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Abstract
Reverberation corrupts speech recorded using distant micro-
phones, resulting in poor speech intelligibility. We propose
a single-channel, supervised non-negative matrix factorization
(NMF) based dereverberation method, in contrast to the convo-
lutive NMF (CNMF) based methods in literature. Recent su-
pervised approaches use a CNMF model for reverberation and
a NMF model for clean speech spectrogram to obtain enhanced
speech by directly estimating the clean speech activations. In
the proposed method, with a separability assumption on the
room impulse response (RIR) spectrogram, the reverb speech
can be decomposed into bases and activations using conven-
tional NMF. Using these reverb activations, the clean speech
activations are estimated to obtain enhanced speech. The pro-
posed model (i) helps in imposing meaningful constraints on
the RIR in both frequency- and time-domains to achieve im-
proved enhancement (ii) leads to a framework that can include
a NMF model for noise. (iii) gives a better interpretation of
the effects of reverberation in the NMF context. We evaluate
and compare the enhancement performance of the algorithm
on reverb and noisy conditions, simulated using TIMIT utter-
ances and REVERB challenge RIRs. The proposed method
performs better than existing C-NMF based methods in objec-
tive measures, such as cepstral distance (CD) and speech-to-
reverberation modulation energy ratio (SRMR).
Index Terms: NMF, distant speech recording, reverberation,
noise

1. Introduction
In many real-world applications such as smart homes, robots,
conference meetings, and voice-controlled personal assistants
speech recordings are done using microphones placed few me-
ters away from the source. Such distant speech recordings
(DSRs) are severely affected by reverberation and background
noise [1]. This degrades speech intelligibility and performance
of automatic speech recognition performance (ASR) systems.
Speech enhancement helps in improving speech intelligibility
and can be used as a pre-processing step for improving ASR [2].
The effects of reverberation depend on the properties of speech
and room impulse response (RIR). Speech dereverberation can
be done using single- or multi-channel data depending on the
application of interest. In this work, we address single-channel
dereverberation in the DSR scenario.

Dereverberation methods proposed in the literature include
reverberation cancellation methods, blind deconvolution based
methods, and reverberation suppression methods such as spec-
tral subtraction, linear prediction (LP) and non-negative matrix
factorization (NMF) based methods [1]. The earliest work on
NMF based dereverberation [3] uses a convolutive NMF (re-
ferred as C-NMF) model for the reverb spectrogram. Since
then many modifications to this have been proposed both in
single-channel [4, 5, 6, 7, 8] and multi-channel scenario [9].

In [8] the C-NMF model is shown as a special case of NMF
decomposition. The C-NMF model for speech dereverberation
was improved by additionally incorporating a NMF model for
clean speech [5, 6]. Various supervised approaches to han-
dle reverberation in noisy environments have also been pro-
posed [7, 10, 11]. Different regularization on RIRs in single-
channel [11, 12] and multi-channel [13] scenario have been pro-
posed leading to better speech enhancement. In contrast to these
methods that use C-NMF for dereverberation, we propose a
NMF model for reverberation. The model uses magnitude spec-
trogram of the reverb speech and learned clean speech bases
to estimate the enhanced speech. Such an approach will allow
us to incorporate meaningful constraints in the frequency- and
time-domain. This leads to a better speech enhancement, as it
has direct control over the estimates of clean speech activations
and better RIR estimates. Another advantage of such a model is
that it can be easily extended to handle additive noise making it
suitable for a noisy reverberant scenario.

2. NMF based dereverberation
Reverberated speech y(t) recorded at a microphone is expressed
as the convolution of clean speech s(t) and the RIR h(t) [1]. In
the absence of noise, speech degradation due to reverberation
can be modeled in the magnitude spectrogram domain by utiliz-
ing the modulation transfer function (MTF) model for reverber-
ation [3]. According to the MTF model, the magnitude envelope
for each subband of reverberant speech magnitude spectrogram
(Y) can be approximated as the convolution of the correspond-
ing subband magnitude envelopes of the RIR (H) and the clean
speech (S) spectrograms [4]. Accordingly,

Y (k, n) ≈ H(k, n) ∗n S(k, n) =

Lh−1∑

l=0

H(k, l)S(k, n− l),

(1)
where, Y (k, n), H(k, n) and S(k, n) represent the (n, k)-th
element of Y, H and S, respectively, Lh represents the number
of frames used to represent the RIR spectrogram H and ∗n rep-
resents convolution across frame index. The model in (1) can be
viewed as a convolutive NMF (C-NMF) decomposition where
H and S can be obtained using multiplicative updates [3].

The speech enhancement results using the model in (1)
were improved by incorporating a NMF model for the mag-
nitude spectrogram of clean speech [5, 6]. They exploit the
low-rank nature of clean speech spectrogram by having a NMF
decomposition on clean speech spectrogram S(k, n) as,

S(k, n) ≈
R∑

r=1

Ws(k, r)Xs(r, n), (2)

where Ws(k, r), Xs(r, n) are elements of the bases, activations
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and R is the rank of the decomposition. Using (2) in (1),

Y (k, n) ≈
Lh−1∑

l=0

H(k, l)

( R∑

r=1

Ws(k, r)Xs(r, n− l)

)
. (3)

From (3), enhanced speech is obtained by solving for H(k, l),
Ws(k, r) and Xs(r, n) iteratively. This method will be referred
to as C-NMF+NMF. In [5, 6], several approaches to obtain
bases are experimented with. In online (unsupervised) meth-
ods, the bases are learned from the reverberant speech. In offline
(supervised) methods, the bases are learned from clean speech
utterances. The proposed approach uses supervised bases, so
we use the offline method as a baseline for comparison. The
joint speech dereverberation and denoising methods using C-
NMF model [7, 10, 11] are not compared as they use exemplar
bases, which require a large number of bases when compared to
learned bases to represent clean speech.

2.1. Proposed non-convolutive NMF model

We propose a method to perform dereverberation by represent-
ing the reverb spectrogram using a non-convolutive NMF as,
Ỹ = WRXR, where WR and XR represent the bases and
activation of this decomposition. Such a model is made possi-
ble by having a separability assumption on the RIR spectrogram
H(n, k) = H1(k)H2(n). This approximation is based on the
following observations. Firstly, the RIR magnitude spectrum
across frequencies for different frames is similar and has a de-
caying structure across time as is observed in literature [16].
Secondly, the subband magnitudes of the RIR for different fre-
quencies decay with time. The rate of decay with time for dif-
ferent subband is assumed to be same. Combining these obser-
vations, a simplifying model will be to write H(n, k) as having
a frequency envelope H1(k) with a gain H2(n) for different
frames. With this, we have

Ỹ (k, n) =

Lh−1∑

l=0

H1(k)H2(l)
R∑

r=1

Ws(k, r)Xs(r, n− l)

=
R∑

r=1

Ws(k, r)H1(k)︸ ︷︷ ︸
WR(k,r)

Lh−1∑

l=0

H2(n)Xs(r, n− l)

︸ ︷︷ ︸
XR(r,n)

(4)

where, Ỹ (i, j), WR(i, j), and XR(i, j) are the (i, j)-th ele-
ment of Ỹ, WR and XR, respectively. Equation (4) is a NMF
decomposition with rank R of the reverb spectrogram. The
set of bases and activations obtained from this decomposition
is related to clean speech bases and activations. The reverb
bases (WR(k, r) = Ws(k, r)H1(k)) are the clean speech bases
Ws(k, r) modified by the frequency envelope of the RIR spec-
trogram H1(k). The reverb activations are obtained as the con-
volution of clean speech activations with the time-dependent en-
velope of the RIR (XR(r, n) = Xs(r, n) ∗n H2(n)). Estima-
tion of these parameters is done in two steps. In the first step,
with the knowledge of learned speech bases, H1(k) and reverb
activations are learned from the reverb spectrogram. General-
ized Kullback-Leibler (KL) divergence is used as the distance
measure in the first stage as this is related to speech [5]. The
NMF cost function (C) is given as,

C =
∑

n,k

[
Y (k, n)ln

(
Y (k, n)

Ỹ (k, n)

)
− Y (k, n) + Ỹ (k, n)

]
(5)

Multiplicative update rules are obtained for H1(k) and
XR(r, n) using the cost function in (5). The updates obtained
are,

H1(k)← H1(k)

∑
n,r

Y (k, n)

Ỹ (k, n)
Ws(k, r)XR(r, n)

∑
n,r Ws(k, r)XR(r, n)

, and

XR(r, n)← XR(r, n)

∑
k

Y (k, n)

Ỹ (k, n)
H1(k)Ws(k, r)

∑
k H1(k)Ws(k, r)

(6)

In the second stage, clean activations are learned from reverb
activations. The second stage uses Euclidean distance as the
distance measure to estimate clean activations from reverb ac-
tivations, since the estimated parameters are no longer related
to speech as in (5) and can be viewed as a general signal. The
NMF cost function in this case is defined as,

C1 =
∑

r,n

(XR(r, n)−H2(n) ∗n Xs(r, n))
2 (7)

Simultaneous estimation of Xs(r, n) and H2(n) from
XR(r, n) leads to the trivial solution of Xs(r, n) = XR(r, n)
and H2(n) being an impulse. To get a meaningful solution,
H2(n) is initialized using prior knowledge of room and source-
microphone distance in the RIR structure (Sec 4.1.3 in [2]). The
update for Xs(r, n) is given by,

Xs(r, p)← Xs(r, p)

∑
n XR(r, n)H2(n− p)

∑
n X̃R(r, n)H2(n− p)

(8)

where, X̃R(r, n) is the estimated reverb activation (X̃R(r, n) =
Xs(r, n) ∗n H2(n)). The clean speech spectrogram can be es-
timated as Ŝ(k, n) = G(k, n)Y (k, n), where the gain function
G(k, n) is written as,

G(k, n) =

∑
r Ws(k, r)Xs(r, n)

Ỹ (n, k)
(9)

The proposed reverberation model using NMF will be referred
to as R-NMF.

We now justify the proposed model using an illustrative ex-
ample, considering a reverberated TIMIT utterance obtained us-
ing a RIR with T60 ≈ 700 ms and source-microphone distance
(d) of 0.5 m. Using the first step, one can see that the reverb
bases WR(k, r) are indeed the clean speech bases Ws(k, r)
acted upon by the frequency envelope of the RIR H1(k). The
estimated frequency envelope of the RIR obtained using the
proposed model is compared with the true frequency envelope
HTrue

1 (k) in Figure 1. HTrue
1 (k) is obtained as the average value

of normalized frequency spectrum for the three frames of RIR
spectrogram with maximum energy. From the figure, it is clear
that for most frequencies, the estimated H1(k) is very close to
HTrue

1 (k). A similar behavior was observed for other RIRs.
The second step of the proposed approach can be justified

by showing that the clean speech activations can be obtained
from a deconvolution of the reverb activations and H2(k). Fig-
ure 2 compares the activations obtained using the different NMF
models for a specific basis, which is obtained from the NMF
decomposition of the reverberated utterance. The clean speech
activations (shown in Figure 2(a)) spread due to the effect of
reverberation as is shown in Figure 2(b). Dereverberation using
the proposed approach helps in reducing this effect. This is ev-
ident from the activations estimated using the R-NMF method
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Figure 1: Comparison of the estimated frequency envelope
H1(k) to that of the true frequency envelope HTrue

1 (k) for a
measured RIR with T60 ≈ 700 ms and d = 0.5 m.

as shown in Figure 2(d). The C-NMF+NMF method (shown
in Figure 2(c)) was unable to completely recover the clean ac-
tivations in this case. In our experiments, it was observed that
the R-NMF consistently obtained the clean activations, whereas
the C-NMF+NMF was not consistent. The overall enhancement

Figure 2: Normalized activations obtained for a test utterance.
(a) Clean utterance, (b) Reverb utterance, (c) Dereverberation
using C-NMF+NMF, (d) Dereverberation using R-NMF. The es-
timated activations in (d) are similar to the true activations in
(a).

obtained using the R-NMF and C-NMF+NMF is in Figure 3 by
comparing the enhanced spectrograms with the clean and reverb
spectrograms. It can be seen that the R-NMF was more effec-
tive in removing the artifacts caused due to reverberation. This
is clearly visible in the silence regions as indicated by the red
boxes.

2.2. Proposed model for reverberation and noise

One of the advantages of having the NMF model for reverbera-
tion as proposed in (4) is that it can be easily extended to include
a NMF model for additive noise. The time-domain degraded
speech can be represented as yD(t) = y(t) + z(t). The cor-
responding magnitude spectrogram YD can be approximated
as the sum of reverberation spectrogram Ỹ and noise spectro-
gram Z [7, 10, 18]. Further, the noise spectrogram can also be

Figure 3: Spectrogram of (a) Clean speech, (b) Reverb speech,
(c) Enhanced speech using C-NMF+NMF, and (d) Enhanced
speech using the proposed R-NMF. The regions where R-NMF
performs better is shown using red boxes.

decomposed using a NMF model (Z = WnXn) [19]. Hence,

ỸD(k, n) = Ỹ (k, n) + Z(k, n), (10)

where Z(k, r) =

Rn∑

r=1

Wn(k, r)Xn(r, n). (11)

ỸD(k, n), Z(k, n) represent the (k, n)-th element of ỸD ,
Z, respectively, with Wn(k, r) and Xn(r, n) representing the
bases and activations for the noise spectrogram and Rn the rank
of NMF decomposition for Z. The model in (10) can be written
as,

ỸD = WRXR +WnXn = [WR|Wn][X
T
R|XT

n ]
T (12)

The bases for the decomposition are the combined bases of
reverb and noise spectrograms. The reverb basis WR(k, r)
depends on clean speech basis Ws(k, r) as WR(k, r) =
Ws(k, r)H1(k). Activations for the decomposition in (12) are
the combined activations of reverberation and noise activations.
The parameters H1(k), XR and Xn are estimated using multi-
plicative update rules for the cost function, similar to (5), ex-
cept that Y (n, k) and Ỹ (n, k) is replaced by YD(n, k) and
ỸD(n, k). The update rules for H1(k) and XR are similar to
the updates in equation (6), except that Y (k, n) and Ỹ (k, n)

are replaced by YD(k, n) and ỸD(k, n), respectively. Update
of Xn is obtained as,

Xn(n, r)← Xn(n, r)

∑
k

YD(k, n)

ỸD(k, n)
Wn(k, r)

∑
k Wn(k, r)

(13)

We will refer to this model as R-NMF+NMF.

3. Results
The performance of the algorithms in Sec. 2 was compared
using speech enhancement measures. As mentioned earlier, we
do not consider [7, 10, 11] as these are exemplar based methods.

3.1. Dataset and experiments

The speech enhancement performance was assessed using a
subset of 16 speakers, with ten utterances per speaker from the
TIMIT database [20]. One utterance spoken by each speaker
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Table 1: Comparison of objective measures for the reverberant and noisy speech, with stationary noise at 10 dB SNR

CD SRMR
RIR1 RIR2 RIR3 RIR4 RIR1 RIR2 RIR3 RIR4

Degraded speech 4.98 5.43 5.07 5.46 3.24 2.08 3.03 1.92
C-NMF+NMF [5, 6] 5.28 5.35 5.38 5.45 4.69 3.71 4.70 3.85
R-NMF 4.85 5.16 4.97 5.26 4.16 3.43 3.99 3.73
R-NMF+NMF 4.40 4.49 4.49 4.48 5.37 4.08 5.20 4.12

Table 2: Comparison of objective measures for the reverberant and noisy speech, with non-stationary noise (Factory) at 10 dB SNR

CD SRMR
RIR1 RIR2 RIR3 RIR4 RIR1 RIR2 RIR3 RIR4

Degraded speech 5.28 5.63 5.36 5.68 3.53 2.22 3.25 2.05
C-NMF+NMF [5, 6] 5.60 5.65 5.75 5.82 4.81 3.83 4.83 3.99
R-NMF 5.16 5.43 5.28 5.55 4.50 3.53 4.30 3.84
R-NMF+NMF 4.77 5.12 4.80 5.17 5.50 4.32 5.15 4.31

was used for testing. For the NMF representation, 100 speaker
specific clean speech bases were learned from 9 utterances dif-
ferent from the one used in testing of that speaker. Four mea-
sured RIRs from the REVERB challenge [2] were used for the
evaluation. The RIRs correspond to two different rooms and
two different source-microphone distances : near (0.5 m) and
far (2 m) in each room. RIR1 and RIR2 correspond to near
and far RIR recordings in the room with T60 ≈ 600 ms. RIR3
and RIR4 correspond to near and far RIR recordings for the
room with T60 ≈ 700 ms. Each test sentence was convolved
with these RIRs to obtain a total of 64 reverberated recordings.
Stationary noise available from REVERB challenge [2] or non-
stationary noise (factory noise) from [21] was added to the re-
verberant data at different signal-to-noise ratios (SNRs). 100
noise bases were learned from these noise recordings.

The magnitude spectrogram of the 64 reverberant signals
was obtained using a 64 ms window with a hop-size of 16 ms.
The square root of Hanning window was used in analysis and
synthesis. Lh in (1) was experimentally fixed as 40. H1(k)
was initialized to 1 for all k, XR and Xn were initialized to
random values. With the knowledge of RIR, H2(n) was ob-
tained as the average of H(n, k) for different subbands. Each
subband is normalized to have a maximum value 1. The en-
hanced speech is reconstructed using original noisy phase. The
improvement in speech enhancement task was compared using
the objective measures of CD and SRMR [14, 15]. Note, we do
not include PESQ as it does not provide consistent estimates, as
observed in [2]. Dereverberated speech has larger SRMR scores
and lower CD when compared to the reverberated speech. The
performance of the algorithms is reflected in these measures.

3.2. Speech enhancement using the proposed methods

The performance of the proposed algorithms was compared to
the C-NMF+NMF method, for the various reverberation condi-
tions with stationary or non-stationary noise added at different
SNRs. For want of space, we do not include the results for
20 dB noise where all the methods behave similarly, with R-
NMF+NMF performing slightly better. Table 1 provides objec-
tive measures for the degraded speech with a stationary noise at
10 dB SNR and the enhanced speech obtained using the various
methods. It can be seen that R-NMF enhanced speech shows
improvement in all the objective measures. Considering SRMR,
the performance of C-NMF+NMF and R-NMF methods are
comparable. However, R-NMF leads to improvements in CD,

whereas C-NMF+NMF results in poor CD. The R-NMF+NMF
provides significantly better improvements in both the measures
when compared to C-NMF+NMF.

Table 2 compares the enhancement results obtained using
the proposed methods when non-stationary (factory) noise is
added at 10 dB SNR. It can be seen that the R-NMF method per-
forms relatively better compared to C-NMF+NMF. Here too the
proposed R-NMF+NMF based enhancement significantly im-
proved the performance, as is evident from the CD and SRMR
improvements.

In the presence of noise, the enhancement performance of
C-NMF+NMF and R-NMF are comparable, which is expected
as there is no explicit model for noise. But, this also shows that
the proposed non-convolutive NMF model for dereverberation
is equivalent to existing C-NMF model.

4. Discussion and Summary

The proposed R-NMF and R-NMF+NMF methods model re-
verberation using a non-convolutive NMF model. Assuming
a NMF model for noise, R-NMF+NMF method jointly han-
dles noise and reverberation. Such a method provides improved
speech enhancement compared to a C-NMF model that does
not handle noise. Further, the enhancement results for R-NMF
demonstrates the effectiveness of using a NMF model to per-
form dereverberation. This leads to simple updates and less
computational complexity. In addition, using the proposed
model we also showed a convincing interpretation of the ef-
fects of reverberation on the clean speech activations. The
NMF based methods proposed here used learned bases for each
speaker. As part of future work, we will look at incorporating
speaker independent and exemplar bases. The improvements
in CD and SRMR indicate that the proposed method will lead
to improved single-channel ASR systems for reverberant and
noisy conditions.

5. Acknowledgement

Part of the work was supported by Bharti Centre for Communi-
cation in IIT Bombay, Council of Scientific and Industrial Re-
search (CSIR), India and Tata Consultancy Services (TCS), In-
dia.

1327



6. References
[1] N. Patrick and G. Nikolay, Speech Dereverberation. New York:

Springer, 2010.

[2] K. Kinoshita et al., “A summary of the REVERB challenge: state-
of-the-art and remaining challenges in reverberant speech pro-
cessing research,” EURASIP Journal on Advances in Signal Pro-
cessing, vol. 2016, no. 1, p. 7, 2016.

[3] H. Kameoka, T. Nakatani, and T. Yoshioka, “Robust speech dere-
verberation based on non-negativity and sparse nature of speech
spectrograms,” in Proc. IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2009, pp. 45–48.

[4] K. Kumar, R. Singh, B. Raj, and R. Stern, “Gammatone sub-band
magnitude-domain dereverberation for ASR,” in Proc. IEEE In-
ternational Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2011.

[5] N. Mohammadiha and S. Doclo, “Speech dereverberation using
non-negative convolutive transfer function and spectro-temporal
modeling,” IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing (TASLP), vol. 24, no. 2, pp. 276–289, 2016.

[6] N. Mohammadiha, P. Smaragdis, and S. Doclo, “Joint acous-
tic and spectral modeling for speech dereverberation using non-
negative representations,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2015.

[7] D. Baby, T. Virtanen, and J. F. Gemmeke, “Coupled dictionar-
ies for exemplar-based speech enhancement and automatic speech
recognition,” IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing (TASLP), vol. 23, no. 11, pp. 1788–1799, 2015.

[8] H. Kallasjoki, J. F. Gemmeke, K. J. Palomaki, A. V. Beeston, and
G. J. Brown, “Recognition of reverberant speech by missing data
imputation and NMF feature enhancement,” in Proc. REVERB
Workshop, May 2014.

[9] S. Mirsamadi and J. H. L. Hansen, “Multichannel speech dere-
verberation based on convolutive nonnegative tensor factoriza-
tion for ASR applications,” in Proc. Fifteenth Annual Conference
of the International Speech Communication Association (INTER-
SPEECH), 2014.

[10] D. Baby, “Non-negative sparse representations for speech en-
hancement and recognition,” Ph.D. dissertation, University of
Leuven, 2016.

[11] D. Baby and V. H. Hugo, “Joint denoising and dereverberation
using exemplar-based sparse representations and decaying norm
constraint,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 25, no. 10, pp. 2024–2035, 2017.

[12] N. Mohanan, R. Velmurugan, and P. Rao, “Speech dereverber-
ation using NMF with regularized room impulse response,” in
Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2017, pp. 4955–4959.

[13] M. Yu and F. K. Soong, “Speech dereverberation by constrained
and regularized multi-channel spectral decomposition: evaluated
on REVERB challenge,” in Proc. REVERB Workshop, May 2014.

[14] Y. Hu and P. C. Loizou, “Evaluation of objective quality measures
for speech enhancement,” IEEE Transactions on audio, speech,
and language processing, vol. 16, no. 1, pp. 229–238, 2008.

[15] T. H. Falk, C. Zheng, and W.-Y. Chan, “A non-intrusive qual-
ity and intelligibility measure of reverberant and dereverberated
speech,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 18, no. 7, pp. 1766–1774, 2010.

[16] J. Y. Wen, E. A. Habets, and P. A. Naylor, “Blind estimation of
reverberation time based on the distribution of signal decay rates,”
in Acoustics, Speech and Signal Processing, 2008. ICASSP 2008.
IEEE International Conference on. IEEE, 2008, pp. 329–332.
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