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Abstract

Obtaining the detailed pitch contour of the melody from au-
dio recordings of Indian classical music is important both
from a pedagogical as well as musicological perspective.
In this work, the problem of pitch tracking of the singing
voice in percussive accompaniment is considered. While
the detection of pitch (or fundamental frequency) is accom-
plished relatively easily for an individual voice, the presence
of percussive accompaniment such as tabla can greatly per-
turb the pitch tracker. The acoustic signal characteristics
of the percussive accompaniment that pose specific chal-
lenges to conventional pitch detection algorithms (PDAS)
are discussed. An experimental investigation of the perfor-
mance of a frequency-domain PDA, the two-way mismatch
method, is carried out for a variety of simulated and real mu-
sic signals of singing voice in tabla accompaniment. A post-
processing method based on dynamic-programming based
smoothing is proposed and shown to significantly improve
the accuracy of the estimated pitch contour.

Keywords: Pitch tracking, dynamic programming, Indian
classical music, two-way mismatch method

1. Introduction

Music transcription refers to the conversion of an acoustic
musical signal to a symbolic representation. It is an impor-
tant exercise both in the pedagogy of music as well as for
musicological studies. While the human auditory system re-
mains the most reliable transcriber of music, there has been
much recent research on automatic music transcription sys-
tems. These systems combine digital signal processing of
the acoustic signal with pattern classification techniques to
come up with musically meaningful symbolic representa-
tions. However despite many efforts and some successes, no
practical general-purpose system exists that can accurately
transcribe a wide variety of music. Indian classical music
poses its own peculiar challenges to the automatic music
transcription task. While the lack of an accepted symbolic
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notation (like in Western music) is a significant obstacle, al-
most equally challenging is the signal analysis problem of
extracting the musically relevant parameters.

Acoustic signal analyses of music can yield informa-
tion on the various aspects of melody, rhythm as well as
the timbre of the instruments playing. Of these, the melody
is arguably the single most important descriptor of a piece
of music. The melody is represented by the variation of
the perceived pitch (often assumed to be the fundamental
frequency of the periodic signal) with time [1]. Pitch detec-
tion is the process of estimating an instantaneous pitch value
from the signal at discrete intervals of time. The output of a
pitch detector is typically a pitch contour i.e. a trace of the
pitch as it evolves with time.

Several pitch detection algorithms (PDAS) have been
proposed over the last three decades [1]. These have been
broadly classified as being based either on measuring time-
domain periodicity or on harmonic pattern matching. The
autocorrelation function (ACF) PDA is a well-known exam-
ple of short-term periodicity measurement via time domain
correlation. Sub-harmonic summation (SHS) represents a
frequency domain PDA based on harmonic structure detec-
tion. While most PDAs provide accurate estimates with
monophonic (single voice) signals, the reliable pitch esti-
mation of polyphonic music remains a challenging problem
[2, 3].

In Indian classical music, typically, a single melodic in-
strument is accompanied by a percussive instrument such as
the tabla providing the rhythm. Also present throughout the
performance is the tanpura (drone) sounding the selected
tonic note. Thus a typical audio recording contains sounds
from more than one source, and can therefore be considered
polyphonic. Polyphonic music such as this presents a par-
ticular situation of pitch tracking in noise or interference,
where the interference is from the accompanying instru-
ments. That a reliable pitch detection method would indeed
be very valuable is evident from the observation that musi-
cological studies of Indian classical music are often unable
to exploit the rich sources of commercial audio recordings
due to the presence of instrumental accompaniments [4].

The present work addresses the problem of reliable pitch
tracking of a single melodic instrument, more specifically,
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the human voice, in the presence of tabla accompaniment.
The two-way mismatch (TWM) method [5], a frequency-
domain PDA known to perform well on monophonic music
signals with realistic degradations is investigated for this ap-
plication. A new post-processing method based on dynamic
programming with smoothness constraints is proposed to
improve the accuracy of TWM pitch estimates in the pres-
ence of strong interference. An experimental evaluation is
presented of the complete pitch tracker on a data set of real-
istic signals.

2. Signal characteristics

In the present context, the melody is solely carried by the
singing voice. Hence “target” is the singing voice. The “in-
terference” is the tabla strokes.

2.1. Characteristicsof singing voice

In Indian classical music, the pitch contour of singing voice
is not made up of discrete horizontal lines corresponding to
distinct and steady notes in the melody but it is a continu-
ously evolving curve. The pitch contour shows many types
of pitch inflexions like glides, oscillations, bends, stresses,
and accents, all collectively called gamakas. They are im-
portant from the perspective of the emotions song conveys
and also in Indian classical music they are important for ap-
preciation of ragas. A detailed study of gamakas and their
importance in various ragasis presented in [4, 6]. The work
presented in this paper is focused on the vocals which con-
tain only vowels or semivowels such that every sung seg-
ment has a clear pitch contour.

2.2. Acoustic characteristics of tabla strokes

The tabla is a pair of drums traditionally used as rhythmic
accompaniment in Indian classical or semi-classical music.
The ‘bayan’ is the metallic bass drum, played by the left
hand. The ‘dayan’ is the wooden treble drum, played by the
right hand and produces a large variety of sounds. The drum
can be tuned according to the accompanied voice or instru-
ment. Itis important to note that for this class of instruments
the main resonance is much stronger than the resonances of
other harmonics [7]. A mnemonic syllable or bol is asso-
ciated to each of these strokes. Common bols are : Ge, Ke
(bayan bols), Na, Tin, Tun, Tit (dayan bols). Strokes on the
‘bayan’ and ‘dayan’ can be combined, like in the bols : Dha
(Na + Ge), Dhin (Tin + Ge), Dhun (Tun + Ge).

The tabla sounds typically have low pass spectra over-
lapping that of human voice. Strokes Na, Tin, and Tun
which are produced on ‘dayan’ are slowly decaying sounds
with many frequency components. They have many har-
monic partials, with a single partial stronger than others.
The difference among these strokes is due to the location

of the strongest partial among the harmonics. Na has its
strongest partial near 800 Hz, Tun has its strongest partial
near 500 Hz, while Tin has its strongest partial below 500
Hz. Stroke Ge produced on ‘bayan’ has harmonic partials
up to 1 kHz, and decays slowly. It has very strong partial
between 100 Hz to 200 Hz. In case of Ge the harmonics
other than the strongest one decay relatively fast. Strokes
Tit produced on “‘dayan’ and Ke produced on ‘bayan’ show
impulsive nature. They decay very fast. Ke shows a noisy
spectrum with no clear partials while Tit has very weak fre-
quency partials up to 2 kHz. The strokes produced by strik-
ing both ‘bayan’ and ‘dayan’ simultaneously show charac-
teristics which are a mix of strokes produced on both drums
separately. For example, the spectrum of Dha is similar to
the spectrum produced by adding the spectra of Na and Ge.
Most of the tabla strokes especially the harmonic ones have
stronger partials up to 2 kHz. To summarise above discus-
sion, tabla strokes can be classified on the basis given below.

1. Harmonic structure: The strokes Na, Tin, Tun, and Ge
are harmonic and Tit and Ke are inharmonic strokes.

2. Rate of decay: The strokes Ke and Tit are fast decay-
ing and impulsive while strokes Na, Tin, Tun, and Ge
are slowly decaying.

3. Location of strong partial: Strokes Ge, Tin, and Tit
have strong partials at frequencies below 500 Hz while
other strokes have their strong partial above 500 Hz.

Based on this, experiments presented here use three repre-
sentative strokes Na, Ge, and Ke which cover all the char-
acteristics of tabla strokes. Details of specific instances of
strokes Na, Ge, and Ke are given in Table 1 and Fig. 1 shows
their spectrograms.
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Fig. 1. Spectrograms of tabla strokes Na, Ge and Ke

Fast decaying strokes will affect less number of pitch
estimates than slowly decaying ones. The harmonic strokes
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Stroke | Strongest partial (Hz) | Duration (sec)
Na 790 45
Ge 137 .6
Ke - 2

Table 1. Specific details of tabla strokes

can confuse pitch detector since simultaneously two har-
monic sounds are present, thus multiple pitches exist.

Fig. 2 shows spectrogram of a portion of song in female
voice mixed with tabla stroke Na. The continuous horizon-
tal curves denote the spectral evolution of voice. The verti-
cal strikes at 6 and 7 second indicate the onset of stroke Na.
We also observe strong partials of Na at 523 Hz and 790 Hz
interspersed with the voice harmonics.

Frequency (Hz)

6 6.5 7 7.5
Time (sec)

Fig. 2. Spectrogram of four notes sung by female singer
mixed with stroke Na.

3. Two-way mismatch procedure

In the two-way mismatch procedure the pitch of a signal
is estimated by choosing the fundamental frequency which
minimizes the discrepancy between the measured spectrum
and the spectrum predicted for that fundamental frequency.
The musical signal is divided into 40 ms long frames with
50% overlap. The spectral peaks, i.e local maxima above
a certain threshold value relative to the global maximum in
the magnitude spectrum of each frame are stored. These
peaks are henceforth called “measured” peaks.

The procedure employs two mismatch error calculations
as depicted in Fig. 3, one based on the difference between
each measured partial and its nearest predicted partial, and
other based on the difference between each predicted partial
and its nearest measured partial. This two way mismatch
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Nearest Neighbour Matching

Fig. 3. Two step TWM error calculation at assumed trial
fundamental frequency of 100 Hz. 1. Each measured partial
is compared with its nearest predicted neighbour, indicated
by arrows from b to a, 2. Each predicted partial is compared
with its nearest measured partial, indicated by arrows from
a to b. The total error is normalized sum of these errors.

helps to avoid the octave errors by applying a penalty for
partials those are present in the measured data but not in
predicted data (case with multiple type octave error), and
also for the partials whose presence is predicted but do not
appear in measured data (case with sub-multiple type octave
error).

The two errors are computed as follows
e Predicted to measured error

ND(n) = AfE.(fF)"

an

Amaz

Epsm =Y ND(n)+(

Where fZ is the frequency of n'* predicted partial
for some trial fundamental, A f? is the difference be-
tween the frequency of predicted partial and its clos-
est measured partial. a,, is the amplitude of the clos-
est measured partial to f?. A,,,, is the maximum of
the amplitudes of measured partials. IV is smallest in-
teger greater than fouaz/ fo , Where fp,q4. is maximum
of the frequencies of measured patials and fq is trial
fundamental frequency.

e Measured to predicted error
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Where f* and A} are the frequency and amplitude
of k" mesured partial, Af™ is the difference be-
tween the frequency of measured partial and its clos-
est predicted partial. A,,,, is the maximum of the
amplitudes of measured partials. K is number of mea-
sured partial.

Total TWM error is given by,

Em—>p
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N
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Values of parameters ¢, r, p are kept same as given in [5].
The paper suggests a value of parameter p = 0.1 to reduce
emphasis placed on the low level, high frequency funda-
mentals. Same value of p is used here.

The error is calculated for a series of trial fundamental
frequencies spanning the known range of pitches in input
signal. The spacing between the trial frequencies can be
chosen to achieve required accuracy for estimates. Finally
for our pitch tracker the E;.s,; for each trial frequency is
normalised by the maximum error in that frame. The nor-
malised error is henceforth called TWM error for simplicity.

The plot of TWM error versus trial fundamentals for a
complex tone of 300 Hz is shown in Fig. 4. The plot shows
a very deep minimum at 300 Hz. Also the minima at other
trial frequencies like 450 Hz and 600 Hz, which are factors
of partial frequencies in the complex tone, can be seen. Out
of numerous local minima in the plot, the trial frequency
corresponding to global minimum is chosen as the pitch for
the frame. Fig. 4 shows similar plot for a frame of signal
obtained by same complex tone is mixed with tabla stroke
Na. It can be observed that the minimum at 300 Hz has be-
come shallower significantly and there is a minimum at 261
Hz which is the fundamental frequency of Na. The global
minimum at 100 Hz is deeper than both of these minima.

Similar to spectrogram, TWM error for trial frequencies
at various instances of time is plotted. Such a plot is shown
in Fig. 5 for a complex tone of 300 Hz mixed with tabla
stroke Na. This correlogram shows a very dark harizontal
line at 300 Hz where only pure complex tone is present,
i.e. from 0 to .2 seconds and from .65 to 1 seconds. But
wherever stroke Na is present, i.e. from .2 to .65 seconds,
this line has become brighter, indicating that the normalised
error has increased at 300 Hz in those frames. At the onset
of Na this dark line has become much brighter for a couple
of frames. It can be observed that low frequency region is
darker where the stroke is present than where it’s absent.
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Fig. 4. a. TWM Error plot for complex tone of 300 Hz
containing harmonics at 600, 900, 1200, 1500, 1800 Hz all
having equal amplitude. b. Similar plot for the same com-
plex tone mixed with tabla stroke Na.

The pitch contour of a song with tabla strokes added to
it, as obtained from the TWM PDA, is shown in Fig. 6.a.
The pitch contour of the mixed song shows sharp variations
in pitch at the onset of tabla stroke as well as during the
tabla stroke. Pitch in pure song does not vary so drastically
in successive frames. The values of pitch in adjacent frames
are expected to be strongly correlated [8]. To rectify these
errors postprocessing as explained next, is applied.

4. Postprocessing

Postprocessing based on dyanamic programming is very com-
mon in a typical pitch tracking system [1, 8, 9]. Though
postprocessing is generally used for overcoming anomalies
of vocal cords or irregularities in signal, here it specifically
designed to overcome the significant impact of tabla strokes.
The block diagram of the pitch tracker is shown in Fig.
7. Postprocessing involves DP based smoothing and pitch
correction. Postprocessing is applied to segments of songs
which contain singing voice.  For each continuous seg-
ment of singing voice a we calculate two dimensional error
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Fig. 5. Correlogram of the log of normalized TWM error of

a complex tone of 300 Hz as described in Fig. 4.a, mixed

with tabla stroke Na. The stroke starts about .2s and lasts

for .45s. The darkness of a pixel d(p, t) indicates the log of

normalised error for frequency p at time instance ¢, accord-

ing to the scale shown on the right. Thus darker the point
lower is error.

matrix E, where a cell E(p, j) gives the TWM error for
trial frequency p for frame j. Thus jt* column of matrix
gives TWM error values for various trial frequencies for j**
frame. In this section, we discuss DP based approach to re-
cover a smooth (and possibly more accurate) pitch contour
by eliminating the erratic variations due to the presence of
tabla interference.

4.1. Dynamic programming based smoothing

DP approach used here is similar to that used in [8]. It con-
sists of three essential parts. First, a measurement cost for
the estimated pitch. Then, a smoothness cost for time evo-
lution of pitch. These two costs make up the local transi-
tion cost. Finally, an optimality criterion to represent the
trade off between the measurement and smoothness cost is
defined in the form of global transition cost. The DP strat-
egy is used to carry out optimization of the global transition
cost. The measurement cost is provided by the error matrix
E. The smoothness cost assumed by us is given by

—(»'-p)?
20

W(papl) =1- s 4)

g=cxp

where p and p’ are pitch estimates in successive frames in
that order. The local transition cost is thus given by

c(p(4),p(i —1),5) = E(p(4),5) + W (p(i —1),p(j)) (5)
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Fig. 6. a. Pitch Contours of portion of song (pure and mixed
with stroke Na) obtained by TWM based PDA. b. Pitch
Contour of same sample after applying DP. c. Pitch Con-
tour of same song after applying pitch correction. d. Power
contour of stroke Na and the song.
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with ¢(p(1),p(0),1) = E(p(1),1). Here p(j) is the pitch
estimate at frame 5. The global transition cost is given by,

N

SP(1),-p(5), - p(N)) = Y ep(§), p( = 1),4) (6)

j=1

, Where N is the number of frames in the given continuous
segment of song. The pitch contour with least global tran-
sition cost among many possible pitch contours for a given
segment of song is chosen as the pitch contour estimate of
that segment.

The smoothness cost function is obtained by modifying
the equation of a Gaussian distribution with ¢ being stan-
dard deviation and p being mean. o is proportional to the
pitch estimate in current frame through constant ¢. This is
in keeping with the fact that variation in the pitch is ex-
pected to be more at higher pitch values than that at lower
pitch values. It can be noted that the smoothness cost for a
transition from higher pitch (say 300 Hz) to lower pitch (say
50 Hz) is lower than a transition from lower pitch to higher
pitch. This may cause DP smoothing to get trapped into
lower pitch values. Hence smoothness cost function which
saturates for larger pitch transitions, is used. Constant s
controls the minimum value of W. The values s = 1.3 and
c = .9 are experimentally found to give good results. An
example of the W function is shown in Fig. 8 for p = 100.

The DP algorithm can be understood by considering a
state space, {(p, 7)|p € {trial fundamentals},j=1toT}
as shown in Fig. 9. The pitch contour can be seen as the
path ((p(1).1), (p(2), 2), ... (P(), 1), ---(p(T), T)) through
this state space, where p(j) is pitch estimate at j¢* frame.
While passing through each state (p, j) path incurs a cost of
E(p, j) and while making a transition from (p, j) to (p’, 5+
1) it incurs a cost of W (p, p'). Only transitions allowed are
from (p, j) to (p'j+1) where p,p' € {trial fundamentals}.
Thus global transition cost is the cost of a path passing
through this state space. DP formulation is used to find the
minimum cost path through the state space.

Effect of applying DP on the pitch contour can be seen
in Fig. 6.b. It can be observed that DP gives a smoothened
pitch contour, but at the cost of suppressing certain fast

0.95
0.9
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0.55

0.5 .
60 80 100 120 140

P

Fig. 8. Shape of smoothness cost function W, for s =
2,0 =75

Fig. 9. State space representation of dynamic programming.
The states and edges are labeled by their costs. The dashed
edges indicate the possible transitions for state (p, j) while
the solid edges indicate the minimum cost path found by
dynamic programming.

variations in the pitch. Lower the value of ¢ higher is the
smoothning of the pitch contour.

4.2. Pitch Correction

Pitch correction makes use of the fact that TWM error func-
tion contains a local minimum near the correct pitch even
if the frame is corrupted by interference. The deepest lo-
cal minimum in a certain range (within +£6% of the esti-
mated pitch) near the pitch estimated by DP is searched.
The frequency corresponding to this minimum is declared
as the correct pitch. In case, no local minimum exists in the
search range, the pitch estimated by DP is kept unchaged.
Pitch contour obtained after applying Pitch Correction on
estimates found by DP is shown in Fig. 6.c.
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4.3. Effectsof DP and pitch correction

When the pitch changes rapidly, the pitch contour estimated
by DP ‘lags behind’ the correct pitch contour. This can be
seen in Fig. 6.b. This can be observed even in those portions
where tabla stroke is absent. This phenomenon occurs when
the smoothness cost dominates the total cost at the correct
pitch, due to the large difference in value from the pitch of
the previous frame. The effect accumulates causing a lag in
the pitch contour estimated by the DP. If the pitch contour is
too steep, DP smoothing may completely loose track of the
correct pitch contour. Sometimes the correct pitch contour
may show a sharp peak (or valley) as shown in Fig. 6.b. A
peak and adjacent valley can be observed about 6.75 sec-
onds in this plot. When DP is applied on such a portion of
song, the cost of the correct pitch contour is higher than that
of the straight path (or “short cut™) taken by DP, because of
the total smoothness cost incurred due to the sharp changes
in the pitch. Thus application of DP smoothing may elim-
inate sharp peaks or valleys, introducing errors in the pitch
estimation.

Pitch correction eliminates some of the errors caused
by DP smoothing. More the the search range of pitch cor-
rection, more errors are corrected. However if the search
range is too wide, pitch correction may pick up a deeper
minimum caused due to interference in frames corrupted by
tabla strokes. It can be seen in Fig. 6.c that pitch correc-
tion has corrected most of the errors but is unable to correct
some of the errors in portion around 6.75 seconds.

5. Experimental evaluation

The pitch tracker has been tested on sample data prepared
by mixing singing voice waveforms with waveforms of tabla
strokes. The songs were sung in syllable /la/ and /aa/. Three
different tabla strokes Na, Ge, and Ke were digitally added
separately to these song waveforms in global SNR 2, 2, and
3 and at rate of 1, 1 and 2 per second equally spaced re-
spectively. Since tabla stroke Ke is very short in duration
as compared to other two strokes, it was mixed with higher
rate, so that roughly half the frames of song remain unaf-
fected. For the same reason Ke was added at higher global
SNR. The songs and tabla strokes were sampled at 22050
Hz using 16 bits per sample. The pitch range in the songs
was 200 to 600 Hz. Frame length for all algorithms was 40
ms, with 50% overlap and pitch search range given as 100
Hz to 900 Hz. The songs have been selected so as to cover
most of the types of variations of pitch as mentioned in Sec.
2.1. Itis assured that the tabla strokes overlap various types
of pitch variations.

The following algorithms were applied on the test sam-
ples.

TWM: Two way mismatch algorithm with our parame-
ter values.

TDP: TWM followed by DP as explained in Sec. 4.1.

TDC: TWM followed by DP and pitch correction as ex-
plained in Sec. 4.2.

It is assumed that the pitch estimates obtained from pure
songs by applying TWM method are correct. An error is
said to occur when there is difference between pitch esti-
mates obtained from mixed sample and those from its cor-
responding pure sample. Since error within 3% of correct
pitch estimate is considered to be within half semitone, it
does not cause a note to change. The errors within 3% to 6%
of the correct pitch estimates are called “fine errors’. The er-
rors above 6% of the correct pitch estimates are called ‘gross
errors’. The error rates have been obtained for ten song sam-
ples of average length 20s. Table 2 gives error rates in pitch
estimates by the algorithms discussed above, of two repre-
sentative songs added with three strokes separately. Errors
are counted only in the frames affected by the tabla strokes.

TWM TDP TDC
Fine | Gross | Fine | Gross | Fine | Gross
Na| 00 | 493 | 46 | 134 | 21 | 1438
Ke | 0.0 | 209 | 3.9 2.1 34 25
Ge | 00 | 257 | 49 5.1 0.2 5.1

(a.) A'songsung in/la/,
479 frames corrupted by Na, 669 by Ke, 587 by Ge

TWM TDP TDC
Fine | Gross | Fine | Gross | Fine | Gross
Na | 47 | 147 | 116 | 1.6 5.3 2.1
Ke| 00 | 225 | 8.1 4.4 15 4.1
Ge| 00 | 179 | 7.2 25 0.0 25

(b.) A song sung in /aa/,
190 frames corrupted by Na, 271 by Ke, 235 by Ge

Table 2. Error rates (in percentage) for two representative
songs. a. song with many fast transitions in pitch, b. song
with slowly varying pitch contour

6. Resultsand discussion

It can be seen from Table 2 that, there is improvement in
the error rates in pitch estimation by TDC and TDP over the
TWM algorithm. Error rates in Table 2 are representative
of ten selected song samples. It can be observed that the
application of DP smoothing has brought down the number
of gross errors significantly, but it has increased the number
of fine errors. Application of pitch correction further has
brought down the number of fine errors.

We note that, sometimes application of pitch correc-
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tion causes an increase in the number of gross errors. In
such cases the TWM error function of the corrupted frame
shows a minimum in the pitch correction search range that
is deeper than that at the correct pitch. In this case the pitch
correction chooses this local minimum causing a gross er-
ror.

Errors that remain uncorrected after applying TDC or
TDP are found to be located in the segments of song where
there is sharp change in pitch. A particular example of such
a case is shown in Fig. 10. It can be seen that, in the pitch
contour of pure song that the pitch has changed by 150 Hz
in about .3 seconds in portion 19.1 to 19.4 seconds, which
is very steep change. TDP algorithm has completely elimi-
nated a small step in this portion with a pitch about 300 Hz.
The error introduced by DP in this portion is too large to be
corrected by the pitch correction module.
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Fig. 10. Pitch contours of a portion of song mixed with
tabla stroke Na obtained by TDC and TDP. The solid line
indicates the pitch contour of pure song obtained by TWM.
Lower plot gives power contour of stroke Na and the song

As discussed in Sec. 4.3, application of DP may also in-
troduce errors in the portions of the song where tabla stroke
is absent. This can be corrected by choosing pitch estimates
obtained from TWM PDA for frames not containing tabla
strokes, and choosing pitch estimates obtained by DP and
pitch correction for frames affected by tabla strokes. This
requires a strategy to be developed for classifying frames
according to the presence or absence of tabla.

7. Conclusion

The problem of pitch tracking of the singing voice in typ-
ical Indian classical music recordings is considered. The
acoustic signal characteristics of the percussive accompa-
niment that pose specific challenges to conventional PDAs
are discussed. An experimental investigation of the perfor-
mance of a frequency-domain PDA, the Two Way Mismatch

method, is carried out for a variety of simulated and real mu-
sic signals of singing voice in tabla accompaniment. The
spectral structure of tabla strokes causes intermittent pitch
estimation errors. A dynamic-programming based smooth-
ing algorithm is proposed to improve the reliability of the
pitch contour while retaining rapid variations in pitch as far
as possible. This post-processing of the TWM-estimated
pitch contour is shown to achieve significant reduction in
the pitch error rates. Further, the proposed pitch-tracking
system offers a number of parameters which can be tuned
for improved performance in specific signal settings.
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