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Abstract 
Correct and temporally accurate phonetic segmentation of 
speech utterances is important in applications ranging from 
transcription alignment to pronunciation error detection. 
Automatic speech recognizers used in these tasks provide 
insufficient temporal alignment accuracy apart from a 
recognition performance that is sensitive to accent and style 
variations from the training data. A two-staged approach 
combining HMM broad-class recognition with acoustic-
phonetic knowledge based refinement is evaluated for 
phonetic segmentation accuracy in the context of accent and 
style mismatches with training data.  
 
Index Terms: phonetic segmentation, pronunciation scoring      
     

1. Introduction 
Phonetic segmentation refers to the task of identifying the 
sequence of phones within a speech utterance, together with 
their temporal boundaries. Depending on the application, 
automatic segmentation may be aided by the phonetic 
transcription of the utterance. Accurate phone-level 
segmentation is important to speech applications that rely on 
training corpora, whether for recognition or synthesis [1, 2]. It 
is also valuable in tools for language learning where the 
detection of pronunciation errors benefits from the knowledge 
of phone boundaries in the learner’s speech [3, 4].  

Traditional approaches to automatic segmentation have 
relied on adapting the output of standard HMM-based 
automatic speech recognition (ASR) systems given the 
phonetic transcription. Most studies on the performance of 
automatic segmentation systems have been motivated by the 
concatenative speech synthesis application. Several previous 
papers have noted the limitations of the traditional approach 
in providing the required segmentation accuracy for the 
synthesis corpora, and have proposed a second stage of phone 
boundary refinement by a fine search in the vicinity of the 
ASR-obtained boundaries [2, 5]. The refinement stage has 
generally been based on signal features, including MFCCs, 
fed to a statistical classifier (e.g. GMM) trained on previously 
labeled data to recognize boundary frames, possibly in a 
context-trained manner. In other work, the use of detected 
spectral transitions has been proposed for boundary 
refinement [1], while the use of acoustic-phonetic features has 
been suggested as well although not evaluated [2]. Further, 
there are no known results on the performance of the 
boundary alignment methods on speech of language, accent 
or style outside that represented in the training database. 

In this work, we address the problem of phonetic 
segmentation by a two-staged approach in the context of 
language learning and scoring applications. An important 

difference, when compared with the concatentative speech 
synthesis application, is the expected training-testing data 
mismatch. Acoustic models trained on native speech are used 
to score the speech of non-native language learners for 
pronunciation quality. ASR systems trained on native speech 
are known to be sensitive to mismatch, where word error rates 
increase by as much as 30% without the specific adaptation of 
the ASR to non-native speech [6]. Data-driven adaptation of 
the ASR system may not always be possible especially when 
the intended users are a diverse group of non-native learners. 
Further, the underlying phonetic transcription of the non-
native speaker’s utterance may not be available to aid the 
segmentation (due to the imperfect reproduction by the 
speaker of even read out text). In such a situation, ASR 
decoding errors can confound the assessment of 
pronunciation. 

On the other hand, accurate phone-level segmentation has 
been found to facilitate the detection of pronunciation errors 
in non-native learners’ speech.  By employing pronunciation 
scoring based on the phonological properties of the extracted 
sound (i.e. correctness of articulation), significantly higher 
correlation with human ratings has been obtained over 
methods based on direct confidence scoring of ASR output [3, 
4]. An interesting related application is the scoring of singing 
where estimated phone boundaries can be used to score 
timing accuracy with respect to a reference via note onsets 
[7]. Again, it is impractical to apply the standard ASR method 
to this task given the poor match expected between the 
speech-trained acoustic models and sung sounds with their 
own phonetic and timing peculiarities. 

In this paper, we explore a two-step approach to phonetic 
segmentation in the context of pronunciation and timing 
scoring tasks. The considerations that contribute to the design 
of the segmentation system are mainly the following: 1) it is 
important that non-native speech is decoded correctly, and 2) 
the detected phone boundaries must be accurate enough to 
locate the salient acoustic events related to speech production 
for the subsequent articulation error detection to be effective. 
With these considerations, the first stage is based on standard 
ASR, but adapted to broad classes in order to obtain 
robustness to mismatched test data when operated in 
unsupervised mode (i.e. not in a forced alignment).  The 
output of the broad class recognizer provides the anchor 
points and local context for the operation of the second step 
of phone boundary refinement. The refinement step is based 
on using acoustic-phonetic features to locate landmarks 
appropriate to specific phone-phone combinations.  We 
motivate specific choices for the realization of the two steps, 
and evaluate the system with respect to manual segmentation 
for two mismatched data conditions involving accent and 
style variations viz., non-native speech and singing. 
  

Copyright © 2009 ISCA 6-10 September, Brighton UK2543



2. Phonetic segmentation method 
As mentioned in the previous section, knowledge of phone 
boundaries facilitates the effective use of phonological 
properties for pronunciation scoring and error detection. For 
instance, confusion between voiceless plosive and fricative 
manner of articulation is reliably captured from the measured 
rate of rise of energy in the burst onset [3]. Similarly, 
systematic variations in voice onset time (VOT) of stops have 
been detected to identify accented speech [8]. Such phonetic 
events can be located using speech landmark detection 
methods based on detecting temporal changes in the 
appropriate acoustic-phonetic features. However the acoustic 
prominence of landmarks is greatly dependent upon the local 
characteristics of the signal making it necessary to 
dynamically adapt the analysis parameters to the underlying 
nature of the signal [9]. While simple signal attributes such as 
periodicity/ aperiodicity/ silence can supply the context for 
landmark detection, frame-level attribute classification tends 
to be noisy and needs further processing.  

We propose instead to apply HMM-based broad class 
recognition to achieve the needed coarse segmentation. 
HMM’s ML training criterion makes the acoustic models 
good for classification but not necessarily for segmentation 
[1]. The phone start and end boundaries obtained at the 
decoder output can at best serve as anchor points for the fine 
search of the next stage.  We describe next the broad class 
recognition framework designed to provide the required 
context information and decoding performance that is robust 
to training-testing data mismatches.  

2.1. Broad class segmentation 

HMM-based speaker-independent phone recognition systems 
are known to achieve moderate accuracies in terms of phone 
identification and segmentation. A significant training-testing 
data mismatch, such as expected between native and non-
native speakers, would only cause accuracies to plummet 
further. On the other hand, broad phonetic classification with 
a limited number of phone classes based on manner of 
articulation is known to be more accurate and also more 
robust to acoustic variability. Further, it is also powerful 
enough to distinguish between lexicon words, given on the 
order of 5 or 6 manner based categories [10]. The latter 
property is important to ensure correct recognition of phone 
sequences when Viterbi-alignment is used in the HMM-based 
decoder.  

 
Broad class Sub-classes Phones Tokens 

Vowels Vowels, 
nasalized 
vowels 

a A i I e E u U o O 
ax ae ao 

5948 

Semivowels Glides, 
liquids, 

flaps 

y w 
l r  

Dq Dhq jq gq 

1640 

Nasals Nasals m n N j~n g~n 1073 
Obstruents Stops 

 
 

Fricatives 
Affricates 

p t T k ph th Th kh 
b g d D bh gh dh 

Dh 
s S s~ h f hv 

c ch j jh 

4348 

Silence Short pause 
Voice  bar    
Unvoiced 

closure 

Sil 
vb (b d D g) 
cl (p t T k) 

4116 

 
Table 1. Mapping of phones labels (based on [12]) to broad 

classes with token counts in the training data set 

HTK [11] is used to train the acoustic models for the 5 
broad classes: vowels, semivowels, nasals, obstruents and 
silence. The mapping of the phones of Hindi (the language of 
interest) is shown in Table 1. All broad class models were 
context independent, 3-state HMM with 8 Gaussian mixtures 
(diagonal covariance) trained with flat-start initialization. The 
standard 39 dim MFCC, delta and acceleration feature vector 
was computed for the 16 kHz sampled signals at 10 ms 
intervals. A null grammar network of monophones (broad 
classes) is used to preserve language independence. The 
training data is described in Sec. 3.1. Hindi (like other Indian 
languages) differs from English in a number of ways, the 
most prominent being the number and type of plosive 
consonants. Voicing and aspiration both are phonemic 
attributes in Hindi [13].  

2.2. Phone boundary refinement 

In the present work, the implementation of phone boundary 
refinement is restricted to the obstruents and to vowel onsets 
following obstruents, semivowels and nasals as obtained from 
the broad class decoder. The release burst onset (or obstruent 
start, as seen in Table 1) is an important acoustic event that 
provides the cues to further fine manner distinctions (plosive, 
fricative). Together with the following vowel onset, it can 
also be used to compute the VOT, an important acoustic cue 
to the articulatory attributes of voicing and aspiration.   

2.2.1. Burst onset detection 

As obstruents are aperiodic and noisy in nature, the release 
burst onset can be marked using the feature rate-of-rise 
(ROR) computed in the high frequency band of 3500-8000 
Hz [14]. A broadband spectrum computed every 1 ms is 
further smoothened by averaging over 10 ms. The ROR 
contour is obtained by the first difference, with a 10 ms step, 
of the high-band energy. Peaks in the ROR contour signal 
sharp spectral changes and thus the positive peaks are 
detected for burst onset landmarks. 

In the current task, the burst onset boundary of the 
obstruents detected by the broad class recognizer is to be 
refined in terms of temporal location. This is achieved by 
marking the largest positive ROR peak within ± 30 ms around 
the phone start boundary obtained from the first stage.  

2.2.2. Vowel onset detection 

Acoustic cues corresponding to changes in the source and 
system characteristics can help to detect a vowel onset point 
(VOP). The precise acoustic cues depend on the broad nature 
of the preceding consonant. In this work, the essential 
methods proposed in [15] are adapted to detect the VOP in 
each of the obstruent-vowel, nasal-vowel and semivowel-
vowel CV tokens as obtained at the output of the first stage 
broad class recognizer. The acoustic cues are computed 
around the identified instants of significant excitation (glottal 
pulses or epochs) [16]. 

 In an obstruent-vowel diphone, a significant rise in the 
feature “ratio of signal energy to residual energy” indicates 
vowel onset [15]. The short-term energy is computed over 3 
ms around the epoch. The feature is estimated at each epoch 
in the region spanning burst onset to 70 ms after the vowel 
start boundary as obtained by the first stage. The epoch 
instant at which the energy ratio exceeds an empirically 
decided threshold is marked as vowel onset. It was found that 
limiting the computed signal energy to the frequency band 
300-900 Hz enhanced the detection of the VOP. Similarly, the 
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“strength of instant” feature (short-term signal energy 
calculated around the epoch) [15] when limited to the syllabic 
region (640-2800 Hz) shows a prominent increase at the VOP 
after nasals and semivowels. The feature is computed at each 
epoch in the region spanning 45ms before and 70ms after the 
vowel onset marked by the first stage broad class 
segmentation. 
 

3. Experiments 

3.1. Database 
The database used in training the broad class recognizer was 
drawn from a manually labeled, multi-speaker Hindi speech 
database developed at TIFR [12]. 10 sentences uttered (read) 
by each of 100 native speakers captures the acoustic-phonetic 
diversity of the spoken language. Some known labeling 
inconsistencies limited the availability of correctly annotated 
data to 34 speakers (equal males, females) or 340 sentences. 
Of these, 30 speakers were included in the training set, and 4 
were used as a native speech test dataset.  

A second test dataset comprised recordings from 4 (2 
male, 2 female) non-native speakers each reading out 10 
sentences drawn from the TIFR database but different from 
that used in the native set. The non-native speakers were from 
the southern states of India and spoke with accents 
characteristic of their individual native tongues (Telugu, 
Kannada, and Malayalam) apart from inserting occasional 
hesitation pauses in their speech.  The third test dataset 
comprised of solo singing of 3 min duration of song phrases, 
drawn from 6 different Hindi songs, by each of 2 singers 
(male and female native Hindi speakers). The lyrics 
comprised normal Hindi speech and were sung in rhythm and 
tune by the singers from memory. All the test datasets were 
labeled manually following the same conventions as in [12] to 
obtain reference labeling for the evaluation.  

3.2. Evaluation  

Our overall goal in this work is correct broad class 
identification, and segmentation that matches the reference 
segmentation. The evaluation is therefore presented in terms 
of the recognition performance of the first stage followed by 
the measured deviation of the automatically detected 
boundaries from the corresponding reference markers at the 
output of each of the two stages for the correctly decoded 
phone classes. A few consonant-vowel combinations were 
omitted from the vowel onset detection evaluation due to the 
difficulty experienced in manual labeling. These are /h/, /hv/, 
/y/ and the flaps. 

4. Results and conclusion 
Broad class recognition performance as observed from the 
results generated by the Viterbi decoder appears in Table 2. 
Although HTK scoring matches the reference labels with the 
recognized broad class labels without reference to timing 
information, it was confirmed that there was indeed temporal 
overlap between the detected broad class phones and the 
corresponding reference phone labels. We also realized that 
the non-native and song datasets had a significantly higher 
proportion of silence (pause) frames which, by their correct 
detection, were biasing the results for these sets.  Hence the 
results are reported after excluding the Silence class phones.  
 
 

Phone-level Frame 
level 

 
Data set 

 
Phone 
count % 

 C 
% 
 S 

% 
 D 

% 
 I 

% 
C 

Native 
(train) 1729 85.4 5.2 9.5 6.6 75.7 

Native 
(test) 1933 86.8 6.0 7.2 5.1 75.6 

Non-
native 1821 83.5 8.6 7.9 8.5 74.6 

Song 1326 91.8 4.9 3.3 21.2 80.7 
 

Table 2.  Broad class recognition result (excluding Silence) 
C:correct, S:substitution, D:deletion, I:insertion 

 
 

We observe that the native train and test sets show similar 
recognition performance (given the admittedly limited data 
used in training and testing). The non-native dataset shows 
only slightly reduced performance compared with the native 
data indicating that the broad class models are indeed 
relatively insensitive to the accent variation. The song data 
results appear superior to those of the other datasets. On close 
observation, this is attributed to the relatively long durations 
of the sung phones providing more frames with the 
characteristic broad class properties. The mismatched 
duration modeling though leads to significantly higher 
insertion rates in song, with the long phones being each 
replaced by a sequence of identical phone labels.  The frame-
level accuracies (where errors are more concentrated at phone 
boundaries) follow the same trends as phone-level, affirming 
the temporal synchrony between the decoded and reference 
labels. In all datasets, the most prominent confusion observed 
was between the vowels and semivowels; in the case of song, 
also some nasals to vowels. 

Tables 3 and 4 present segmentation results in the form of 
timing accuracy of release burst onset and vowel onset 
markings with respect to reference markings.  The number of 
tokens used in each evaluation is indicated. A systematic bias, 
observed in the markings obtained at the output of the broad 
class recognizer (Stage 1), was removed by subtracting an 
offset estimated from the training data separately for the burst 
and vowel onset landmarks. From the tables, we note that in 
all cases, the HMM-decoded segments show a high deviation 
which is considerably reduced after the refinement stage.  The 
relatively high error at the output of the first stage is 
consistent with the fact that HMM decoding is optimized for 
classification and not boundary alignment [1]. It may be 
noted that the alignment error is worse for the non-native and 
song test data when compared with the native speech even 
though the broad class recognition performances are similar. 
A separate experiment with bootstrapped training utilizing the 
reference timing information in the training data showed no 
improvement for any of the test datasets, possibly due to the 
speaker-independent nature of the task. Another cause for the 
performance limitation is, of course, the limited time 
resolution of the HMM system feature parameterization. 
      We observe that the refinement stage significantly 
improves the proportion of all automatic markers within ± 10 
ms (i.e. ± 1 frame) of the reference markers. Given that burst 
durations can be short, such an improvement in time 
localization can make a big difference to the reliability of 
burst derived cues for any subsequent application. The 
increase in vowel onset accuracies is very prominent in the 
case of the non-native speech and song data. The occasional 
cases where the boundary alignment worsened after 
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refinement were found related to vowels following voiced 
aspirated stops, and in the case of burst onsets to the fricatives 
/h/, /hv/.  
      To conclude, a phone boundary refinement stage based on 
cues derived from acoustic-phonetic features computed at 
high time resolution provides for accurate alignment of burst 
and vowel onsets across speech accent and style variations. 
The local context information required by the boundary 
refinement stage is provided effectively by an HMM based 
broad class recognizer. Manner-based broad class models are 
relatively robust to training-testing mismatch, as far as 
classification is concerned, compared with models trained on 
fine phonetic classes.  

Due to the limited amount of training and testing data 
used in the present investigation, the results may be 
considered preliminary but promising.  Future work is being 
directed towards increasing the training and testing data for 
evaluation and extending the boundary refinement 
implementation to the remaining phone boundaries. Further 
focused research on the choice of broad classes and their 
acoustic models, including the incorporation of explicit 
duration modeling, is expected to lead to the development of 
a robust segmentation scheme for use in language, accent and 
style independent transcription applications.  

 
 

Dataset Tolerance  
(ms) 

Stage 1 Stage 2 

± 5 57.2 70.0 
± 10 82.7 85.2 
±15 89.8 90.6 

 
Native (test) 
tokens = 554 

± 20 93.5 93.7 
± 5 55.3 65.5 

± 10 80.1 86.2 
± 15 88.3 90.3 

 
Non-native 

tokens = 513 
± 20 91.2 93.2 
± 5 54.1 64.2 

± 10 79.9 81.1 
± 15 90.1 85.8 

 
Song 

tokens = 344 
± 20 93.9 90.1 

 
Table 3. Percentage of burst onset marks that lie within a 
tolerance region of the reference marks after each stage  

 
 

Dataset Tolerance  
(ms) 

Stage 1 Stage 2 

± 5 54.3 58.1 
± 10 82.1 86.6 
± 15 93.0 92.8 

 
Native (test) 
tokens = 558 

± 20 96.2 95.2 
± 5 43.8 49.8 

± 10 73.1 81.9 
± 15 87.5 91.8 

 
Non-native 

tokens = 464 
± 20 93.3 95.7 
± 5 40.7 55.8 

± 10 70.5 80.9 
± 15 85.6 90.3 

 
Song 

tokens = 358 
± 20 93.8 93.8 

 
Table 4. Percentage of vowel onset marks that lie within a 

tolerance region of the reference marks after each stage 
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