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ABSTRACT

The detection of perceived prominence in speech has attracted ap-
proaches ranging from the design of knowledge-based linguistic and
acoustic features to the automatic feature learning from supraseg-
mental attributes such as pitch and intensity contours. We present
here, in contrast, a system that operates directly on segmented speech
waveforms to learn features relevant to prominent word detection
for children’s oral fluency assessment. The chosen CRNN (con-
volutional recurrent neural network) framework, incorporating both
word-level features and sequence information, is found to benefit
from the perceptually motivated SincNet filters as the first convolu-
tional layer. We further explore the benefits of the linguistic associa-
tion between the prosodic events of phrase boundary and prominence
with different multi-task architectures. Surpassing the previously re-
ported performance on the same dataset of a random forest ensemble
predictor trained on carefully chosen hand-crafted acoustic features,
we evaluate further the possibly complementary information from
hand-crafted acoustic and pre-trained lexical features.

Index Terms— prosody, word prominence, waveform-based
learning, end-to-end training, multi-task learning

1. INTRODUCTION

The prosodic structure of speech carries important information in
terms of the syntax and the meaning, both of which are critical to
a listener’s ease of comprehension of the spoken message [1, 2, 3].
Phrase boundaries embed sentence syntax through word grouping
while prominence or emphasis on specific words signals new infor-
mation or highlights a contrast. Given their importance in applica-
tions requiring speech understanding such as scoring of spoken lan-
guage fluency and text-to-speech synthesis, the automatic detection
of perceived prominence and phrase boundary has attracted contin-
uous research efforts. Prominence or word stress, the focus of the
current work, has proved more challenging of the two.

Prominence is perceived by a listener when a word stands out
of its local context in one or more of the suprasegmental attributes
such as duration, F0, intensity and spectral shape [4]. The local
context itself refers to the phones and syllables within the word as
well as a neighborhood of up to several words. Prosody perception,
however, is influenced not only by the low-level acoustic cues but
also top-down expectations from lexico-syntactic information [5, 6].
The precise combination and relative importance of the cues depends
on the speaker, language and speaking style as also on the listener.
Traditionally, various aggregates of the sampled acoustic parameters
across the word segment including mean and variance, contour shape
descriptors, and differences in these quantities across neighboring
words comprise word-level prosodic features [7, 8]. These features
are then used to train a conventional supervised classifier for the au-
tomatic detection, possibly in combination with lexico-syntactic in-
formation [9, 10]. In our own recent work motivated by a children’s

oral reading assessment application, we used feature selection on a
large set of features, computed across the distinct suprasegmental
attributes of speech, in a random forest ensemble predictor to de-
rive a compact set of interpretable features for speaker-independent
boundary and prominence detection [11]. It was observed that apart
from the expected pitch, duration and intensity based aggregates, the
acoustic cues to prominence included a number of spectral shape
functionals while the phrase boundary prediction was dominated by
pause based features. With the search space for such ‘hand-crafted’
features being very large, however, the process can miss potentially
important features. Further, the pre-selected context windows used
in such analyses make it difficult to exploit the long and variable
time scale of prosodic relationships across an utterance in any com-
prehensive manner. The potential for deep learning solutions has
therefore been recognized for some time but incorporated success-
fully in the prominence detection task only more recently, as briefly
reviewed next.

Rosenberg et al. [12] used a large number of acoustic-prosodic
features and aggregates at word level derived from their previous Au-
ToBI work [7, 13] in a BiRNN classifier where the word sequence
context was learned over that explicitly provided in the feature vec-
tor. They observed a small improvement (< 1% absolute) in bound-
ary and pitch accent detection over a baseline conditional random
forest classifier. Wu et al. [14] also used similar aggregated acoustic
features with an LSTM to find an improvement over the use of an
SVM classifier. Lin et al. [15] used a hierarchical BLSTM network
to aggregate features across phone, syllable and word to model con-
textual information at multiple granularities. As opposed to mod-
elling each task separately, joint detection of boundary and promi-
nence was found to improve the F1-score by 2%.

In a departure from the above pre-computed word-level features,
Stehwien et al. [16, 17] used CNN on sampled acoustic parameters
(energy, F0, loudness, voicing probability, zero crossing rate and
harmonic-to-noise ratio) together with a context window of two
neighbouring words to optimally learn the word-level aggregated
features. The max-pooled CNN feature maps are directly classified
with a softmax layer. With word position indicators provided in the
input segment, they report an improvement of 1-3% absolute over
Rosenberg [7] on lexical stress and phrase boundary detection on
the BURNC corpus, with speaker-independent scenarios being more
challenging. Both local acoustic features and longer, more global
contexts spanning several words and possibly different sentences
across the utterance are important in the perception of prominence.
Hence, architectures combining low-level feature aggregation with
sequence models were realized with the same contour-learned fea-
tures input to an LSTM classification layer. A multi-channel CNN
for low-level feature extraction, combined with a bidirectional-
LSTM for capturing longer context, outperformed a feedforward
DNN by 22% (F1-score) [18].

Feature learning via end-to-end neural network systems trained
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on speech waveforms is being increasingly viewed as the optimal
approach to complex classification tasks [19, 20, 21]. Such sys-
tems have achieved performances close to, but not always exceed-
ing, those of classifiers with task-specific hand-crafted features. This
hints at a need for the introduction of reasonable constraints, or ad-
ditional information, in the network architectures especially in the
widely encountered data-constrained scenarios. In this work, we
explore precisely such variations for the prominence detection task
from segmented speech waveforms starting from a straightforward
CRNN model. This is the first case of prosodic event detection from
speech waveforms that we are aware of.

The first variation involves replacing the CNN layer at the in-
put with bandpass constrained, but tunable, filters motivated by the
traditionally used Mel filterbanks emulating the low-level auditory
processing [20]. SincNet has been applied in frame-level speaker
identification where its hyperparameters have been found to be crit-
ical, although sometimes counter-intuitive, to achieved task accu-
racy [22]. Next, we try to exploit the linguistic association between
phrase boundaries and prominent words with multi-task learning.
The presence of phrase-finality increases the perceived prominence
of the word [23, 24] and can potentially contribute to the feature
representation for prominence. Recent work on the joint prediction
of boundary and prominence is promising, with the boundary pre-
dictions computed from the final layer output of a 3-layer BLSTM
network while prominence predictions are made at the penultimate
layer [15]. In another attempt, prosodic event classification is viewed
as a 4-class problem [25]. Developing the above theme further, we
explore alternate multi-task architectures for prominence detection
that incorporate information about the (typically more reliably pre-
dicted) phrase boundary status of the word in distinct ways.

Our performance baseline is previous work on the same dataset
and task in which a random forest ensemble predictor uses highly
tuned hand-crafted features [11]. We also examine the possibly com-
plementary information of the hand-crafted features. Finally, given
the importance of lexical information in prominence detection [26,
27], we report the combination with pre-trained word embeddings.

2. DATASET AND TASK

The children’s oral reading dataset used in this work comprises
recordings of grade-appropriate text read aloud by selected middle
school students with reasonable word decoding ability in English (as
second language) but widely varying levels of prosodic skill [11].
The individual utterances are story paragraphs comprising between
50-70 words, each word labeled separately for the presence/absence
of prominence and phrase boundary by 7 naive listeners using the
RPT methodology [28]. This is reduced to a net rating per word
based on number of votes (out of 7), further scaled down to range
0-1, to obtain the ‘degree’ of prominence (boundary) per word. The
dataset contains 41,286 words across 790 utterances by 35 speakers,
recorded at 16 kHz sampling rate. The utterances are available seg-
mented at word level by forced alignment with the manual transcript.

The waveform for each segmented word is padded to the max-
imum size in the dataset, which is approximately 1.79 seconds (or
28,660 samples). A silent pause before the word (with duration lim-
ited to 500 ms if higher) is included in the waveform segment. The
dataset is split into three equal folds with no speaker overlap for 3-
fold cross-validation based testing. The hyperparameters are tuned
with 4-fold CV on the train split. The 4 trained models are used for
inference and their predictions are averaged to generate results on
the corresponding unseen test set. The results for the prominence
degree prediction are reported in terms of Pearson correlation be-
tween the predicted output and the degree of prominence from the

Fig. 1. CNN component of the model, where the first layer is re-
placed with a Sinc layer.

RPT rater votes which serves as ground truth. We report the mean
Pearson correlation and the standard deviation across the three test
folds.

3. MODEL

The input to our prominent word detection network is the sequence
of word-level waveform segments. We build up our model from a
basic CRNN operating on waveform segments to more complex ar-
chitectures that incorporate additional information.

3.1. Waveform CRNN

As the name suggests, CRNN consists of a convolutional neural
network, followed by a recurrent neural network. The CNN lay-
ers output a fixed-dimensional feature embedding, while the RNN
processes the sequence of embeddings. As in some recent high-level
speech classification systems, our CNN is composed of multiple lay-
ers, where each layer consists of 1D convolution with batch normal-
ization, ReLU activation and max pooling [19]. After N CNN lay-
ers (where N is a hyperparameter), the CNN output is max-pooled
across time to get a fixed dimensional embedding for each word.

With a motivation to improve the input representation with
meaningful parameter constraints in the first convolutional layer, we
experiment with Sinc filters as shown in Figure 1. The constrained
band-pass Sinc filters are expected to not only improve performance
but also speed up training. The hyperparameters of the Sinc layer
(number of filters, window width and stride) are tuned on the data
and task.

Prominent words stand out through the acoustic changes in the
local context [29]. Prominence detection systems typically include
the context explicitly during the feature extraction. In deep learn-
ing, the word context that is critical in speech prosody perception
is modelled by the sequence classifier GRU. The relevant local con-
text is therefore learned from the sequence of words spanning the
entire utterance. At each time step, the GRU takes as input a fixed-
dimensional vector corresponding to each word. This vector could
be the acoustic embedding extracted from the CNN, word-level fea-
tures such as lexical features or a concatenation of the two. The
output of the, possibly bidirectional, GRU at each time step is fed
to a dense network consisting of two fully-connected (FC) layers.
The first FC layer, consisting of 128 neurons, is followed by ReLU
activation and a dropout layer. The second FC layer has one neu-
ron, followed by Sigmoid activation to get the final score. Mean
Squared Error (MSE) between model prediction and ground truth is
minimised.



Fig. 2. MTL architectures: (a) Sharing paradigm in which a common
CNN feature extractor is followed by separate GRU heads for pre-
diction of prominence (P) and boundary (B). (b) Conditioned MTL
with separate CNNs for P and B predictions. (c) Shared CNN com-
bined with conditioning by boundary prediction. (d) Conditioned
MTL with only the Sinc layer shared. Note that ⊕ denotes concate-
nation. GRU blocks also include two fully-connected layers at the
output for final prediction as discussed in Section 3.1

3.2. Multi-task learning extension

As discussed in Section 1, phrase boundary detection is a closely
related task which can bring in complementary information to boost
the prominence prediction performance. Given the different ways
in which the relevant auxiliary task can be incorporated in the train-
ing, we experiment with two distinct multi-task learning (MTL)
paradigms: parameter sharing and conditioning [30].

In parameter sharing, the two tasks share the initial feature ex-
traction through shared CNN layers, while the subsequent layers
(GRU and Dense) responsible for the final classification are differ-
ent, as depicted in Figure 2(a). This sharing of parameters at the
feature extraction stage prevents overfitting and hence improves gen-
eralisation. On the other hand, in conditioned MTL, we have a sepa-
rate network branch for each task with the final boundary prediction
provided as an additional input to the GRU of the prominence pre-
diction task. In this case, the CNN feature extractor can be shared
(Figure 2(b)) or separate (Figure 2(c)). Based on an understanding
of the role played by the Sinc layer in emulating low level auditory
feature extraction, we explore a new architecture in which the Sinc
layer is shared across the two tasks but the subsequent CNN, GRU
and Dense layers are separate, as in Figure 2(d).

For MTL, the final loss is a convex combination of the promi-
nence MSE loss (Lprominence) and phrase boundary MSE loss
(Lboundary) i.e.

Ltotal = αLprominence + (1− α)Lboundary (1)

where α is a hyperparameter which controls the trade-off between
performance on the main task and the auxiliary task. For the single-
task experiments, α = 1.

3.3. Hyperparameters

The hyperparameters for the basic CNN model are tuned for per-
formance on the validation set. These were varied in the following
ranges: number of layers, N (2-8), number of filters (16-128), CNN
kernel width (7-151), pooling width (2-4) and stride (1 and 2). We
found the optimal configuration to be: 4 layers, each consisting of
32 filters of kernel width 51, stride 1 and max pooling with kernel
size of 3.

For the GRU, it was found that a 3-layer, 256-dimensional bidi-
rectional GRU with dropout of 0.5 at each hidden layer consistently

Table 1. Performance of different architectures in single-task learn-
ing. A34 refers to the 34 hand-crafted features of [11]. Number of
filters in all CNN and Sinc layers is 32 while pool size is 3. For lay-
ers 2, 3 and 4, the hyperparameters are fixed as in Section 3.3 while
Layer 1 variations are reported here in terms of Pearson correlation
(s.d. < 0.01).

No. Input Acoustic Layer 1 Pearson
model (type, width, stride) correl.

1. A34 RFC - 0.696
2. A34 GRU - 0.726
3. Wav CRNN Standard, 51, 1 0.692
4. Wav CRNN Sinc, 51, 1 0.712
5. Wav CRNN Sinc, 31, 2 0.721

6. A34 +
Wav CRNN Sinc, 31, 2 0.735

gave the best performance. The hyperparameters of the GRU and the
subsequent FC layers are fixed for all experiments.

For training, Adam [31] optimizer is used with a learning rate of
0.001. Batch size is set to 64 and the model is trained on a single
NVIDIA GeForce GTX 1080. Early stopping is used on the valida-
tion set with patience set to 12 epochs. A single round of training
and evaluation on our dataset took about 6 hours.

4. EXPERIMENTS

Prominence prediction is evaluated at the word level via its correla-
tion with the ground-truth degree of prominence. We report here the
test data performances for the different models in terms of the mean
(all standard deviations were found to be less than 0.01) across the 3
test folds discussed in Section 2.

4.1. Single-task architectures

We start with reporting the performance of the baseline system that
uses a set of 34 word-level acoustic-prosodic features computed on
the acoustic contours of pitch, intensity and spectral shape versus
time as well as various segmental durations including pauses. The
final set of 34 features (termed ‘A34’ here) is eventually obtained by
two stages of feature selection in a random forest ensemble predic-
tor [11]. We also test the same A34 set of features with a bidirec-
tional GRU classifier to study whether the implicit ‘learning’ of word
context can bring benefits. The results appear in Table 1. We note
that the performance shows a clear improvement with the sequence
classifier, indicating the value of learned context over that explicitly
represented within the A34 feature computations.

Next, we evaluate the performance of our CRNN model operat-
ing directly on the speech waveform. We note, from Table 1, a rise
in the Pearson correlation with the Sinc layer replacing the (uncon-
strained) first convolutional layer but keeping the number of filters
and filter widths and stride unchanged. A reduction of the Sinc filter
widths to 31 samples (2 ms) gave a further improvement, especially
when the stride was concurrently changed to 2 samples from 1 sam-
ple. This is consistent with the observations of previous work that
smaller filter widths in the Sinc layer are superior in the context of
speaker recognition [22]. While this seems counter-intuitive given
that auditory filter impulse responses at lower centre frequencies are
of duration well over 10 ms, the reduced frequency resolution due to
the apparent truncation does not seem to harm the performance. It is
also possible that the slightly higher stride (2 samples) helps to coun-
teract the shortened filter widths to some extent. It is encouraging
to see that the gap between waveform-learned and the hand-crafted
A34 features almost closing with this tuned Sinc version. To check



Table 2. Performance of various multi-task learning architectures
and additional features. (Pearson correlation s.d. < 0.01)

No. MTL variant Pearson
and additional features correl.

1. Tuned Sinc (without MTL) 0.721
2. Fig 2(a) 0.726
3. Fig 2(b) 0.727
4. Fig 2(c) 0.724
5. Fig 2(d) 0.740
6. Fig 2(d) + A34/A27 0.757
7. Fig 2(d) + A34/A27 + GloVe 0.813

for any complementarity in the two representations, we concatenate
the A34 features with the 32-dimensional CNN embedding in the fi-
nal column of the table to obtain a performance that exceeds that of
either. However, ablation studies involving different suprasegmen-
tal attributes underlying the A34 features did not reveal any specific
contribution as dominant. This indicates the future potential for bet-
ter waveform-based feature learning, possibly with a larger training
dataset.

4.2. Multi-task architectures

The MTL experiments reported in Table 2 were carried out after first
tuning α. After a preliminary grid search, we found that the best
performance across configurations is obtained when α is set to 0.95
in equation 1 (after scaling the MSE of each to bring them into the
same range). From the correlations reported in Table 2, we note that
neither of conditioning or shared CNN layers is better than the other.
There is no clear improvement over single-task learning seen either.
On the other hand, an increase in performance is seen with condi-
tioned MTL when only the Sinc layer is shared and the other CNN
layers remain task-dependent. This is consistent with our expec-
tation that the lowest level features extracted from the input wave-
form correspond to the basic suprasegmental attributes fundamental
to all prosodic event detection. Therefore the parameters of the con-
strained convolutional layer, that is the Sinc layer, get better tuned in
the multi-task set-up.

In row 6 of Table 2, we report performance on the concatenation
of the hand-crafted acoustic features with the generated CNN em-
beddings at the GRU input. Similar to the A34 features for promi-
nence, A27 refers to an optimal set of 27 word-level hand-crafted
features for the task of boundary prediction obtained in [11]. We
expect the boundary task to benefit from the hand-crafted bound-
ary detection features (A27) and therefore influence the prominence
prediction performance. The observed improvement in performance
confirms the presence of complementary acoustic information not
captured by the purely waveform-based architecture.

4.3. Incorporating lexical features

Prominence is linked to the text syntax and semantics with content
words such as proper nouns expected to receive prominence most of
the time, followed by adjectives, nouns, adverbs, and verbs respec-
tively [6]. Lexical features in the form of GloVe embeddings can
implicitly capture such parts-of-speech information and have been
found to help in the context of prosodic event detection [27]. To
explore the usefulness of lexical information for our task, we test
two popular word embeddings: GloVe [32] and BERT [33]. In
the present work, we extract 100-dimensional GloVe embeddings
pre-trained on Wikipedia using the gensim package. The embed-
ding is passed through a dropout layer followed by a linear layer
whose dimension is a hyperparameter [27]. After tuning, we found

that a dropout layer of probability 0.3 and a fully-connected layer
of dimension 300 gave the best performance. Although BERT has
replaced GloVe embeddings in a wide variety of NLP tasks and
demonstrated good performance for prominence detection [26], it
did not give any clear improvement over GloVe in our task. This
could be attributed to very simple story texts without semantic ambi-
guities that may benefit from contextualized embeddings. We note a
big jump in performance in the final row of Table 2 where the GloVe
features are concatenated with the corresponding CNN embedding
and hand-crafted features in each branch of the best MTL model,
emphasising the importance of lexical features. Although this is at
odds with the expectation that beginning readers do not necessarily
realize prominence correctly, it supports the important role of the
top-down expectations in raters’ perceptions.

5. CONCLUSIONS

In this paper, we attempt to replace hand-engineered features for
prominent word detection with deep learning models operating on
the speech waveform. Our results indicate that it is challenging to
surpass the performance of hand-crafted features computed from
across the prior extracted suprasegmental contours of speech es-
sential to prosody realization, at least with moderate sized training
datasets. However, some human speech and audition motivated con-
straints such as Sinc based convolution at the lowest feature extrac-
tion stage can improve the performance of deep learning models.
The optimal hyperparameters for the Sinc filters turned out to corre-
spond to low strides and low widths (high time resolution and low
frequency resolution), confirming previous findings in the speaker
identification context. Hand-crafted features further enhance the per-
formance, indicating opportunities for further careful constraining
and tuning of the deep learning models.

The use of boundary event labeled speech seems to aid the task
of prominent word detection, as expected from the linguistic and
acoustic association between the two. A multi-task architecture in
which prominence prediction is conditioned on the concurrently pre-
dicted boundary and where the Sinc convolution filters are shared
across the two tasks obtained the best performance. Finally, we
investigate the contribution of pre-trained lexical embeddings to
prominence prediction to find a large increase in the performance.
This indicates that the lexical identity of words guides the top-down
expectations of raters, even in the case of not-so-proficient beginning
readers.

Although demonstrated on a children’s speech dataset, the pro-
posed methods are applicable more generally to any prominent word
detection problem. In future work, we plan to explore more sophis-
ticated CNN architectures, attention-based sequence modelling for
better context representation and alternate methods to fuse acoustic
and lexical information.
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