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Abstract—In degraded listening conditions, speakers are
known to adapt their speech via the Lombard reflex to make
it more comprehensible. This characteristic has been used in
previous work to modify speech recorded in quiet before it is
rendered in a noisy environment. The spectral modifications used
have been found to be effective in low-pass noise such as babble
noise. In this work, we investigate intelligibility enhancement
of speech in completely different noise characteristics, namely
aircraft noise, with its dominant high-frequency components.
Natural Lombard speech elicited in aircraft noise was observed
to be spectrally similar to Lombard speech in babble noise and
showed no intelligibility benefit in a listening test in the presence
of aircraft noise. Synthetic modifications using a data dependent
optimization based on a perceptual measure are investigated to
obtain intelligibility enhancement in aircraft noise.

I. INTRODUCTION

Speech communication is an essential part of our day to day
life and most of the time we don’t have any control on the sur-
rounding environment while realizing it. Humans exposed to
such an environment adapt their speech characteristics to make
it more comprehensible to a listener. The obvious strategy
followed by humans is increasing the speech energy but along
with that they adapt the speech spectral shaping as well as
supra-segmental properties. This phenomenon, which is known
as Lombard reflex, has been studied by many researchers over
these years [1], [2], [3]. It has been observed that Lombard
speech is more intelligible as compared to normal speech even
when the same signal to noise energy ratio is maintained [3].
Different aspects of Lombard speech such as spectral modifi-
cation, temporal or prosodic modification, energy distribution
throughout the speech and phonetic modification have been
analysed in past literature. Even though certain aspects such
as spectral tilt have been observed by most, the robustness of
such aspects for different noises is unclear.

Lu and Cooke [4] studied effect of reduced spectral tilt on
the intelligibility of normal speech. They found that reducing
the spectral tilt of normal speech to match that of Lombard
speech significantly increases the intelligibility in babble noise.
Zorila et al. [5] implemented similar method, of filtering for
spectral flattening along with a dynamic range compression
(SSDRC) which improved the intelligibility further. Jokinen et
al. [6] combined spectral tilt flattening with formant sharpening
to prove the intelligibility enhancement. But they did not
comment on performance of individual methods. Godoy et al.
[7] analyzed effect of expansion of vowel space on speech
intelligibility and observed that vowel space expansion did not
contribute to the intelligibility. All these studies analyzed Lom-

bard speech characteristics in either babble noise or speech
shaped noise and proposed the enhancements.

This work studies the characteristics of Lombard speech
in two distinct noise types: babble and aircraft noise. Lu
and Cooke [8] did a similar study in low-pass filtered and
high-pass filtered noises but they did not evaluate the sub-
jective intelligibility of the speech in the two noises. We have
also investigated a data-driven spectral enhancement technique
based on optimization of a perceptual measure, known as
the glimpse proportion measure, to improve intelligibility of
normal speech in aircraft noise. The corpus used for above
analysis was motivated by a real-world application, namely
public announcements where pre-recorded audio is played out
in possibly noisy environment. We use a previously designed
speech database comprising railway announcements in Marathi
[9].

The organization of the paper is as follows. Section II ex-
plains the database used in this study. Section III evaluates sub-
jective intelligibility of collected data. Spectral modification
technique enhancing the intelligibility of speech is proposed
in Section IV. Section V discusses the results of intelligibility
evaluation performed on proposed speech modification method
while Section VI presents conclusion and future work.

II. SPEECH DATABASE

The Lombard speech was recorded in two noise types:
babble and aircraft noise. Following section explains their
characteristics.

A. Characteristics of noises used for data-collection

The noises chosen for the study are babble noise and
aircraft noise taken from NOISEX-92 database [10]. Babble
noise has most of the energy concentrated in lower part of
frequency spectrum (below 1 kHz) where as aircraft noise has
significant energy in the higher formant regions (2 - 3 kHz)
as well as in the lower frequency regions. Figure 1 shows the
power spectral density of aircraft noise and babble noise.

B. Corpus collection

The corpus used in this study was recorded from 4 native
Marathi speakers. Each speaker recorded 3 sets of 10 sentences
in different noise conditions viz. no noise, aircraft noise and
babble noise. The procedure followed for corpus collection was
same as that of [9]. The equivalent English translation of the
template used for data collection is “Train number A B C D
down, NAME Express, will halt at platform number Y instead978-1-4799-6619-6/15/$31.00 c© 2015 IEEE



Fig. 1. Power spectral densities (a)aircraft noise (top) (b)babble noise
(bottom), Estimated using periodogram averaging for frame size of 64 msec
(1024 sample for 16 kHz sampling rate) without overlapping

TABLE I. LIST OF WORDS USED FOR DATABASE COLLECTION

Train numbers Train names Platform numbers
Shunya (0) Rajdhani Dahaa (10)

Ek (1) Gorakhpur Akraa (11)
Don (2) Duronto Baaraa (12)
Teen (3) Chandigarh Teraa (13)
Chaar (4) Mangalore Choudaa (14)
Paach (5) Pandhraa (15)
Sahaa (6) Solaa (16)
Saat (7) Satraa (17)
Aath (8) Athraa (18)
Nau (9) Ekonees (19)

of platform number X”. As depicted in Table I train number
A, B, C, D were digits from 0 to 9, platform numbers X and
Y were numbers from 10 to 19 and 5 different express train
names were used. A set of 10 sentences was designed using
above template. The sentences were formed in such a way that
each digit from 0 to 9 occurred once in each of four possible
positions. Same strategy was followed for platform numbers.
Each train name from the list of five was repeated once.

While recording, babble noise was played through SONY
MDR-XD200 headphones to the human speaker. The speaker
was asked to read 10 sentences in format specified above while
listening to the noise. No sound measuring equipment was
available for the test. Thus for a relative calibration of the
sound level two sets of 10 sentences were recorded in two
levels of noise 30 dB apart. Lower level of noise was barely
perceptible and thus the recordings done in this noise level
were assumed to be normal speech. The recording was done
using SHURE SM58 microphone at 16 kHz. The same set-up
was maintained throughout all the recordings. Same procedure
was followed for recording Lombard speech in aircraft noise.

III. SPECTRAL ANALYSIS AND INTELLIGIBILITY
EVALUATION OF RECORDED DATA

Spectral analysis of data was done by computing the long-
term average spectra of each speech type produced by each
speaker. Godoy et al. [7] have used the same method for

Fig. 2. Long term average spectra of Lombard speech of speaker 4 in aircraft
noise (top) and babble noise (bottom) compared with normal speech

analyzing energy distribution of the speech in the frequency
domain.

A. Spectral analysis

To calculate the average spectrum of the speech first
the speech was normalized to have unit RMS energy. Then
cepstrally smoothened speech spectra were computed at 10
msec frame intervals using 20 msec Hamming window and the
first 40 cepstral coefficients. Finally frame-wise spectra were
added together and then divided by the number of frames to
compute the average spectrum of the speech. This was done
for each of the speakers for all three categories of speech viz.
normal speech, Lombard speech in aircraft noise and Lombard
speech in babble noise.

Figure 2 shows long term average spectra computed for
Speaker 4. It can be observed that average spectra of Lombard
speech in both noises were comparable. Speakers followed
same strategy of boosting speech energy in 500-4500 Hz region
in both noises. This observation was in agreement with [8], [7].

B. Intelligibility evaluation through subjective listening test

Subjective intelligibility of recorded data was evaluated
through listening tests. Two listening tests, one each for aircraft
and babble noise were performed by the listeners. Each listener
listened to the sentences formulated from the recorded data
by randomizing the train number, name and platform number.
Words uttered at different positions in a sentence will have
different prosodies. To account for this, while randomizing,
the positions of train and platform numbers were maintained
fixed to the specific slot in which it was recorded. Listening test
consisted a total of 20 sentences, 10 Lombard and 10 normal.
In each of the sentences the listener was supposed to identify
four digits of train number, train name and the two platform
numbers. This setup was same as the one used in [9].



TABLE II. RESULTS OF LISTENING TESTS (% WER)

babble noise aircraft noise
SNR
(dB)

Normal
speech

Lombard
speech

SNR
(dB)

Normal
speech

Lombard
speech

Train no. -3 21 5 -8 19.7 20.5
-6 56 20 -11 48.3 37.5

Platform no. -3 14 5 -8 29.5 29
-6 25 12.5 -11 40.6 37

Train name -3 0 4 -8 4 0
-6 4 0 -11 4 8

To compare the intelligibility gains in the two noises, it
is necessary that the word error rate of normal speech in both
noises is comparable too. Therefore we used different SNRs for
the two noises. Table II summarizes the result of listening test.
The listening test was performed by 5 listeners, all speaking
Marathi as their mother tongue. From the results it is clearly
observed that WER reduces for Lombard speech in babble
noise. This was expected. Similar results have been observed
in previous literature [2], [1]. But for aircraft noise, except for
train numbers accuracy at -11 dB SNR, the WER of Lombard
speech was comparable to that of normal speech. This was
an interesting observation which was not reported in previous
literature.

C. Intelligibility evaluation through objective measure

For evaluating the intelligibility of recorded data we have
used glimpse proportion measure (GPM) as an objective in-
telligibility measure. GPM is a perceptual measure introduced
by Cooke in 2006 [11]. This measure predicts intelligibility
by comparing spectrotemporal excitation pattern (STEP or
spectrogram) of speech and noise. The concept behind GPM is
that speech perception is associated with the area of the speech
spectrum least affected by noise.

Glimpses are the spectrotemporal regions where speech
energy dominates noise atleast by 3 dB. GPM counts the
number of speech glimpses that occur in the mixture of speech
and noise. More the number of glimpses more is the GPM
and so is the predicted intelligibility. Following mathematical
equation expresses the GPM.

GPM =
100

TF

T∑
t=1

F∑
f=1

L(St,f − (Nt,f + α)) (1)

Here St,f and Nt,f are STEP or spectrogram of clean speech
and noise respectively. α is the threshold above which the
glimpses are counted (in this case 3 dB). T and F are number of
time and frequency channels in the speech. The operator L(.)
counts the number of non-zero values. Thus glimpse proportion
score represents the percentage area of the spectrogram where
local SNR is above threshold α.

Table III shows the glimpse proportion measure results
compared with subjective listening tests results. The spectro-
gram used while computing GPM score was computed using
50 msec window, 10 msec hop size and 1024 point FFT. GPM
score was calculated from all the utterances of speaker 4 in
the respective category (i.e. normal speech, Lombard speech
in babble noise and Lombard speech in aircraft noise). This
is compared with % word error rate of only train numbers
in subjective listening tests. The platform numbers are two
syllabic and few of them have one common syllable creating

TABLE III. COMPARISON OF GPM SCORE WITH RESULTS OF
LISTENING TESTS % WER FOR TRAIN NUMBERS ONLY

babble noise
SNR(dB) GPM Score % WER

Normal speech -3 6.17 21
-6 4.22 56

Lombard speech (babble noise) -3 7.25 5
-6 5 20

aircraft noise
SNR(dB) GPM Score % WER

Normal speech -8 1.11 19.75
-11 0.71 48.3

Lombard speech (aircraft noise) -8 1.34 20.5
-11 0.85 37.5

confusion. The train name accuracy is high since all the train
names are 3 syllabic and the listener has to choose from only
5 train names. Thus the train number WER is the most reliable
representative of intelligibility.

For babble noise difference between GPM score of normal
speech and Lombard speech is evident and the same trend
is reflected in subjective test results (% WER). For aircraft
noise GPM score is very small. The correlation of GPM
score and WER for aircraft noise is evident from the values
corresponding to -8 dB and -11 dB SNR. Higher the GPM
score lower is the WER. The difference between the GP scores
of normal and Lombard speech is very small, around 0.1.
The trend is maintained for WER but it is not as evident as
for babble noise. Thus GPM score captured relative trend in
intelligibility.

IV. SPECTRAL MODIFICATION: MAXIMIZING GLIMPSE
PROPORTION MEASURE (GPM)

Tang and Cooke (2012) [12] have proposed a noise-
dependent intelligibility enhancement method. We have used
same method for speech enhancement in aircraft noise. The
method obtains a spectral filter which will maximize the GPM
score of the speech in given noise. Figure 3 shows the block
diagram of the implementation. Our aim is to find a spectral
filter (W = {w0, w1, ..., wN}) which maximizes GPM score
of normal speech (s(t)) in noise (n(t)) under the constraint
that input and output energies are constant. This optimization
problem can be expressed as follows.

maximize
W

GPM{s(t) ? w(t)}

subject to
T∑

t=1

{s(t) ? w(t)}2 =

T∑
t=1

{s(t)}2
(2)

where, function GPM(s(t)) computes GPM score of s(t) in
noise n(t) using Equation 1. w(t) is time domain representation
of spectral filter W.

To solve above optimization problem a genetic algorithm
[13] was used. Genetic algorithm works efficiently in higher
dimensional optimization problems. The terminologies of ge-
netic algorithm in context of our optimization problem are
explained in following section.

A. Genetic algorithm

Genetic algorithms (GA) is large class of optimization
algorithms which is inspired from the concepts in evolution



Fig. 3. Block diagram of genetic algorithm implementation

TABLE IV. GENETIC ALGORITHM PARAMETERS

constraint boosting bounds [-50 50] dB
population size 300

initial variable value 0
elite count 30

stopping criteria generations 500
stall generations 5

process of animals such as mutation, inheritance, selection and
crossover. The details of genetic algorithm can be found in
[13]. This section tries to motivate the optimization procedure
followed in genetic algorithm. Genetic algorithm starts with a
set of candidate solutions to the optimization problem. The set
is called population. In our problem the population consists
of various spectral weights. The spectral weights from the
population are modified in each iteration. This process is called
evolution and population in each iteration is called generation.

In the beginning the population is either initialized with
a fixed valued set or chosen randomly. Then iteratively the
population is updated from one generation to next generation.
The objective function in the optimization problem is called as
fitness function. In one iteration each element in the population
set evaluated using the fitness function i.e. in our case GPM
score is computed using each spectral weight as specified
in Equation 2. The elements with highest value of objective
function in population set are identified and are mutated to
form next generation. Here modification of spectral weights is
called as mutation. In this way the process continues. There
are different categories of genetic algorithms depending on
mutation function used [14].

B. Optimization of GPM using genetic algorithm

Figure 3 shows the block diagram of implementation of
genetic algorithm. In the optimization process, all the normal
speech data recorded from speaker 4 (10 sentences) and
aircraft noise section of 3 min 55 sec is given as input to
objective function block. The GA block represents genetic
algorithm command ’ga’ from Global Optimization Toolbox
in MATLAB. Thus GA block searches for spectral weights
which maximizes output of objective function.

The population specified in GA block consists of possible
spectral filters which are specified in dB scale. The population
consisted of such 300 instances of spectral filters Wis each

with 512 dimensions. We first initialized the spectral filters
with 0 and then started the optimization. In each iteration all
the members of the population were evaluated using objective
function (GPM). We wanted to evaluate the GPM on normal
speech in aircraft noise after applying the spectral filter. Thus
normal speech of speaker 4 and aircraft noise were given as
fixed input to GPM block. GPM score was evaluated using the
inputs after the application of spectral filter on the speech. This
score was returned to the genetic algorithm. After evaluating
all the members of population, the members with highest
fitness (i.e. highest value of objective function) were identified
as most likely solutions to the optimization problem. Next
population was formed using these members and their modified
versions and next iteration was started. In this way the genetic
algorithm progresses towards the optimum solution.

The optimization stops when either objective function value
of the best individual of the population remains constant for
specified number of stall generations or the number of gener-
ation reaches the maximum limit. Here stall generations were
set to 5 and maximum generation to 500. Table IV summarizes
the parameters used in genetic algorithm. The population size
was chosen to be 300. Population size should not be too low.
This reduces the probability of finding optimum solution. But
we can’t keep it too high due to memory constraint. Also
it takes more time to evaluate larger population. Elite count
was 30 i.e. 10% of total population. This specifies number of
candidates selected to form next generation after mutation.

To calculate GPM score first the speech and noise files are
loaded. Then spectrogram of both is calculated using using
50 msec window and 10 msec hop-size. Then spectral filter
is added to the speech spectrogram in dB scale. Finally using
Equation 1 GPM score is evaluated.

V. RESULTS AND DISCUSSION

The population used in this method was initialized with
0 values. Each element of the population was an array with
512 values of spectral filter. Glimpse proportion measure was
the objective function. The maximum generation stopping
criteria was 500, thus after 500 generations the solution of
the optimization was obtained. Figures 4 shows the frequency
domain filters obtained after optimization in aircraft noise and
babble noise. Note that spectral filter in aircraft noise enhances
spectral energy between 1-5 kHz and attenuates the frequencies
below 1 kHz. This constant filter was used for enhancing
the intelligibility in aircraft noise. For comparison we also
obtained similar filter for babble noise. It shows a similar
characteristics, amplifying all the frequencies above 2 kHz.
The difference between the two is observed above 5 kHz,
where gain of filter for aircraft noise decreases and gain of
filter for babble noise increases. Figure 5 shows the long term
spectra of normal speech before and after filtering using the
filter designed for aircraft noise.

Table V shows the results of listening test performed by
5 listeners after applying proposed spectral modification. The
proposed method did not show any significant improvements
in the intelligibility. Spectral modification method worsened
the WER.

Table VI shows the comparison of train number WER
and GPM score. The spectral modification increased the GPM



Fig. 4. Filter frequency response obtained after optimization of GPM in
aircraft noise (top) and babble noise (bottom)

Fig. 5. Comparison of normal speech filtered using obtained filters for aircraft

TABLE V. RESULTS OF SUBJECTIVE LISTENING TESTS PERFORMED
ON NORMAL SPEECH, LOMBARD SPEECH AND SPEECH MODIFIED WITH

PROPOSED METHOD IN AIRCRAFT NOISE(% WER)

SNR(dB) Normal speech Lombard Spec modified

Train no. -8 19.7 20.5 38
-11 48.3 37.5 43

Platform no. -8 29.5 29 30
-11 40.6 37 56

Train name -8 4 0 4
-11 4 8 28

TABLE VI. COMPARISON OF RESULTS OF SPEECH MODIFICATION
METHOD FOR AIRCRAFT NOISE FOR ONLY TRAIN NUMBERS WITH GPM

SCORE

SNR(dB) GPM score % WER

Normal speech -8 1.1 19.7
-11 0.71 48.3

Natural Lombard speech -8 1.34 20.7
-11 0.85 37.5

Spectral filtering -8 1.39 38
-11 0.86 43

score of the speech as expected, but the WER of spectral
modification was worse than normal speech in -8 dB SNR
whereas there was a slight improvement in WER for -11 dB
SNR.

VI. CONCLUSION AND FUTURE WORK

This work investigated spectral characteristics and intel-
ligibility of Lombard speech in babble and aircraft noise
which have completely different spectral properties. Subjective
listening test results showed that intelligibility of Lombard
speech is only comparable to (not better than) normal speech
in aircraft noise. It was observed that speakers follow an
articulation strategy of reducing spectral tilt irrespective of
noise characteristics. This is in agreement with the observa-
tions made by [8]. This strategy was effective in babble noise
since it increases the local spectral SNR where it is most
effective. But in aircraft noise, which has distributed spectral
energy, this strategy of reducing spectral tilt fails to provide
any intelligibility gain.

A previously proposed data-dependent spectral modifica-
tion technique was investigated to maximize the Glimpse
Proportion Measure. While the GPM did indeed improve, our
subjective listening tests did not evidence any improvement
in intelligibility. After the modification, the speech sounded
synthetic which was also observed by Tang and Cooke [12].
It is possible that the spectral shaping was influenced mostly
by vowel characteristics due their temporal dominance in the
speech signal. The consonants which matter most to speech
intelligibility may not have benefited from the overall increase
in GPM. Future work will focus on modifying the spectral
optimization to achieve improved intelligibility in aircraft-type
noise and also implement speech dependent enhancement filter.
For further experimentation we may also try and simulate real
life environment by playing audio through loud-speakers while
collecting data.
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