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Abstract—Reading skill is a critical component of basic lit-
eracy. We aim to develop an automated system to assess oral
reading skills of primary school children (learning English as a
second language) that could eventually be valuable in the scenario
of teacher shortage typical of rural areas in the country. This
work focuses on the rating of prosody, an important aspect of
fluency in speech delivery. In particular, a system for the detection
of word prominence based on prosodic features is presented
and tested on real-world data marked by background noise
typical of the school setting. To counteract the observed drop
in prominence classification accuracy, two distinct approaches
to noisy speech enhancement are evaluated for various types of
background noise. A recently proposed Generative Adversarial
Network(GAN) based method is found to be effective in achieving
noise suppression with low levels of speech distortion that min-
imally impact prosodic feature extraction. The implementation
and training of the GAN system is discussed and insights are
provided on its performance with reference to that of classical
spectral subtraction based enhancement.

Index Terms—Prosody, Prominence, Noisy Speech Enhance-
ment, Generative Adversarial Network(GAN)

I. INTRODUCTION

Reading is a major aspect of literacy skills. Proficient
reading skills help in a student’s long-term education and
further build confidence. As per reading research till date,
fluent reading is considered to comprise of word decoding
accuracy and prosody. Prosody is the supra-segmental aspect
of speech which also has linguistic functions. Speakers tend to
focus the listener’s attention on the most important parts of the
message through use of prosody [1] and is often essential in
order to resolve possible ambiguities in the meaning of some
utterances. Phrasing is mainly indicative of the ability of a
speaker to divide a sentence into meaningful chunks, while
prominence indicates the important words (usually words
containing new information) by giving special emphasis on
these words. In students’ reading evaluation task, proper use
of prominence acts as a cue to the student’s interpretation and
understanding of the text. This can thus help in the automatic
assessment of student’s comprehension [2].

Prominence is acoustically indicated through changes in
pitch, intensity and duration of the associated word, the
contribution of each of the attributes being dependent on the
language. Prominent words are perceived louder and higher-
pitched with syllable nucleus lengthening. Besides, [3] shows
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that there is some spectral tilt observed in words perceived
as prominent. There is a lot of research work on detecting
prominent words for automatic prominence annotation of tran-
scribed speech databases. Pitch and intensity contours change
in unexpected ways during the occurrence of prosodic event
and this unpredictability is used by [4] for prominent word
detection. RMS energy, RFC(rise-fall-connection) model of fO
contour, syllable nucleus duration and spectral emphasis in
0.5-2k band are considered promising features for prominence
of syllables [3]. Considering the fact that prominence also
depends on lexical content like type of word, lexical features
can accompany acoustic features [5]. Statistical model or
classifier approaches with supervised or unsupervised training
are commonly used. Typical unsupervised approach is used
with duration, intensity, spectral intensity and pitch patterns
as features for prominent word detection in Switchboard
telephonic corpus [6].

All the research work related to prominence detection till
date is focused on adult speech. Our work deals with students’
read speech. The task becomes difficult since the target class
is L2 language reading by young learners. We found in
our database that many students tend to give prominence to
function words too. This scenario reduces the importance of
lexical features. We therefore restrict ourselves to word-level
prosody features to estimate prominence.

For our students’ reading evaluation task, students of age
group 10-14 years are recorded as they read short English
stories. Their native language is a dialect of Marathi. We
can clearly observe the effect of native accent on their
English speaking styles. This forms a major challenge in
the automatic reading evaluation. Further, the scenario being
the school environment, around 80% of the data is found
to be noisy with major proportion being babble, rain, wind
and childPlaying. Babble and childPlaying are known to be
the most challenging noises comprising various sounds of
impulsive and non-stationary characteristics. The presence of
noise is expected to degrade the performance of the assessment
system. This problem underlines the need for good speech
enhancement system which will act as a preprocessing step for
the assessment task. The speech enhancement should ideally
obtain noise suppression with minimal speech distortion.

There are many speech enhancement techniques which may
or may not require prior noise estimates. Conventional meth-
ods rely on spectral subtraction, which uses local information
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to find the noise spectral estimate. The system performance
highly depends on way the noise has been estimated. Over es-
timation distorts the actual speech and under estimation retains
noise. Other classical techniques are Wiener filtering, subspace
based algorithms and statistical model-based methods. Neural
network based enhancement methods, especially the recurrent
neural network (RNN or LSTM) based denoising architecture,
are being adopted in recent days [7]. In [8], the noise estimates
are also concatenated with the input features of deep neural
network to improve the performance further. Current speech
enhancement techniques operate on the spectral domain and/or
exploit some higher-level feature [9]. Most of the methods
work on the short-time Fourier spectrum [10], where only
spectral magnitude is modified as it is often claimed that short-
time phase is not important for speech enhancement. However
recent studies [11] have shown that there is significant im-
provement in speech quality when clean phase spectrum is
available.

There has been a large increase in interest towards gen-
erative models recently. As the name suggests, these models
tend to create the data that is much similar to the data that
we provide to them. Generative Adversarial Network(GAN)
is considered as a breakthrough in the deep learning field. It
has done a wonderful job in the field of computer vision by
generating the most realistic images. GAN has been used for
speech enhancement, directly on the raw audio waveform [9].
The use of GAN-based enhancement has not been previously
investigated in the context of noisy speech recognition or
prosody detection however.

Studies related to prominence detection have typically been
restricted to clean speech datasets. Some noisy datasets have
been used with attention to developing noise-robust features
for prominence [6]. Some similar studies in emotion recog-
nition domain exploit multi-condition training [12] to obtain
better matching of input speech to the trained acoustic models.
However use of enhancement as pre-processing to prominence
detection has not been considered. In this paper, we perform
prominence classification on children’s read speech. We check
which features are used by the students in order to give
emphasis, if given at all. Noisy conditions are obtained by
artificially adding real noise of various types to clean data.
Finally, we check the effect of noise as well as that of speech
enhancement on prominence detection results.

Next section discusses the prominence detection system
used by us. Section 3 describes classical and GAN based
speech enhancement methods. Next, datasets and experiments
are presented followed by observations and discussion.

II. PROMINENCE CLASSIFIER

The overall system discussed is as shown in the Fig. 1.
The audio signal is passed through ASR to get word-level
alignments. The alignments are used to segment utterance into
words. Prosodic features are calculated for every word using
pitch, intensity and spectral balance contours. These prosodic
features are input to the prominence classifier which gives

binary output as to whether the word is prominent or non-
prominent. Further, in order to obtain possible improvements,
we try speech enhancement of the audio using one of the
enhancement techniques (GAN based method and classical
spectral subtraction based method).
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Fig. 1. System Block Diagram

Based on the previous work on prominence detection by
[6], [3], [5], [21], [22] we compute following features at word-
level:

o Average syllable duration, latency, subsequent pause
duration, flags indicating occurrence of pause (silence
greater than 150ms) before and after the word

o Spectral balance in sonorant band 0.3-2.3k, Spectral
energy in bands - 0-0.5K, 0.5-1K, 1-2K, 2-4K

« Short time energy statistics - Mean, min, max, span, stan-
dard deviation, median, RMS Energy on energy contour
evaluated at 10ms intervals. All are normalized by the
total energy of the utterance energy. Peak intensity is also
calculated in dB and normalized by subtracting the mean
intensity of utterance.

o Statistical features of pitch - Mean, min, max, span,
standard deviation, median. All are z-score normalized at
the utterance level. Pitch is computed using Praat toolkit
at 10ms hop duration.

o Correlation of pitch contour with ideal rise, fall, peak and
valley contours and with Gaussian contour of same length
and five different variances - 0.2,0.5,1.0,2.0,5.0

o Correlation of pitch contour in +/-1 word context with
ideal rise, fall, peak and valley contours of the same
length. Average pitch difference between the adjacent
words is also calculated.

Required word-level alignments are obtained on clean au-
dios through forced alignment with ground truth transcription
using ASR decoder [23], [24]. The same alignments are
used for extracting prosodic features of noisy and enhanced
data too. This will help us to study the performance of
prominence classification separately from the effect of noisy
speech alignment.

The Random Forest tree is found to give the best perfor-
mance for prominence classification in earlier works [5], [22].
Therefore, random forest tree from WEKA toolkit is used
as a prominence detection classifier. Classification training
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is supervised with two class labels, prominent and non-
prominent.

III. SPEECH ENHANCEMENT

A. Classical methods for speech enhancement

There are many speech enhancement methods which assume
that the prior estimate of noise is available, for instance,
it is crucial for Wiener filtering [13], for estimating noise
covariance matrix in the subspace algorithm [14]. The noise
estimates are generally calculated (or updated) in the silence
portion which further requires a voice-activity detection (VAD)
algorithm. These methods work well when noise is stationary,
but fail in more realistic environments (non-stationary noises).
Several noise-estimation algorithms have been proposed which
update the noise estimates continuously over time [15], [16],
[17], [18]. These algorithms propose a method for estimating
the noise spectrum based on tracking the minimum of the
noisy speech over a finite window. However, these methods are
sensitive to outliers and also the noise updates are dependent
on the length of the minimum-search window. For our analysis,
we have used [19] as the representative of classical methods,
whose algorithmic flow is:

o The smoothed power spectrum of noisy speech is com-

puted using the first-order recursive equation.

Finding the local minima for each bin of power spectrum

and updating it by continuously averaging past spectral

values.

o Computing the element wise ratio of power spectrum and
local minima estimate to find speech presence probability.
A varying threshold has been used to classify each of the
frequency bins into speech present/absent.

o Further smoothening of speech presence probability has
been done across time and frequency.

o The noise spectrum estimate is calculated using this
speech presence probability. And then enhanced signal
is obtained by subtracting the noise spectrum estimate
from original spectrum.

We have reproduced the results claimed by them using an
available implementation and the same have been used for
the comparison of results in our investigation. Next section
describes a more recent speech enhancement technique based
on Generative Adversarial Network (GAN).

B. Generative Adversarial network (GAN)

Deep learning generative models are considered most pow-
erful methods for machine learning. Generative Adversarial
Network is the extended version of it. It combines two neural
networks together and makes them compete against each other
so that they can train and improve themselves. It can also
be said that both neural networks complement each other by
sharing their knowledge to improve themselves. This gives
rise to a feedback loop of continuous improvements without
human intervention.

1) GAN training process: It can be thought of as a conven-
tional neural network training where G (the generative model)
tries to minimize the loss function emulated by D (the dis-
criminator model). Instead of relying on the conventional loss
functions whose minimization generally gives blurry results
[20], the loss function automatically gets learn satisfying a
high-level goal. The process of this adversarial training is
also called as a minimax game between G and D. Here,
the generative model (G) is trying to learn a mapping from
a prior distribution p,(z) (generally taken to be a random
distribution) to the data distribution pgqie(x), G : 2z — .
But, in the enhancement task we need a mapping from noisy
signal T to the clean signal x. To do so, conditional GAN
[20] is used where it learns the mapping from x. (it is a
compressed vector of noisy signal 7) and random noise vector
z,t0 &, G : {x¢ 2z} — x. GAN’s overall objective function is
generally defined by,
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Fig. 2. GAN training process [9]

Fig. 2 summarizes the entire training process. First, the D
network is trained via back-propagation using a batch of real
pair, composed of a noisy signal (Z) and a clean signal ().
Then, D back-props a batch of fake pair, composed of a noisy
signal () and an enhanced signal () that come from G, and
classifies them as fake. Finally, D’s parameters are frozen and
G back-props to make D mis-classify. Dashed lines represent
gradient back-propagation.

2) Network Architecture: The G network (in Fig. 2) is
similar to the encoder-decoder network. At the bridge point
the random noise vector z is concatenated. The encoder is
made fully convolutional so that there is no dense layer at
all. This enforces the network to focus on temporally-close
correlations in the input signal and throughout the whole
layering process [9]. There are additional connections between
the corresponding encoding and decoding layers similar to
U-Nets. Parametric ReLUs have been used as the activation
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function after each layer. The D network is similar to encoder
network of G, it is also fully convolutional.

IV. DATASET
A. Training Dataset

For the task, we have audio recordings of fluent students as
they read short stories in a relatively quiet room using voice
recording software on Android tablet at 16kHz sampling rate.
From these, 50 perceptually clean audio recordings with over
30dB estimated SNR were selected. All audio lengths vary
from 30 to 60 seconds. Some small noisy regions, if any, were
removed.

An expert rater (graduate in Linguistics) was asked to listen
to the audio recordings and label each of the words in the
recording as prominent or non-prominent. The word was to
be rated as prominent if rater feels that the student wants
to highlight the word as important. Final count of words in
the dataset is 5250 of which 1031 are prominent and 4219
are non-prominent. Expert ratings show that function words
(especially pronouns and some prepositions and conjunctions)
too are given prominence by students in many cases. This may
be due to the fact that the students are new to English language
and are not able to make distinction between important content
words and regular words during reading. This data is used for
training the prominence detection classifier. We found that the
rater was able to rate prominence with ~ 95% consistency in
artificial noisy situations obtained by adding realistic noise to
a 10-story sample of these stories. This means human rater is
comfortable with the data distortion even at 10dB SNR and
so should be our automated evaluation system.

B. Testing Dataset

We have recordings of students reading short stories in
karaoke form using LETS App [25] on Android tablet. These
recordings are in school environment and contain background
noise. A set of 40 relatively clean audio recordings has been
selected for testing. Some small noisy regions, if any, are
replaced with silent regions in the same recording. These are
divided into two sets of 20 stories, one set is used for training
enhancement network, while other is used as testing data.

Testing data is segmented into utterances. Each utterance is
labeled by rater for prominence at 3-point scale (no promi-
nence at all, some words prominent, but not as expected,
all and only the expected words are made prominent). The
expected prominent words are obtained from the narrator
audio of corresponding story on the LETS App. Only those
utterances which have been rated as 3 by the rater are selected
for prominence testing since we know exactly which word
was made prominent by the student. There are 50 utterances
comprising total 465 words (328 non-prominent and 137
prominent words) in the test data for the prominence classifier.

C. Noise Audios

Different instances of four noise types (rain, wind, babble,
childPlaying), comprising half hour each, were collected from
the internet [26], [27], [28], [29], [30] and our dataset. Each

noise type has its characteristic properties. Rain is broadband
with spectral characteristics similar to white noise. Babble
refer to the speech-like sounds from many distinct speakers
in the background. Wind noise is observed to have no har-
monicity, but is energetic. School noise is highly dynamic
with highly varying spectral characteristics. Babble and rain
are observed to be present over the complete recording. Wind
and childPlaying, on the other hand, are intermittent.

V. EXPERIMENTS

There are 12 different instances of each noise type of which
one is chosen randomly and a randomly selected segment from
that instance is added to the clean recordings of testing dataset
in sectionIV-B at 10dB and 20dB SNR. Noisy versions were
created for all the 20 clean recordings used for testing promi-
nence classifier. The desired 465 words are then extracted and
used for prominence testing. Therefore, we have 465 words
in total for every noisetype-SNR pair in test data. Further,
enhancement is also applied on these recordings and features
are extracted for the desired words.

For training speech enhancement system, noisy versions are
synthesized corresponding to the other set of testing dataset
in sectionlV-B of 20 relatively clean audio recordings by
adding noise instances, as discussed earlier, accounting for
around 10 hours of data. The enhancement task is acting as
a preprocessing step for prominence detection task, therefore
performance of enhancement task is analyzed through results
of prominence detection.

The GAN network implementation is taken from SEGAN
[9] and has been trained using the noisy data and their
corresponding clean versions. It has been trained for around 50
epochs with RMSprop and learning rate of 0.0002, using batch
size of 400. A chunk of waveforms with a sliding window of
length one second (16384 samples) with 50% overlapping is
used while training. But during testing, the overlap is taken to
be zero. For both training and testing, a pre-emphasis filter of
coefficient 0.95 is applied to all input samples (during testing,
output is correspondingly deemphasized) [9].

We tested it for a noisy audio, and found that it completely
removes the noise in the silence portion, but in the speech
portion it is slightly distorting the true speech also. We ob-
served that the training data has lot of silence portion. Because
of this, the Discriminator network might be distinguishing
the clean and noisy utterances based only on the silence
content. It may not be able to focus on the noise content
in the speech portion. So, we reduced the silence portion in
the training data using the available silence locations for the
audios. After training GAN with the modified training data,
we can observe significant improvement in the speech quality
via noise reduction in the speech part in addition to the silence
part.

For classical method, we have used the same parameter
settings as in [19]. We had also generated some of the results
claimed by them on our dataset using the same parameter
settings.
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The prominence detection classifier is trained on clean data.
Testing is performed in four scenarios — clean data, noisy data
with four noise types, noisy data enhanced by GAN method
and by classical method.

VI. RESULTS AND DISCUSSION

Fig. 3 shows the audio waveform, spectrogram and pitch
contour of clean, noisy and both the enhanced versions of
a typical audio. We can see that GAN performs really well
as compared to the classical method. The pitch is nicely
recovered which is crucial for the prosody assessment task.
Prominence detection classifier performance is evaluated in

clean

noisy

GAN

Fig. 3. Waveform, spectrogram and pitch (blue contours) of clean, noisy and
enhanced versions of an audio

terms of equal error rate (EER). Table I shows EER values (in
%) in different test conditions. Training and testing on clean
gives area under the RoC curve 0.794 at 65% precision and
70% recall at EER (equal error rate). When the noisy data is

TABLE I
EQUAL ERROR RATE (EER) (IN %) FOR PROMINENCE DETECTION
CLASSIFIER IN DIFFERENT TEST CONDITIONS (EER=28.3% FOR CLEAN
TEST DATA) WHEN WORD-BOUNDARIES FROM FORCED ALIGNMENT ON
CLEAN DATA ARE USED

Noisy GAN Classical
10dB | 20dB | 10dB | 20dB | 10dB | 20dB
rain 30.2 29 28.6 29 31 29.3
wind 29.6 29.2 29.2 28.6 30 29
babble 31.1 28.9 30.7 30.2 28 28.9
childPlaying | 31.7 30.5 29.2 29 29.9 31.1
white 332 32 32.6 31.1 29.3 32.6

fed to the prominence classifier, the performance degrades as
can be seen from the table 1. Irrespective of the noise type, the
degradation is more in 10dB than 20dB. Degradation observed
is more on babble and childPlaying noise types as is evident
from the dynamic nature of these noise types. Further babble
20dB is less affected than 10dB. However, childPlaying is
always affected. GAN has performed well on childPlaying
noise at 10dB too.

We can see that enhancement using GAN improves the
performance significantly (1%) for 20dB SNR conditions with
slight improvement in 10dB SNR. Classical method performed
badly compared to GAN based method on all the noises
especially 20dB. This might be the case since classical method
subtracts local minima, thus overestimating noise in high SNR
cases. Performance has significantly improved for babble and
white noise in 10dB case, where noise estimate gets evaluated
properly. The degradation in performance is especially because
pitch contour does not get evaluated properly for audios
enhanced using classical method, as evident from Fig. 3. GAN,
on the other hand, tends to maintain the pitch contour intact.

TABLE II
EQUAL ERROR RATE (EER) (IN %) FOR PROMINENCE DETECTION
CLASSIFIER IN DIFFERENT TEST CONDITIONS (EER=28.3% FOR CLEAN
TEST DATA) WHEN THE WORD-BOUNDARIES ARE OBTAINED FROM
FORCED ALIGNMENT ON THE TEST DATA

Noisy GAN Classical
10dB | 20dB | 10dB | 20dB | 10dB | 20dB
rain 31.7 30.5 26.5 28.3 29.9 28.7
wind 32.6 29.6 28.3 28.9 28.7 26.5
babble 28.9 28.6 29.3 26.8 314 29.7
childPlaying | 33.2 28.3 28.9 28.3 29.8 28.7
white 29 29 29.6 29.6 31.1 28

Table II shows the EER values when word-level alignments
used for obtaining the prosodic features are obtained by force
aligning the test audio itself instead of using the alignments
from clean audio. This is more general case since we won’t
have clean versions available for actual noisy data. We see that
classical method performs better compared to noisy version in
this case, but GAN based method outperforms. The results
are found to be even better than when alignments from
clean version of the data were used. This may be because
enhancement introduces the wrong pitch values at the word-
silence junctures. These are getting avoided through new word
alignment and hence the word-level prosodic features are
improving. However, in case of babble, performance degrades
after enhancement. This is unusual and needs further investi-
gation. Similar trend has been observed in case of white noise,
which may be because pitch is less affected by white noise.

The overall results show that GAN based enhancement is
suitable for prominence detection on noisy data. We further
want to improve the prosodic features in order to get bet-
ter prominence detection rate. Even in GAN based method,
the performance does not reach performance of clean test
data. Some cases of failure involve errors in pitch tracking
especially at the juncture of word and silence. Since pitch is
very important feature in prominence detection, pitch tracking
algorithm should be robust to noise and enhancement. Training
on the enhanced data instead of clean data needs to be
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