
Acoustic and Language Modeling for Children’s
Read Speech Assessment

Hitesh Tulsiani, Prakhar Swarup, Preeti Rao
Department of Electrical Engineering,

Indian Institute of Technology Bombay, India
{hitesh26,prkhr,prao}@ee.iitb.ac.in

Abstract—Automatic speech recognition can be used to eval-
uate the accuracy of read speech and thus serve a valuable
role in literacy development by providing the needed feedback
on reading skills in the absence of qualified teachers. Given
the known limitations of ASR in the face of insufficient task-
specific training data, the selection of acoustic and language
modeling strategies can play a crucial role in achieving acceptable
performance in the task. We consider the problem of detecting
mispronunciations in read-aloud stories in English (as a second
language) by children in the age group 10-14. Multiple available
datasets that separately capture the characteristics of children’s
speech and Indian accented English are used to train and adapt
the acoustic models. A knowledge of the text together with
the prediction of mispronunciation errors helps to define an
effective language model. We present mispronunciation detection
performance on a small test dataset of field recordings and discuss
implications for further work.

I. INTRODUCTION

It is well known that in India’s large rural population,
millions of children complete primary school every year with-
out achieving even basic reading standards[1]. Since reading
competence enhances overall learning by enabling the child to
self-learn various subject material from the vast available text
resources, the importance of imparting reading skills in early
school cannot be overstated. Technology holds the promise of
scalable solutions to alleviate the literacy problem.

It is the goal of the present work to consider scalable
technology solutions that facilitate oral reading assessment in
situations where access to language teachers is limited. We
choose the specific context of second language English which
is a curriculum subject across schools in rural India where the
medium of instruction is primarily the regional language. We
describe our preliminary efforts to assess the recorded read
speech by children in English using an Automatic Speech
Recognition (ASR) system.

The task of automatic assessment of reading ability is to
assign an overall rating suggestive of reading ability. Ideally,
overall rating should correlate with human ratings and should
take into account multiple cues (such as pronunciations errors,
prosody, fluency, and speech rate of the child) that human eval-
uators may use to assign the rating[2]. The task of automatic
assessment of reading ability can be broadly classified into
two categories:

• Suprasegmental-level assessment: Includes assessing
children’s reading ability based on prosody, fluency, and
speech rate. It has been shown that the prosody of the
student’s reading, i.e. its phrasing and intonation, is an
important predictor of comprehension[3].

• Word-level assessment: Here, assessment is concerned
with detecting word-level mispronunciations. It is im-
portant to note here that mispronunciation includes the
following errors:

1) Substitution: Incorrectly pronouncing a word
2) Omission: Not uttering a word
3) Disfluency: Includes (i) Hesitation: Partially pro-

nouncing a word (ii) Sound-out: Pronouncing a
word as sequence of distinct rather than continuous
sounds (iii) Mumbling or unintelligible speech.

In our present work, we restrict ourselves to the word-
level assessment of read speech in the English language
by rural Indian children in the age group of 10-14 years
(grade 4-8). However, recognition of children’s speech is in
itself a very challenging task primarily because the spectral
and temporal characteristics of children’s speech are highly
influenced by growth and other developmental changes [4].
In order to tackle these problems, various techniques such as
Vocal Tract Length Normalization (VTLN) and feature Space
Maximum Likelihood Linear Regression (fMLLR) have been
proposed for GMM-HMM ASR system[5][6]. Over and above
the difficulties involved in recognizing children’s speech, any
mismatch between training data and testing data degrades the
performance of ASR. For our task where we try to assess
the speech read by children in the English language, we
do not have any readily available speech corpus in English
spoken by Indian adults or children. Further, the performance
of a word mispronunciation detection system is also heavily
dependent on the Language Model (LM) used for speech
recognition. Two major studies on assessment of children read
speech, TBALL[7] and LISTEN[8], tried to explicitly model
the mispronunciations by providing parallel paths to account
for substitutions, omissions and repetitions in Finite State
Grammar (FSG) LM. In this paper, we address two questions

1) How to make use of possibly mismatched datasets to
come up with good acoustic models for the task.

2) How to design the LM to detect mispronunciations
efficiently.

While ASR has been used previously in the objective
assessment of language skills of children, the present work is
targeted towards the more challenging scenario of continuous
speech (rather than isolated words as in the extensive work by
Alwan et al.[7]) comprising read-aloud stories. This makes the
task of utterance segmentation very crucial, and a good LM
that is task-specific but also flexible and not overly constrained
is required.978-1-5090-5356-8/17/$31.00 © 2017 IEEE
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In the next section, we describe the data collection and
annotation details and follow it up with discussion on Acoustic
and Language Modeling for mispronunciation detection task
in sections III IV.

II. DATASET

High quality transcribed data obtained in the application
scenario is important for the successful deployment of the ASR
engine. The following subsections briefly describe our speech
data collection and annotation methodologies.

A. Tablet application for data collection

Mobile tablets provide for a low cost, portable medium
that can be easily handled by children. The screen space of
a tablet is sufficient for the convenient display of text and
pictures in story reading. For the proposed work, we adopt
the SensiBol Reading Tutor app (2016)[9] for Android tablets
due to the availability of customization for classroom use with
multiple separate child accounts. The app allows a child to
listen to a narrator reading out the story in a listening mode.
The child can then use the record mode while reading aloud
himself/herself. The stored recording synchronized with the
video is available on the tablet for listening which encourages
self-assessment and more practice. The SensiBol RT app also
provides backend support where every registered child’s audio
recordings, together with metadata information such as the
child’s name, story name, date and time of recording can be
archived. All recordings are made at 16 kHz with a headset mic
to minimize background noise which can be very detrimental
for ASR. The target text content is a selection of stories from
BookBox[10], a readily available rich resource of illustrated
text designed for child readers. We have, so far, been able to
collect a total of 1000 recordings spanning 18 stories from
70 students in grades 4-8 of a tribal school in Aine, Mumbai
where tablet based story reading is a scheduled and supervised
activity conducted in the school hours as part of the Learn
English Through Stories (LETS) project[11].

B. Annotation

Data annotation is carried out using a web-based ratings
panel. The panel displays audio at the sentence level together
with expected story text. This is obtained by segmenting the
full story recording based on a combination of information
from the video timings combined with the detection of long
silences in the audio. The sentence-level audio is then labelled
with reference to narrator audio.

Annotation is done at 3 levels: Word-level, Sentence-level,
Story-level. We have labels for:

1) Mispronunciations : This type of marking is done at the
word level. Each word is categorised into one of the five
categories: ‘correct’, ‘substituted’, ‘incorrect’, ‘missed’,
or ‘disfluency before word’.

2) Noisy/Clean : This marking is done at all the 3 levels.
A word is marked as ‘substituted’ when the child has not

pronounced the word correctly, but pronunciation is intelligible
whereas a word is marked as ‘incorrect’ when the pronunci-
ation is unintelligible. Here intelligible means that pronun-
ciation is either another valid English word or decipherable
enough to get its phone sequence. For ‘substituted’ words we
also write down substitutions. ‘Correct’ label is assigned when

the child has uttered an acceptable pronunciation of the word,
and ‘missed’ label is assigned when the child has skipped the
word. ‘Disfluency before word’ includes hesitation, sound-out
and mumbling. If there is some overlapping noise with the
word/sentence it is marked as ‘noisy’.

C. Evaluation Dataset

For evaluation, we used a subset of the LETS[11] speech
data, collected by us (as explained in section II-A). The details
of the dataset used are described in the table I. We would like
to mention the terminology used in rest of the paper:

• Sentence: It refers to a line in the story text (one per video
frame; segmented using combination of video frame
timings and detection of long pause). There can only be as
many sentences as the number of unique lines in stories.

• Utterance: Utterance is a read out sentence. There can be
many utterances of a sentence by different children, or at
different times.

Dataset
# Students 27
# Stories 5

# Sentence 115
# Utterance 961

# Duration (min) 43
# Sentence >10 utterance 59

TABLE I: Evaluation dataset statistics

We considered 961 utterances by 27 speakers which were
noise free and only contained substituted, missed or correctly
uttered words. Among all the mispronounced words, 53%
were substitutions and 47% were omissions. Also, 40% of
substituted words were unpredictable i.e. Out-of-Vocabulary
(OOV) words. It is important to note here that all the speakers
in the evaluation dataset hail from the same region and
therefore have the same native language and dialect.

III. ACOUSTIC MODELING

In order to build robust acoustic models for our automatic
reading assessment task, we are faced with the following
challenges:

• Insufficient application-specific training data: Ideally,
ASR training and testing should be done with speech
recorded under similar conditions. However, since data
collection and transcription for our application is cur-
rently underway, we do not have enough labelled
speech data to train acoustic models. To mitigate the
effect of insufficient application-specific training data,
we train acoustic models using possibly mismatched
data and adapt with limited application-specific data.
Maximum-aposteriori (MAP)[12] adaptation for GMM-
HMM ASR systems has been used in the past under
similar situations[13].

• Inherent difficulty in children’s speech recognition:
Recognition of children’s speech is difficult due to mul-
tiple reasons[4]. Non-nativeness of the target population
(i.e. children with Marathi as native language) in our case
also adds to the challenge of robust acoustic modeling.
To alleviate one major source of variability in children’s
speech (viz., physiological characteristics) we use Vocal
Tract Length Normalization (VTLN) technique[6].



• Presence of noise and other disturbances: We attempt
to minimize the effect of noise by using a close-talking
microphone for recording stories. A significant amount of
noise can nevertheless creep into our recorded data due to
the school recording environment. Various methods such
as filler models and multi-condition training have been
studied in the past to tackle noise. However, in the present
work we restrict ourselves to noise free test data.

Children using our reading assessment application are ex-
pected to be non-native speakers of English. Therefore we
expect substitutions of unfamiliar English language phones
with acoustically similar native language (i.e. Marathi) phones.
Keeping this in mind we built a application-specific phone set
(47 non silence phones and 1 silence filler phone) by combin-
ing phones from English and Hindi. We selected Hindi due
to the availability of a transcribed database and its similarity
to Marathi in the phone inventory. We next describe various
training and adaptation datasets available and the strategy to
combine these datasets in best possible way.

A. Training and Adaptation datasets

In the table II (below), statistics of various datasets available
to us for training and adaptation is shown.

TIFR[14] GIE CSLU Kids’[15]*
Duration 1.3 h 43 min 14.8 h
Speakers 100 35 493

Utterances
per speaker 10 20 45

Population Adults Adults Children (Grades: 4-8)

Target text Sentences Sentences Words and
Sentences

Type of speech Scripted Scripted Scripted and
Spontaneous

Language/Dialect Hindi Indian English American English

TABLE II: Details of training and adaptation speech corpora.
*Statistics of a portion of CSLU Kids’ dataset (relevant to the targeted
age group) is mentioned.

The CSLU Kids’ speech corpus appears to be the most
suited training set for our task mainly because of two reasons,
the first being similar target populations (children in both
cases) and the second being its large size as compared to
other datasets. However, the CSLU Kids’ corpus is American
English speech. The TIFR Hindi dataset is used for modeling
the non-English phones which are not present in the CSLU
Kids’ corpus. The GIE corpus, recorded at our lab, is use-
ful for incorporating phonetic realizations of English phones
by Indian speakers uttering TIMIT[16] prompts. Ideally, we
would want to train non-English phones and adapt using
children’s data but due to unavailability of such a dataset we
resort to TIFR and GIE adult’s datasets. However, the question
which remains to be answered is how to incorporate the
information present in TIFR and GIE datasets into an existing
model trained on CSLU Kids’ corpus. This is determined by
experimenting with various training and adaptation methods,
the results of which are described in the following section.

B. Experiments and Results

The Kaldi[17] speech recognition toolkit was used for all
our experiments. We chose Phone Error Rate (PER) as the
evaluation metric for assessing quality of acoustic models.
This ensures that the language model part of an ASR system

plays a negligible role in the evaluation of this part of the work.
All results reported in the following sections use the combined
phone set described in section III. Among the 48 phones,
we have a separate filler model called ‘SIL’ for pauses. This
represents a generic 3-state HMM which is trained on silences
present at the start and end of each utterance in the training
data. Another important aspect is the dictionary we use for
converting word-level transcription into phone sequences for
PER calculation. For American English, we use the CMU
dictionary[18] as it is freely available and has been extensively
used in literature. However, for Indian English we maintain a
separate dictionary which contains acceptable Indian English
pronunciations. This dictionary has been manually prepared
by us keeping in mind the pronunciations we expect from a
good English speaker from any part of India. We use phone-
bigram LM, trained on ground-truth transcriptions of the test
utterances.

PERs observed under different training/adaptation condi-
tions are summarized in tables III, IV, V. Some important
implementation details related to these experiments are:

1) Monophone: Context-independent models trained with
39-dimensional MFCC features.

2) Triphone: Context-dependent models (1000 senones and
16 Gaussians per senone) trained with 40-dimensional
LDA features (+/- 3 context window spliced MFCC
features reduced to 40 dimensional using LDA).

3) Triphone - VTLN: Context-dependent models trained
with Vocal Tract Length Normalized (VTLN) features.
This was done to normalize the effect of presence of both
adult and child population in our training and adaptation
datasets. At this stage due to insufficient speaker-specific
data we do not try out Speaker Adaptive Training (SAT)
but limit ourselves to VTLN adaptation only.

4) Due to the high level of acoustic mismatch between the
available datasets, we have adapted all the Gaussian pa-
rameters (mean vectors, covariance matrices and mixture
weights) through MAP adaptation.

5) N-fold adaptation refers to a typical leave-one-out adap-
tation strategy in which we assume 1 speaker as a test
speaker and use all the data from the remaining N-1
speakers for MAP adaptation. In our case N = 27 i.e we
do 27-fold MAP adaptation.

Train Set Monophone
PER(%)

Triphone
PER(%)

Triphone-VTLN
PER(%)

CSLU 74.93 71.30 69.80
CSLU + TIFR 72.00 63.94 63.41
CSLU + GIE 74.12 65.93 64.29

TABLE III: PER(%) using various train set combinations on LETS
test set

Train Set MAP
Adaptation Set

Triphone
PER(%)

Triphone-VTLN
PER(%)

CSLU TIFR 65.48 65.68
CSLU GIE 65.89 65.19

CSLU + TIFR GIE 63.17 61.17
CSLU + GIE TIFR 64.19 61.97

TABLE IV: PER(%) with various combinations of train and adapta-
tion set on LETS test set
C. Observations

1) Incorporating TIFR/GIE with CSLU training dataset
helps in improving the phone recognition accuracy. This
was expected as discussed in section III-A.



Train Set MAP
Adaptation Set

N-fold
MAP

Adaptation Set

Triphone
PER(%)

Triphone-VTLN
PER(%)

CSLU + TIFR GIE LETS 49.27 51.99

TABLE V: PER(%) on LETS test set with TIFR + CSLU train set
and GIE + LETS adaptation set

2) MAP adaptation using TIFR/GIE datasets provides im-
provement over acoustic models trained on CSLU cor-
pus only. Considering that the TIFR Hindi dataset pro-
vides the additional phones, it should be added to the
training set. This training data combined with GIE data
for MAP adaptation gives the lowest phone error rate in
Table IV.

3) N-fold adaptation results in a marked improvement in
PER as shown in Table V. This implies that bringing in
our application-specific data through MAP adaptation is
beneficial for the performance of a GMM acoustic model
trained on mismatched data. In the present scenario, we
also benefit from the same LETS text in both adaptation
and test data.

4) As expected, acoustic models trained with VTLN fea-
ture seem to outperform models trained without VTLN
feature normalization (Tables III,IV). However, same
improvement is not observed when task-specific LETS
data is used for N-fold MAP adaptation (Table V). This
counter intuitive result needs further investigation.

We can thus conclude from these experiments that using TIFR
dataset in training along with CSLU Kids’ data models the
non-native phones not in English. MAP adaptation of these
models with GIE enables us to capture phonetic realizations of
English phones by Indian speakers whereas LETS data helps
to bridge the gap between train and test conditions.

IV. LANGUAGE MODELING

In the context of read-aloud speech, the language model
essentially aligns the utterance with the known canonical text.
Correct alignments can help us evaluate the prosody of the
utterance with reference to the expected prosody (related to
phrasing, sentence-ending and prominent words) apart from
identifying specific word-level pronunciation errors. A well-
designed LM should take into account following observed
phenomena in children’s read-aloud speech with regard to the
given text:

1) A given word can either be uttered or omitted (missed).
2) A given word can be substituted by another valid English

word or an invalid word (i.e. an Out-of-Vocabulary
word) or by unintelligible speech.

3) Possibility of the presence of silence or noise between
two words.

4) Possibility of disfluency (hesitation, sound-out or mum-
bling) before any word in a sentence.

For the present work, we restrict our attention to utterances
that don’t have noise or disfluencies as per our transcriptions.
We use OpenFST toolkit[19] to build Finite State Transducer
based LM.

A. Basic Framework

Our approach is similar to that adopted for TBALL[7]. Since
we aim to detect word-level mispronunciations from sentence-
level utterances (of stories), we build a Finite State Grammar

(FSG) LM for each sentence in the story text. The idea is best
understood by first analyzing word-level LM.

Fig. 1: LM for the word ‘smiled’ with parallel paths for detecting
mispronunciations.

The image above (Fig 1) shows a word-level LM for
recognizing the target word ‘smiled’. Here the path annotated
as ‘smiled’ represents an acceptable pronunciation whereas the
path annotated as ‘smile’ allows for an expected substitution.
There may be more than one acceptable pronunciation of a
word in the lexicon used for ASR. Also, ‘<eps>’ annotated
path allows for possible omission. It is to be noted that this
LM will allow the unexpected substitutions of word ‘smiled’
to go undetected. To address this, we use a phone loop in
parallel as explained in section IV-D.

Once we get the word-level LM, we can easily build
sentence-level LM by concatenating word-level LMs for every
word in the sentence text. This LM, in theory, allows us to
detect mispronunciations (except for unpredictable substitu-
tions). One of the drawbacks of such an LM is that it gives
equal probability to all the parallel paths i.e. it assumes a
child is as likely to pronounce the word correctly as he is to
mispronounce it. But from the observations in our dataset, we
found that a child is more likely to mispronounce a word in
his initial reading attempts and correctly pronounce the words
after a sufficient number of readings of the same story. We
take care of this discrepancy by associating with each path a
probability value.

LM for the sentence ‘The moon smiled’ is shown in Fig
2. Here numbers after ‘/’ represent probabilities and self-loop
of ‘SIL’ after every word indicates that there can be silence
of arbitrary duration between two words. Allowing silence
between two words can help us obtain accurate word-level
alignment. There are two challenges in building this LM:

• How to obtain the probability of each path?
• How to determine expected substitutions of every word?

The answer to both the questions lies in DATA collected from
field recordings.

B. Obtaining Expected Substitutions

To obtain expected substitutions of every word, we make
use of the information about word substitutions gathered
during data annotation. As explained in section II-B, if a
child mispronounces a word we mark it as substituted and
also note down the uttered pronunciation. Once we get all
the observed substitutions for every word in the dataset we
manually filter out, for every word, those substitutions that
are not phonetically close to the target word. The remaining
predictable substitutions, of the target word, are added to our
lexicon (dictionary building) and as a parallel path in LM.

C. Learning Probabilities

To assign probabilities to various parallel paths, we compare
ground truth transcription with the canonical transcription (text
that was supposed to be read) to determine how many times



Fig. 2: LM with different parallel path probabilities for the sentence ‘The moon smiled’. Number after ‘/’ represents probability of the path.

a particular target word was omitted, correctly pronounced, or
substituted with another word. For example, if the word ‘cap’
has occurred 20 times in canonical text and has been correctly
pronounced 13 times, omitted 3 times, and substituted as
‘caps’ 4 times then the probabilities of various parallel paths
of target word ‘cap’ would be:

• cap : 13/20 • <eps>: 3/20 • caps : 4/20
In our current work we explore two different ways to learn

probabilities from data:
1) Entire data: Here, for learning the probabilities, we

consider all the occurrences of the target word in all
the utterances without regard to sentence i.e. we do not
take into account the context in which target word has
occurred in a sentence.

2) Same sentence: Here, to learn probabilities, we consider
only those occurrences of target word that have the same
context. To be precise, we learn the probabilities of
various parallel paths only from utterances of the same
story sentence. The idea here is that the child may make
pronunciation errors depending on the context in which
the word occurs and learning the probabilities from the
utterances of the same sentence will help us capture
context specific word errors accurately.

D. LM with Out-of-Vocabulary (OOV) modeling

To account for unexpected substitutions of a word, we
used a phone loop in parallel with paths that allowed for
correct, expected substitutions and omission of a word. A
topological constraint of allowing a minimum of two phones
and a maximum of five phones was imposed on phone loop
path to ensure that OOV words are between two to five phones
in length[20]. This constraint was imposed after observing that
the average length of OOV words in our dataset was 4 phones.

E. Experiments and Results

In this section, we describe the experiments carried out to
validate our LM. Since our task is mispronunciation detection,
we report the results in terms of detection rate/recall (DR) and
false alarm rate (FAR) of mispronunciations ([7][8]). We also
use Word Error Rate(WER) as an evaluation metric. WER
accounts for insertions, substitutions, and deletions and we
have been strict enough not to consider two different but
phonetically similar mispronunciations of a word as identical.

For all our experiments, we use GMM-HMM acoustic
models trained on CSLU kids speech and TIFR datasets and
adapted with GIE and LETS data (N-fold). This configuration
was found to be best in terms of PER in section III-B.
Also, we learn the probabilities of various parallel paths in
LM (as explained in section IV-C) in leave-one-out (LOO)
cross-validation mode i.e. we exclude the utterance under
consideration when learning the probabilities.

We report results on two subsets of LETS test data (dis-
cussed in section II-C):

1) Sentence with more than 10 utterances in data (Set-
A): This subset of 661 utterances across 59 sentences
was chosen to ensure that the probabilities learned using
‘Same sentence’ technique are statistically significant.

2) All sentences in the dataset (Set-B): This set comprises
of 961 utterances across all 115 sentences.

WER results using the two above sets for learning prob-
abilities of various parallel paths using ‘Same sentence’ and
‘Entire data’ techniques (without OOV modeling) are shown
in the table VI. The comparison of these two techniques of
learning against assigning equal probability to all the paths
(referred as ‘Equiprobable’ from here on) and Word bigram
LM (learned from annotated text in LOO CV mode) is also
shown. We also report our preliminary WERs obtained using
LM with OOV modeling where probabilities of parallel paths
are learned using ‘Entire data’ technique. This is referred to
as ‘Entire data - OOV’ in table VI.

WER(%)
Set-A Set-B

Equiprobable 29.21 29.30
Entire data 24.00 23.51

Same sentence 24.15 24.05
Word bigram 30.54 32.58

Entire data - OOV 31.44 31.56
TABLE VI: WER comparison using 3 methods of assigning prob-
ability (LM without OOV modeling): (i) ‘Equiprobable’ (ii) ‘Entire
data’ (iii) ‘Same sentence’ and ‘Word bigram’ and ‘Entire data -
OOV’ (LM with OOV modeling)

Detection rate (DR) and False alarm rate (FAR) of mispro-
nunciations using various techniques to learn probabilities in
FSG type of LM are shown in table VII. We do not compute
DR and FAR on Set-B using ‘Same Sentence’ technique since
the probabilities learned are not statistically reliable. It is
important to note that we do not differentiate between two
mispronunciations of a word for computing detection and false
alarm rate of substitutions.

F. Observations

1) As can be seen from the table VI, WER obtained using
‘Entire data’ and ‘Same sentence’ are almost equal. This
shows that learning the probabilities taking word context
into account (‘Same sentence’) doesn’t provide any
additional gains especially since it is a smaller size data.
Also, ‘Same sentence’ and ‘Entire data’ techniques per-
form significantly better than ‘Equiprobable’ and ‘Word
bigram’ which tells us that learning probability from
data in FSG type of LM is beneficial. WER obtained
using ‘Entire data - OOV’ is significantly higher than
‘Entire data’ indicating that many of the correctly uttered



Set-A Set-B
Mispronunciations

(Substitutions
and Omissions)

Substitutions Omissions
Mispronunciations

(Substitutions
and Omissions)

Substitutions Omissions

DR(%) FAR(%) DR(%) FAR(%) DR(%) FAR(%) DR(%) FAR(%) DR(%) FAR(%) DR(%) FAR(%)
Equiprobable 73.49 20.47 58.09 13.86 82.64 4.11 74.09 20.67 57.21 13.80 82.17 4.21
Entire data 59.25 11.16 41.72 6.61 74.88 3.11 60.37 10.52 41.35 6.21 76.04 2.86

Same sentence 56.81 10.48 41.18 6.12 70.54 3.00 - - - - - -
Entire data - OOV 77.59 26.11 65.64 19.04 70.09 4.44 78.46 27.01 63.76 19.30 70.61 4.89

TABLE VII: Detection rate and False alarm rate using various techniques (with and without OOV modeling in LM) to assign probabilities:
(i) ‘Equiprobable’ (ii) ‘Entire data’ (iii) ‘Same sentence’ (iv) ‘Entire data - OOV’

words are classified as mispronounced when LM with
OOV modeling is used.

2) Observing the DR and FAR of substitutions (table VII),
it is clear that none of the techniques, for LM without
OOV modeling, can accurately detect substitutions. This
is because we did not account for unforeseeable substitu-
tions (treated as OOV) of the target word (approximately
40% of substitutions) in LM. For the case where we
accounted for OOV in LM, we get a high DR for
substitutions as well as overall mispronunciations but
at the cost of high FAR.

3) Results in table VII show that we can accurately detect
omissions (high DR and low FAR) for all the techniques.
This will ensure that we get accurate word-level align-
ments, which can be used for prosody analysis.

V. CONCLUSION

In the current work, we focused on building robust acoustic
models from possibly mismatched datasets and designing
LM to detect mispronunciations effectively for the task of
automatic reading assessment. We showed that incorporating
Hindi dataset in training along with American English dataset
helped us to capture nonnative phones not in English. Also,
adaptation of models with Indian English dataset allowed us
to capture phonetic realizations of English phones by Indian
speakers. In addition, adaptation with the task-specific dataset
helped to bridge the gap between train and test conditions.
Apart from building robust acoustic models, we explicitly
modeled mispronunciations in Language Model. Two different
ways to learn probabilities of parallel paths in FSG type of
LM were explored. Both the proposed techniques performed
equally good, in terms of detection rate and false alarm rate
of mispronunciations, and had significantly lower WER as
compared to equal probability to all the parallel paths. We
observed that our LM was able to detect omissions efficiently
but not substitutions. Also, our preliminary efforts to model
OOV in LM using a phone loop with topological constraints
gave us better detection rate of substitutions at the cost of
increased false alarm rate.

In future, we would like to thoroughly investigate and
improve upon the shortcomings of our LM to detect OOVs. We
would also like to deal with presence of noise in our data by
using filler models and better front end processing of utterance.
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