2. A data set of about 200 utterances of

commodity name was taken. But the transcription

provided for aligning had 1 extra word concatenated at

the end which was not present in utterance. Aligning

was done using 2 different forced aligners: CMU

Sphinx and Cyborg forced Aligners.

TABLE 2. Cyborg and Sphinx forced alignment comparison

Sphinx

(no. of

words)

Cyborg

(no. of

words)

Not Aligned (Alignment

Failed)
45 0

Wrongly Aligned 155 10

Correctly Aligned 0 190

Table 2 shows that Sphinx did not align 45

utterances because of mismatch between transcription

and utterance and it wrongly aligned 155 utterances i.e

it aligned the entire transcription with the utterance

even though the transcription had an extra word. On

the contrary, Cyborg aligned 190 out of 200 utterances

correctly i.e it detected that part of the transcription

which was actually present in the utterance while it

wrongly aligned 10 utterances. Further it was

observed that 176 of the 190 words in the aligned

utterances satisfied the correctly decoded criterion on

the phone duration based CM, indicating that the

achieved phone-level alignment was accurate.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented the development of a

new FST based aligner ‘Cyborg’ to revalidate an

available ASR decoder hypothesis via a confidence

measure. A major goal of this work was to develop an

independent system for phone alignment and

likelihood computation based on FST. The phone

duration based confidence measure did a reasonable

job to classify correctly and wrongly decoded

hypothesis indicating that a satisfactory phone-level

alignment is obtained on real data including

incomplete utterances. This work was an example of

testing a specific aspect of the back-tracing algorithm.

The larger goal is to exploit the available modular

implementation of the Cyborg system to experiment

with different acoustic features, model combinations,

grammar constraints and pruning rules to come up

with better rescoring strategies for the decoder

hypotheses.

ACKNOWLEDGMENT

This work was supported by the project ‘Speech-

based access of agricultural commodity prices in six

Indian languages’ sponsored by Ministry of

Communication and Information Technology,

Government of India. The authors would like to

express their gratitude to Dr. Samudravijaya, Mayur

Jagtap, Amogh Garg and Tejas Godambe for their

support and assistance in the project work.

REFERENCES

[1] CMU-Sphinx: Open Source Toolkit for Speech Recognition.

http://cmusphinx.sourceforge.net/.

[2] T. Godambe and K. Samudravijaya, "Speech data acquisition

for voice based agricultural information retrieval", Proc. Of
39th All India DLA Conference, Punjabi University, Patiala,

June 2011.

http://speech.tifr.res.in/chief/publ/11DLA_agriSpeechDataAc
quisition.pdf.

[3] J. Gada, P. Rao and K. Samudravijaya, "Confidence Measure

for Detecting Speech Recognition Errors", Proc. of the
National Conference on Communications (NCC), Feb 2013,

IIT Delhi, India.

[4] CoMIRVA, Open Source Feature Extraction Library,

http://www.cp.jku.at/people/schedl/Research/Development/C

oMIRVA/webpage/CoMIRVA.html

[5] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut and M. Mohri,

"OpenFst: A General and Efficient Weighted Finite-State

Transducer Library", Proceedings of the Ninth International
Conference on Implementation and Application of Automata,

(CIAA 2007), volume 4783 of Lecture Notes in Computer

Science, pages 11-23. Springer, 2007.
http://www.openfst.org.

[6] E. Stoimenov & T. Schultz (2009, November). "A
multiplatform speech recognition decoder based on weighted
finite-state transducers". In Automatic Speech Recognition &
Understanding, 2009. ASRU 2009. IEEE Workshop on(pp.
293-298). IEEE.

[7] K.Prahallad and A.W.Black, "Handling Large Audio Files in
Audio Books for Building Synthetic Voices", in Proc. of the

7th ISCA Tutorial and Research Workshop on Speech

Synthesis(SSW7), Kyoto, Japan, p.148-153, 2010.

[8] Daniel Jurafsky & James H. Martin, Speech and Language

processing, Upper Saddle River, New Jersey: Pearson, 2009,
pp. 285-333.

[9] Claudio Becchetti and Lucio Prina Ricotti, Speech
Recognition Theory and C++ Implementation, John Wiley &

Sons Ltd, Baffins Lane, Chichester, 1999, pp. 17-18, 315-

320.

