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Abstract—Voice-based querying for information is a 

powerful technology that can hugely enhance the scope 

of information retrieval systems by enabling their 

remote access via the ubiquitous mobile phone. 

Information retrieval based on automatic speech 

recognition however is challenging due to the 

environment noise and speaker idiosyncrasies typical of 

real-world scenarios. Wherever possible, strong domain 

constraints on the language model are used to minimize 

the impact of signal degradation on recognizer 

performance.  This can lead to grossly mismatched 

utterance and hypothesis occasionally, a situation that 

must be detected to protect the call from irrecoverable 

errors.  We consider the revalidation of recognition 

hypotheses via confidence measures derived from forced 

alignment using an independent decoder. We show that 

our FST based aligner can accurately reject incorrect 

decoder hypotheses while being particularly robust to 

the phenomenon of incomplete utterances. 

Keywords—Automatic Speech Recognition, 

Confidence measures, Incomplete utterances, CMU-

Sphinx, Open-FST. 

I.  INTRODUCTION 

The effective exploitation of the vast available 

digitized information today depends entirely on access 

technologies. While the web offers efficient search 

and retrieval with text-based querying, voice-based 

querying can lead to a manifold increase in reach. 

Mobile phone penetration is high and growing 

throughout the country, with a considerably larger 

presence than internet in rural areas. Speech-based 

systems involve automatic speech recognition (ASR) 

at the front-end of the information access system. A 

well-designed dialog can elicit spoken queries that are 

decoded by the ASR and presented in the form of text 

for the search. The retrieved information is converted 

to speech via a TTS system. 

Our work is motivated by an on-going project on 

providing telephone speech based access to a database 

that provides up-to-date agricultural commodity prices 

in markets across Maharashtra. The interactive voice 

response (IVR) system is equipped with an ASR 

front-end and a back-end that downloads, on a daily 

basis, prices of agricultural commodities from a 

website (http://agmarknet.nic.in/) maintained by the 

Ministry of Agriculture, Government of India. A 

simple dialog elicits spoken queries from the user 

regarding the market and commodity of interest. The 

ASR is based on an MFCC-HMM framework built 

using the Sphinx toolkit [1]. The acoustic models and 

N-gram language model (LM) are trained on specially 

collected data obtained by field recordings of domain-

specific utterances including realistic queries by 1500 

native Marathi speakers [2].  The speech database 

comprises of the names of 32 districts, 279 markets 

and over 300 unique commodities. A phone-based 

recognition system is used in order to facilitate the 

easy inclusion of new commodity names in future. 

Some mandi and commodity names are multiword. 

Manual transcription at the word level has been 

carried out on the entire data making it valuable for 

research, development and testing of ASR systems. 

Challenges in the ASR system design include the 

speaker diversity due to the distinct dialects of native 

Marathi speakers across the state as well as the 

presence of a variety of background acoustic noise in 

the received speech arising from the caller’s 

environment.  Training data that represents multiple 

dialects helps to reduce speaker dependence. As for 

the degradation due to noise, a LM that represents the 

restricted domain vocabulary can help improve the 

performance.  Strong LM constraints however can 

give rise to incorrect decoder hypotheses when the 

acoustics are poorly matched to any grammatically 

valid word sequence such as occurs when SNR is poor 

or when an out-of-vocabulary word is uttered. 

Confidence measures are a way of rescoring the 

decoder hypotheses. Typically new knowledge 

sources or, at least, new estimates of the same acoustic 

and linguistic attributes are computed on one or more 
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Fig. 1. Block Diagram of Cyborg forced aligner 

 

Fig. 2(a). Word Grammar of ‘laal gahuu’ 

 

rank-ordered (N-best) decoder hypotheses. The 

purpose is to choose the best hypothesis from the 

available N-best list which comprises close, 

competing options using an independent method from 

that used to obtain the N-best list itself. The 

Confidence Measure (CM), as the name indicates, can 

also be used as a value indicating the match between 

the utterance and the decoder hypothesized state 

sequence. Based on the degree of match, the 

hypothesis is either accepted or the dialog system 

prompts the user for a confirmation. In the present 

work, we investigate the computation of a confidence 

measure on the decoder output  word  sequence  using  

an   independent  aligner built by us. 

In our previous work on confidence measures [3], 

we have shown the effectiveness of a combination of 

acoustic likelihood and phone duration features in the 

context of rejecting out-of-vocabulary words. Their 

computation needs accurate duration estimates and 

hence depends on phone alignment accuracy. 

Accurate phone alignment depends on several factors 

including the acoustic features extracted in the ASR 

front-end, the acoustic models, and the extent of 

match of the utterance acoustics with the models’ 

training data. 

In order to obtain a modular and flexible 

framework for experiments on rescoring, we develop 

an aligner based on FST where separate transducers 

are constructed for the language model, lexicon and 

phone context-dependency expansion. These are then 

combined into a single static network that serves to 

define the search space in the Viterbi engine. Acoustic 

models are not part of the network.  Typically, such a 

“static network expansion” leads to a huge search 

space. Since we are confined to forced alignment with 

a word-level transcription, the search space is anyhow 

limited to incorporating simple word loop with 

beginning-interword-end silences or fillers, and 

allowing for multiple pronunciations. The “integrated” 

FST network is input to the Viterbi engine (tree-trellis 

search) along with the extracted acoustic features and 

previously trained acoustic models.  Several options 

for experimentation with independently modified sub-

modules are now possible.  In the next section, we 

describe the design and implementation of our FST 

based aligner (affectionately named “Cyborg”). This 

is followed by a presentation of experiments that 

evaluate the phone alignment performance. 

II. THE CYBORG ALIGNER 

Fig. 1 shows a block diagram of our FST based 

forced aligner. In the overall ASR system, the Cyborg 

aligner follows the main decoder. Trained acoustic 

models (AM), dictionary and the utterance 

transcription, as obtained from the decoder hypothesis, 

are used to obtain a phone level segmentation of the 

input audio signal. The individual modules are 

described next. 

 

A. MFCC feature extraction  

This stage is responsible for processing the raw 

audio stream sampled at 8KHz sampling rate into a 

cepstral stream with a 13 MFCC coefficients per 10 

ms frame. The CoMIRVA [4] library routine is used 

with data window duration of 25.625 ms. The feature 

vector is augmented with delta and double-delta 

coefficients implemented at the decoding stage. 

B. Dictionary and acoustic models loader 

Acoustic models required for phone alignment are 



 

 

 

Fig. 2(b). Pronunciation lexicon of ‘laal gahuu’ 

 

 

Fig. 2(c). Minimised Phoneme FST of ‘laal gahuu’ 
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Fig. 3. Adjacency List of ‘laal gahuu’ 

trained using SphinxTrain [1]. The models are 

triphone (context dependent) HMMs (Hidden Markov 

Model) with GMMs for the observation vector 

distribution. The Gaussians are assumed to have 

diagonal covariance matrices. The Sphinx binary 

acoustic model files contain the means, variances, 

mixture_weights, transition_matrices are converted to 

Cyborg compatible  binaries while model definition 

file (mdef) and the dictionary, which are in text 

format, are stored in hash maps for efficient access. 

C. Generating FST to deal with alternate 

pronunciation and fillers 

FST are automata in which each transition in 

addition to its usual input label is augmented with an 

output label from a possibly new alphabet. FST have 

been generated in Cyborg using Open FST library [5] 

for reducing the search space. Search space for a 

forced aligner is in terms of considering alternate 

pronunciations and fillers in between the words. By a 

pre-compilation of the search space, FST is expected 

to help improve decoding efficiency [6]. 

Composition, Determinization and Minimization is 

performed on Word Grammar file and Pronunciation 

Lexicon file, which are obtained from transcription 

and dictionary, to generate phoneme level FST. Fig. 

2(a) shows Word Grammar with all the possibilities of 

transcription ‘laal gahuu’, taking in to account fillers 

(e.g: babble, horn, silence & other human speech 

disfluencies) and alternate pronunciation of each word 

present in  ‘laal gahuu’  and   Fig. 2(b)   shows   

Pronunciation   Lexicon which represents the mapping 

of phoneme sequence to words present in transcription 

considering alternate pronunciation and fillers for ‘laal 

gahuu’. Minimized phoneme FST is shown in Fig.  

2(c). In the present example of ‘laal gahuu’, for 

simplicity, we have only considered silence filler 

(SIL). 

D. Adjacency list for FST 

Adjacency list is an efficient data structure to store 

and access the neighboring vertices of the minimized 

FST. Adjacency list helps to obtain next possible 

triphone(s) given the current triphone during Viterbi 

search. 

Suppose the current triphone is ‘l-aa-l’ where the 

base phone is ‘aa’ and left and right context are both 

‘l’. From the Adjacency List shown in Fig. 3, index 

following the phone ‘aa’ (base phone) is 3. So we go 
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Fig 4. Viterbi tree for ‘laal gahuu’ 

to index 3 where the phone listed is‘l’. So now our 

base phone becomes ‘l’ while ‘aa’ becomes the left 

context. To find the right context of ‘l’, we check the 

index following ‘l’ which is 4. At index 4 there are 

two possibilities i.e either ‘SIL’ or ‘g’. Hence the next 

triphone can be either ‘aa-l-SIL’ or ‘aa-l-g’. Index in 

the Adjacency List are the State-Ids of FST. 

E. Viterbi algorithm implementation using tree 

Viterbi algorithm is implemented using a tree data 

structure to obtain the best possible alignment. Unlike 

other standard implementations of forced aligner 

where the last state of transcription is assumed to be 

the best possible match with the last audio frame, 

Cyborg aligns the last frame of audio with the state 

actually having the highest forward probability at that 

time. This is similar to the work reported in [7]. 

Let Q = q1q2…qN be a set of states corresponding 

to subphones. The probability to go from state i to 

state j is represented by aij   and the emission 

probability i.e the probability of a cepstral feature 

vector (ot) being generated from state i is represented 

by bi (ot). The forward probability i.e. probability of 

being in state j after seeing the first t observations is 

[8]: 

                                    
 

             

The observation vector is comprised of the 13 

MFCCs computed earlier and augmented by delta and 

acceleration coefficients computed here. Since the 

classifier used is GMM the emission probability 

corresponding to observation vector   x̄   is given by 

[8]: 

           

 

   

 

      
 
        

        

   
 

  

   

    

where M is the number of Gaussians in the mixture 

and D is the number of elements in the feature vector; 

μki and σki  refer to the mean variance of i
th 

element of 

k
th

 mixture respectively and ck is the weight of each 

mixture. Since using probabilities can result in 

numeric underflow, log of both emission probability 

and forward probability is taken. 

During Viterbi search, a simplification is applied 

to tree generation which consists of deleting the less 

probable duplicated hypotheses [9]. For example, in 

the Viterbi tree depicted in Fig. 4, we see that at t3 



 

 

time frame, four states occur but ‘l’ is repeated. Hence 

the hypothesis having lower forward probability is 

deleted, which in this case happens to be generated 

from parent ‘l’. Like pruning (described next) this step 

simplifies the tree at the cost of possible loss of 

optimality in the search. 

Further, pruning is carried out at each level using 

beam search to eliminate highly unlikely paths [9]. 

Log forward probabilities of all the active paths at a 

particular level are compared   and   maximum   

among   them   is   obtained.    This maximum log 

forward probability obtained is then added to log of 

beam search coefficient and all the paths whose log 

forward probability is less than beam width (beam 

width = log of beam search    coefficient  + Maximum   

log   forward   probability   at particular level) are 

pruned. Pruning of one of the path after t17 time 

frame is shown in Fig. 4 with cross (×). 

F. Back-tracing to find best path  

The maximum forward probability is obtained and 

that path is back traced. Consider for example the 

utterance to be aligned is ‘laal’ but the transcription 

given is ‘laal gahuu’ having corresponding Viterbi 

search tree as shown in Fig. 4. As seen from tree, 

Viterbi search has generated various possible paths 

that can get aligned with the audio. Among all these 

paths some of the paths have phoneme sequence 

corresponding to ‘laal gahuu’, which is same as 

transcription, but since the utterance is only ‘laal’ the 

forward probability of that path would be low. On the 

other hand the path having phoneme sequence of 

‘laal’ would have higher forward probability score and 

hence that path is chosen as the best path for aligning. 

If instead the utterance to be aligned is ‘laal 

gahuu’ then one of  the path with  phoneme sequence 

corresponding  to ‘laal gahuu’ would have the  highest 

forward  probability. In the same  way if the utterance 

to be  aligned was   ‘laal gahuu deshii’  even then the 

path having the highest forward probability would be 

‘laal gahuu’ but in that case filler would come in to 

play and ‘deshii’ would get replaced by some filler. 

III. EXPERIMENTS 

The accuracy of forced alignment can be tested via 

the performance of confidence measures that depend 

on phone segmentation.  For example, a confidence 

measure computed from the forced alignment can 

exploit the fact that words which are incorrectly 

decoded typically have abnormal phone durations [3]. 

We present experiments on the recorded call data 

comprising commodity names where the decoder 

hypothesized transcription is aligned with the 

utterance.   A phone duration based confidence 

measure is applied to detect incorrectly decoded 

words. 

A. Performance of duration based confidence 

measure 

Assuming that each phone has a duration 

distribution that is Gaussian about a mean value that is 

computed across all occurrences of that phone in the 

database, the CM was computed for a word as the 

fraction of phones whose durations fall outside the 

corresponding middle 75% percentile range of the 

distribution. A threshold is applied to the CM to 

identify correctly decoded words. On a dataset of 

2000 words, a CM threshold of 0.4 discriminates the 

wrongly decoded words from the correctly decoded 

words as shown in Table 1. This indicates that the 

achieved phone-level forced alignment with Cyborg is 

reasonable. A more sophisticated duration based CM 

is expected to improve the results further. 

TABLE 1. Classification of correct and wrong words by system 

 

                           System Output 

Ground Truth  
Correct Wrong 

Correct 86.21% 13.79% 

Wrong 54.64% 45.36% 

 

B. Handling incomplete utterances 

One problem that is observed in the call data is the 

occurrence of incomplete utterances by speakers due 

to unexpected appearance of the recording end beep or 

due to the onset of a loud noise that masks out the 

latter part of a speaker’s utterance. In such cases, the 

decoder hypothesis may turn out to contain more 

words than actually present in the utterance due to the 

constraints of the N-gram LM. The forced alignment 

of the utterance with a longer state sequence than 

actual is problematic with traditional forced alignment 

generally failing. This is due to the last time frame 

being forced to align with the final state in the 

transcription states sequence as observed with the 

Sphinx forced aligner, for instance. On the other hand, 

Cyborg is expected to handle this condition gracefully 

due to its modified back-tracing algorithm as 

described in Sec. II. Fig. 5 shows an example of 

alignment of the incomplete utterance “laal” with the 

transcription corresponding to the commodity name 

“laal gahuu”.  We note that Cyborg correctly identifies 

the actual words in the utterance while the Sphinx 

aligner hypothesizes more words than are present. In 

the former, the best path in the tree of Fig. 4 (marked 

as P) corresponded to the end state of phone SIL 

whose parent is /l/. Since there are no restrictions on 

the end state, a word can even end midway. 



 

 

Fig. 5. Alignment using Sphinx and Cyborg aligner for 

utterance ‘laal’ (a) Waveform (top) (b) Spectrogram (centre) 

(c) Word level alignment using Sphinx and Cyborg (bottom) 

To have non-visible rules on your frame, use 
the MSWord “Format” pull-down menu, select 
Text Box > Colors and Lines to choose No Fill 
and No Line. 

 

 

An experimental demonstration of alignment 

performance on incomplete utterances appears in 

Table 2. A data set of about 200 utterances of 

commodity name was taken. But the transcription 

provided for aligning had 1 extra word concatenated at 

the end which was not present in utterance. Aligning 

was done using 2 different forced aligners: CMU 

Sphinx and Cyborg forced Aligners. 

TABLE 2. Cyborg and Sphinx forced alignment comparison 

 

 

Sphinx 

(no. of 

words) 

Cyborg 

(no. of 

words) 

Not Aligned (Alignment 

Failed) 
45 0 

Wrongly Aligned 155 10 

Correctly Aligned 0 190 

 

Table 2 shows that Sphinx did not align 45 

utterances because of mismatch between transcription 

and utterance and it wrongly aligned 155 utterances i.e 

it aligned the entire transcription with the utterance 

even though the transcription had an extra word. On 

the contrary, Cyborg aligned 190 out of 200 utterances 

correctly i.e it detected that part of the transcription 

which was actually present in the utterance while it 

wrongly aligned 10 utterances. Further it was 

observed that 176 of the 190 words in the aligned 

utterances satisfied the correctly decoded criterion on 

the phone duration based CM, indicating that the 

achieved phone-level alignment was accurate. 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we presented the development of a 

new FST based aligner ‘Cyborg’ to revalidate an 

available ASR decoder hypothesis via a confidence 

measure. A major goal of this work was to develop an 

independent system for phone alignment and 

likelihood computation based on FST. The phone 

duration based confidence measure did a reasonable 

job to classify correctly and wrongly decoded 

hypothesis indicating that a satisfactory phone-level 

alignment is obtained on real data including 

incomplete utterances. This work was an example of 

testing a specific aspect of the back-tracing algorithm.  

The larger goal is to exploit the available modular 

implementation of the Cyborg system to experiment 

with different acoustic features, model combinations, 

grammar constraints and pruning rules to come up 

with better rescoring strategies for the decoder 

hypotheses. 
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