Sitar and Sarod Music

->Sitar and sarod are plucked string instruments used in Hindustani classical music

->In sitar/sarod concerts, a tabla (percussion) accompanist plays to a certain metre (tala). The **metric tempo** (speed of the metre) increases gradually through the concert

->The **surface tempo** (perceived tempo), a multiple of the metric tempo, changes in certain sections. Over few cycles of the metre, one of the players plays at a faster rate

->Sitar and sarod concerts in Hindustani music have certain musicological sections, based on rhythm:
1) Layakari: the sitar/sarod plays in a fast, rhythmic manner
2) Tabla solo: the tabla takes center-stage, playing at a fast rate and improvising on the fixed meter

Aim of the work

->To reproduce an expert's annotation of the metric tempo and surface tempo from the audio, as in Fig. 1 [1]

->To obtain the boundaries of layakari and tabla solo sections from these rhythmic features, as marked in Fig. 1

Figure 1

Onset Detection

->Standard onset detection functions (ODFs) like spectral flux
[3] detect onsets of all instruments, and can be used to
compute the surface tempo. However, they can't be used to:
1) Distinguish between layakari and tabla solo sections
2) Compute the metric tempo, which is set by the tabla alone

->The proposed strategy yields both a general ODF and a tabla-selective ODF. Together, they solve the above challenges

Performance of proposed ODFs: ->ROC of Fig. 2a: The proposed general ODF ~ spectral flux ODF in detecting all onsets

->ROC of Fig. 2b: The tabla ODF performs much better than the spectral flux ODF in selectively detecting tabla onsets

Structural Segmentation and Visualisation

of Sitar and Sarod Concert Audio T. P. Vinutha S. Suryanarayana K. K. Ganguli P. Rao Department of Electrical Engineering , Indian Institute of Technology Bombay

Figure 3

Figure 6b

Tabla

Metric Tempo and Surface Tempo

Metric tempo: from the tabla rhythmogram -> maximize the mean of the ACF values at candidate lags and corresponding lag multiples The proposed general ODF: $P-ODF[n] = \sum_{k=0}^{N/2} \mathbb{1}\{|X[n,k]| > |X[n-1,k]|\}$

The ODF counts the number of bins in a spectral frame where the energy increases from the previous frame

Features of this ODF:

SMIR 2016

 Spike at every onset, due to increase in energy in all bins; tabla & sitar onsets percussive in nature
 Downward lobe for tabla onsets alone, caused by sudden fall in energy after a tabla stroke

General ODF is normalised, inverted and thresholded at 0.3 to obtain tabla-sensitive ODF

Auto-correlation Function of ODFs computed piecewise Texture window = 3 s Window hop = 0.5 s

Rhythmogram: Spectrogram like visualisation of ACF vectors, from which rhythm information can be obtained [2]

Metric tempo track: strongest band in the tabla rhythmogram

Surface tempo track: first peak in the surface rhythmogram

Layakari: seen distinctly only in the surface rhythmogram

Tabla solo: seen distinctly in both the rhythmograms

Sitar

Future work

Effective alternate ways for segmentation can be: ->Section boundaries of a gat form a subset of the change points of either the metric or surface tempo or the ratio between the two. Hence, these reduced vectors can be used for segmentation ->Tempo features combined with 1) Short-time energy feature distinguishing strokes in layakari 2) Chroma variance feature characterising rapid chikari (drone string) plucks in faster sections of layakari

Surface tempo: from the surface rhythmogram -> maximize the sum of the ACF values at candidate lags and corresponding lag multiples

Range of tempo considered: 80 bpm to 1200 bpm

Figure 7

Segmentation by Surface Rhythmogram

Surface rhythmogram
Self-distance matrix
Novelty function
Thresholding
Boundaries [4]

Drawback:
Surface rhythmogram
captures rythmic
patterns, not just
tempo
Segmentation by
surface rhythm leads to
spurious peaks

Figure 8

References

 Martin Clayton. Time in Indian Music: Rhythm, Metre, and Form in North Indian Rag Performance, Chapter 11
 Kristoffer Jensen et. al. Rhythm-Based Segmentation of Popular Chinese Music, ISMIR, 2005
 J. P. Bello et. al. A Tutorial on Onset Detection of Music Signals, IEEE Trans. on Speech and Audio Processing, 2005
 J. Foote. Automatic audio segmentation using a measure of audio novelty, IEEE Intnl. Conf. on Multimedia and Expo, 2000