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Abstract
While the idea of task arithmetic has been shown to be use-
ful to steer the behaviour of neural models for NLP and vision
tasks, it has not yet been used for speech. Moreover the tasks
studied have been restricted to text classification and generation,
and image classification. We extend the idea of task vectors to
emotional speech synthesis in this work. We build emotion vec-
tors by subtracting the weights of a pre-trained model from the
weights of the same model after fine-tuning for a given emotion.
These emotion vectors can be modified or combined through
arithmetic operations such as negation and addition, with the
hope of steering the behaviour of the resulting model accord-
ingly in the generation of emotional speech. We also show that
the emotion vector can achieve the desired transfer of emotion
to a speaker not seen during training.
Index Terms: speech synthesis, emotions, task arithmetic

1. Introduction
Recent work has demonstrated that neural networks can be
modified by interpolating between parameters of fine-tuned
models, a technique known as task arithmetic [1]. Most studies
focus on text and image modalities, but the effectiveness of
task arithmetic for speech-based models is yet to be evaluated
[2]. In this study, we show that weight-space interpolation can
effectively modify the behaviour of text-to-speech systems in
terms of generated speech emotion. We introduce emotion vec-
tors, an extension of task vectors. These emotion vectors can be
scaled to vary the intensity of the generated emotion, negated
to express opposite emotions, combined to generate complex
emotions, and transferred to speakers without emotional data.

While current text-to-speech (TTS) systems have achieved
human-level naturalness, synthesizing emotionally expressive
speech poses a challenging problem due to the complex spec-
trum of emotions. Each sentence can be spoken with one or
multiple emotions by adjusting certain prosodic features of the
speech [3]. The emotions we convey can vary in intensity, be
discrete, or even a mixture at times. Consequently, obtaining
annotated data for multiple emotions is a difficult and ambigu-
ous task. This motivates the use of a predefined structured
model of emotions, such as Plutchik’s model [4]. Plutchik pro-
posed eight primary emotions that combine to form complex
emotions. These primary emotions can vary in intensity, re-
sulting in a wide range of different emotions. We apply these
principles to emotion vectors to generate the desired emotional
speech.

Existing emotional TTS models use discrete emotion labels
[5], textual prompts [6], or continuous emotion dimensions like
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Figure 1: Valence (v), arousal (a), and dominance (d) values
of 300 speech samples from the ground truth neutral, happy,
angry, and sad splits. This plot will serve as a reference for
interpreting trends of v, a, and d values in generated speech.

valence (the pleasantness of a stimulus), arousal (the intensity
of emotion provoked by a stimulus), and dominance (the
degree of control exerted by a stimulus) [7]. Utilizing discrete
emotion labels limits the model’s ability to synthesize complex
emotions. Acquiring textual prompts with emotional data is
costly and often unavailable for most languages. Mapping
between valence, arousal, and dominance values for complex
emotions can be challenging and requires domain knowledge.
Some previous studies rely on the structural model of emotions
to synthesize emotional speech [8, 9]. These studies employ
rank-based methods or emotion-embedding conditioning to
adjust the intensity of emotions or generate speech with a
mixture of emotions. More recently, emotionally separable
prosody embeddings were proposed, along with manipulating
these embeddings according to Plutchik’s model to generate a
wider range of emotions [10].

We present a novel approach to control the behaviour of
speech-synthesis models to exhibit varying emotions. We em-
ploy the expressive TTS dataset known as Storynory [11] to
train a variational autoencoder-based TTS system (VITS) [12].
This model is referred to as the pretrained model. We proceed
to fine-tune the pretrained TTS model independently for each
emotion, thereby creating a finetuned model for each emotion.
By subtracting the weights of the pretrained model from the
finetuned model, we obtain emotion vectors. These vectors are
then utilized in various operations during inference time in or-
der to generate emotional speech. Our contributions are:

1. Proposing emotion vectors as a simple, efficient, and effec-
tive method for controllable emotional speech synthesis1.

1Code and samples: https://tinyurl.com/hnmz987n
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Figure 2: Difference in v,a,d values between speech from fine-
tuned models for each emotion and ground truth neutral speech
samples. The distribution of these differences follows the same
trend for each emotion as depicted in Figure 1.

2. Application of emotion vectors to vary the intensity of emo-
tions, negation, combination, and transferring emotions to an
unseen speaker during inference.

2. Methodology
2.1. Dataset

All experiments used the Storynory dataset, a TTS dataset with
32 hours of expressive speech from children’s storytelling. The
TTS system was trained on the entire dataset to get a pretrained
model. This pretrained model was then fine-tuned for each
emotion. Emotion labels for the dataset were determined
using a speech emotion classifier [13]. The classifier assigns
a probability to each emotion (neutral, happy, anger, sad,
surprise, fear, disgusted), with the highest probability emotion
being the label for each speech segment. Only the emotions
Happy, Sad, and Anger had more than 2 hours of speech after
labelling. Therefore, speech samples (utterances) with these
emotions were selected and filtered to retain only samples with
high-confidence labels. For the Angry emotion, a threshold of
0.95 was chosen on the probability produced by the emotion
classifier. Out of the 1569 angry samples, 1402 were used as
the train set, 67 as the validation set, and 100 as the test set.
The Happy and Sad emotions had around 10 hours of speech
before filtering. These speech samples were initially passed
through a three-dimensional emotion recognition model (VAD)
[14], which predicted valence (v), arousal (a), and dominance
(d) for each speech sample. Subsequent filtering based on these
values for both Happy and Sad emotions resulted in 2 hours of
high-quality speech. The train-validation-test split for Happy
was 837, 33, and 100 samples respectively, and for Sad it was
1252, 105, and 100 samples, respectively. The speech emotion
classifier categorized around 1 hour of data as Neutral. This
data was further filtered using the probability score (> 0.95)
and duration (> 3 sec). The neutral data is used for evaluation
along with the 300 samples reserved for the test set and 69 for
the validation set.

2.2. Emotion vectors

We utilize VITS as the underlying architecture to perform all
our experiments. The model is trained on the Storynory dataset
for 180K steps and is considered to be our pretrained model.
We further fine-tune all parameters of the pretrained model for
each emotion for an additional 25k steps to acquire the finetuned
models. By subtracting the weights of the pretrained model
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Figure 3: Comparison of v, a, d and values of the speech gener-
ated by θe and the corresponding speech generated by θ̃e, w.r.t.
ground truth samples. The distribution of difference values for
θ̃e exhibits a similar pattern to the emotion that is opposite to e.

from the fine-tuned model for a specific emotion, we obtain the
emotion vector2 for that emotion. Let θpre ∈ Rd denote the
weights of the pretrained model and θe ∈ Rd be the weights
of the model after fine-tuning on emotion e. The emotion vec-
tor ϕe ∈ Rd is obtained by element-wise difference between θe

and θpre, i.e., ϕe = θe − θpre. These emotion vectors can be
applied to any model parameters θ via element-wise addition,
with an optional scaling factor α to get the resultant model as
θnew = θ + αϕe. When α = 1, the resultant model is one
that is fine-tuned on that emotion. These emotion vectors are
used to perform various arithmetic operations as detailed in the
subsequent sections.

3. Experiments and Results
We conduct three experiments using the emotion vectors. The
selection of α for each experiment is such that the Word Error
Rate (WER) of the generated speech of sentences from the eval-
uation set w.r.t. the ground truth transcript is less than 0.3.

1. Emotion negation.
Plutchik’s model postulates that each primary emotion has
an opposite counterpart. We exploit this insight to generate
speech expressing sadness using the happiness emotion
vector, and pleasant speech using the angry emotion vector.
Let θ̃e be the weights of the model for the opposite emotion
of e, then θ̃e = θpre − αϕe. We chose α as 0.35 for all
emotion vectors.

2. Varying emotion intensity.
To vary the intensity of each emotion, we modify the
scaling factor (α). Let θαe denote the parameters of a model
that generates speech in emotion e with intensity α, then
θαe = θpre + αϕe.

3. Transfer to Unseen Speakers.
We add ϕe to the VITS model trained on the LJSpeech dataset
[15] (neutral speech) to generate speech in emotion e. Let
θljspre denote VITS trained only on LJSpeech, and θljse denote
VITS (corresponding to LJSpeech speaker) that can generate
speech in emotion e. Then, θljse = θljspre + αϕe. α is 0.55 for
angry, 0.4 for sad and 0.36 for happy emotion.
2Previous studies have referred to it as a vector due to its usefulness

in performing mathematical operations to create new models.
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Figure 4: Differences in v,a,d values w.r.t. ground truth when scaling the intensity of happy (left), sad (middle) and angry (right).

3.1. Results

We conduct evaluations to assess 1) effectiveness of fine-tuned
models in generating emotional speech 2) ability to generate
the opposite emotion by negating the original emotion 3)
impact of scaling α on the intensity of the emotion 4) capability
of transferring emotion to an unseen speaker. In all of our
evaluations, we utilize a neutral test set created in Section 2.1.

For objective evaluations, we feed the text into the desired
model and produce corresponding speech samples. These
speech samples are then assessed for emotion and intelligibility
by passing them through the VAD model to predict the
utterance v, a, d values and ASR transcripts. We compare the
v, a, and d values of the model with those of the corresponding
neutral ground truth samples, and plot the difference3. Addi-
tionally, we report the WER with reference to the ground truth
text by using the Whisper-large v2 model [16] on the generated
sample. The distribution of the difference in v, a, and d values
with respect to the ground truth neutral speech samples is
expected to adhere to the patterns displayed in Figure 1, which
represents the distribution of v, a, and d values extracted from
ground truth speech samples for each emotion. For subjective
evaluations, we present each system to each evaluator at
least five different text samples. We perform these evaluations
with a total of 30 evaluators, resulting in 150 ratings per system.

1. Effectiveness of fine-tuned models.
Figure 2 depicts the effectiveness of fine-tuned models in
producing emotional speech. The plot shows increased va-
lence, arousal, and dominance for θhappy compared to θpre,
while θsad exhibits a notable decrease in these dimensions.
Additionally, θangry has lower valence and higher arousal
and dominance than θpre. During the subjective evaluation,
the assessors are presented with an audio sample and tasked
with independently rating its anger, happiness, and sadness
on a scale ranging from 1 to 5. A rating of 1 signifies not
happy, whereas a rating of 5 indicates extreme happiness, for
instance. Figure 5 demonstrates that the ratings consistently
lean towards higher values on that emotion scale for which
the model underwent fine-tuning.

2. Ability to generate the opposite emotion.
Figure 3 shows that negating the emotion vector helps gener-
ate speech for the opposite emotion. The valence of θ̃happy is
lower than θhappy . In contrast, θ̃sad has higher valence than
θsad and similar to θhappy . This trend is also observed for

3All distributions are statistically different from each other (Mann-
Whitney test, p < 0.001). Detailed statistics are provided on the sam-
ple page: https://tinyurl.com/hnmz987n

anger. This pattern is consistent for arousal and dominance,
showing the effectiveness of emotion vectors in synthesiz-
ing speech with opposite emotions. To evaluate this, we use
the same subjective test as described above. In Figure 5, we
compare θe and θ̃e. θ̃happy receives higher ratings on sadness
and anger scales compared to the happiness scale. θ̃angry and
θ̃sad receive the highest ratings on the happiness scale.
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Figure 5: Comparison of ratings by human evaluators for each
emotion model on anger, happiness, and sadness scales. Rat-
ings of models obtained via negation are also shown.

3. Impact of scaling alpha on the intensity of the emotion
Figure 4 presents the objective results of the experiment.
The difference in v, a, d values compared to the ground truth
increases as the intensity of emotion is scaled in the direction
of the ground truth emotional samples. The v, a, d values
increase as the happy emotion vector is scaled from α = 0.6
to α = 1.4. Similarly, these values decrease as the sad vector
is scaled. For angry emotion, the valence decreases while the
a, d value increases. These results are subjectively validated
for sadness. During subjective evaluation, the evaluator rates
four audios on a sadness scale of 1 (not sad) to 5 (extremely
sad). Figure 6a shows that the sadness ratings for θ1.4sad are
higher than θ1sad and θ0.6sad.

4. Transferability to Unseen Speakers
We performed only subjective evaluations here as the ground
truth happy, sad, angry, and neutral samples are not available
for the LJSpeech speaker and therefore, reference v,a,d scores
are not available for an objective comparison. We present the
evaluator with two audios, one generated from θljshappy and
another from θljspre and ask two questions 1) Which audio is
happier? 2) Is the speaker in both audios the same or dif-
ferent? Figure 6a and b show the results for these subjective
tests. Figure 6b shows that the resulting audios after adding
the happy emotion vector are in fact happier, but Figure 6c
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indicates that some of the speaker identity is getting lost in
the process of this emotion transfer.
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Figure 6: a) Human ratings on the sadness of speeches gener-
ated by θαsad as we scale the intensity via α. b) and c) show
the preference of evaluators for two subjective questions asked
when evaluating emotion transfer to an unseen speaker.

It is important to report MOS for naturalness and WER as
presented in Table 1. The results of both WER and MOS sug-
gest that emotion vectors enable synthesis of emotional speech,
while maintaining its overall naturalness and intelligibility.

Table 1: MOS (95% confidence intervals) and WER

Systems MOS (CI) Wer Systems MOS (CI) Wer

GT 3.96(0.19) 0.17 θpre 3.48(0.21) 0.26
θhappy 3.72(0.20) 0.16 θ̃happy 3.39(0.25) 0.33

θsad 3.62(0.21) 0.17 θ̃sad 3.67(0.20) 0.31
θangry 3.36(0.23) 0.18 θ̃angry 3.71(0.20) 0.26

θljspre 3.68(0.19) 0.13 θljshappy 3.12(0.19) 0.15

4. Discussion
Combination of primary emotions is also a crucial aspect of the
structural model of emotion. We have also attempted to com-
bine emotions according to the structural model for three com-
plex emotions: bittersweet (happy + sad), pride (happy + an-
gry), and envy (sad + angry). The results of the objective eval-
uation of these combinations can be seen in Figure 7. Although
the interpretation of the v, a, and d values for these complex
emotions is not entirely clear, it is evident that these distribu-
tions differ from those of their primary emotions. Furthermore,
the valence, which indicates the positivity or negativity of the
emotion, follows the expected trend. For example, pride has a
high valence, similar to happiness, while envy has a very low
valence compared to sadness and anger. However, the subjec-
tive evaluations for these complex emotions is very ambiguous
and often with low-agreement across evaluators [17].

All previous experiments involved fully fine-tuning the pre-
trained model for a specific emotion. We also experimented
with fine-tuning the individual modules of the VITS architec-
ture, such as the decoder, posterior encoder, prior encoder, and
duration predictor. The prior encoder contains a text encoder
and a normalizing flow module. Fine-tuning each module and
freezing the others had no effect on the generated speech. How-
ever, when we fine-tuned only the text encoder and froze the
rest of the modules, the model produced emotional speech. The
text encoder takes phonemes as input and predicts a hidden rep-
resentation h. This hidden representation is used in the normal-
izing flow to predict the latent representation z, which is further
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Figure 7: Trends in difference of v,a,d values w.r.t ground truth
neutral samples for combination of primary emotions

used by the decoder. The hidden representation h is also used in
the duration predictor to predict the duration, which is important
for prosody modelling. The VITS text encoder is a Transformer
block with 1d convolutional layers as feedforward layers. In-
terestingly, by solely fine-tuning these 1D convolutional layers
of the text encoder while freezing all other modules, it is pos-
sible to generate emotional speech that is almost equivalent to
speech obtained through full-finetuning of the model. Compar-
ing θhappy (≈ 36M parameters) and θffnhappy (model obtained
by finetuning only the feedforward layers ≈ 5M parameters) in
Figure 8, the v, a, d of these models for each emotion show very
similar distributions, indicating that these are the truly impact-
ful layers for emotion arithmetic.
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Figure 8: Distribution of difference in v,a,d values for θe (full
fine-tuning) vs θffne (fine-tuning only feed-forward layers).

5. Conclusion
We introduced a novel method to synthesize emotional speech
by manipulating emotion vectors. This approach can replicate
emotional speech with different (1) primary emotions, (2) po-
larity, (3) intensity levels, and (4) transferability to an unseen
speaker. Through perceptual assessments, our method show-
cases a high degree of naturalness of speech along with the
recognizability of the intended emotion. The arithmetic oper-
ations performed on emotion vectors involve solely the addition
or subtraction of model weights, making them computationally
efficient when compared to alternative techniques requiring ad-
ditional fine-tuning. We leave the exploration of these emo-
tion vectors for cross-lingual and cross-speaker transfer while
retaining speaker characteristics as future work.
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