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Abstract. The problem of pitch tracking of the singing voice in the presence of 
Indian percussive interference, specifically the tabla, is considered. To 
overcome the problems due to this particular type of interference, a pitch 
tracker is used that applies dynamic programming (DP) based smoothing on 
pitch estimates obtained from a spectral-domain pitch detection algorithm 
(PDA) that uses harmonic matching. Experiments on real and simulated signals 
show the superiority of the spectral domain PDA over a correlation domain 
PDA in terms of pitch detection accuracy and suitability of the PDA output for 
post-processing. A new smoothing cost function is proposed and evaluated. The 
paper formulates general rules guiding the choice of cost functions participating 
in the DP based post-processing for this particular problem. 
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1   Introduction 

Obtaining accurate, high resolution pitch tracks of the melodic instrument is an 
important pre-requisite for musicological studies of Indian classical instrumental or 
vocal music [1] [2] [3]. While a number of automatic pitch detection methods are 
available for speech and music applications, what makes this task particularly 
challenging is the typical Indian classical music setting where the voice (in vocal 
music) is accompanied by a drone such as the tanpura, providing the fixed tonic, and 
rhythm provided by a percussive instrument such as the tabla. The presence of 
accompaniment leads to errors in the detected pitch of common pitch detectors, which 
otherwise perform well with purely monophonic signals.   

The tanpura, an overtone-rich stringed instrument, is tuned to the tonic 
chosen by the singer and is heard as a constant background throughout the 
performance. Its prominence in terms of its audibility relative to the voice is more due 
to its timbre rather than the strengths of its partials. It is found that in segments where 
only the tanpura coexists with the singing voice, the vocal pitch is accurately tracked 
by common pitch detection algorithms (PDAs).  However, the presence of percussion, 
in the form of the intermittent tabla strokes, causes significant noise-like degradation 
of the pitch estimates. PDAs generally employ post-processing of the local pitch 
estimates based on an assumed smoothness of the pitch contour. For instance, median 
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filtering can easily correct for isolated pitch jumps while lowpass filtering corrects 
corrupted values by interpolating from temporally adjacent regions. However such 
techniques are not as effective in the Indian classical music setting due to the 
possibility that important pitch variations may be completely obscured by the longer 
duration tabla strokes. Unlike Western music, which is grounded on the tempered 
scale with clear, distinct intervals separating notes, Indian classical music is 
characterized by the dominating presence of pitch glides and inflections.1 The pitch 
inflections, clearly perceived and recognized by experienced listeners, serve an 
important aesthetic function within the melodic contour and therefore need to be 
captured accurately [2] [3]. A more systematic approach to post-processing are 
dynamic-programming (DP) based methods which take into account candidate pitch 
estimates from the PDA other than just the locally optimal estimate. This amounts to 
combining suitably defined local measurement and smoothness costs into a global 
cost, which can then be optimized over a continuous voiced segment by the use of DP 
[4]. 

 
Fig. 1. Pitch contour (white line) as detected by a modified ACF PDA superimposed on the 
zoomed in spectrogram, of a segment of Indian classical music that contains a female voice and 
a drone throughout and Tabla strokes in some regions. 

In the next section, the problem that the percussion poses is illustrated by an 
example and the salient characteristics of a common percussive stroke, found to cause 
persistent errors in the estimated pitch contour, are reviewed. We next investigate the 
performance of a harmonic matching based PDA on a set of simulated signals, and 
compare it with the more common autocorrelation function (ACF) based PDA. Sec. 4 
considers a DP-based post-processing technique, and compares the suitability of the 
PDAs in this context. A new smoothness cost function is derived from observations 
on a training data set of classical singing, and evaluation results are reported. The 
paper concludes by formulating general rules guiding the choice of cost functions for 
DP-based post-processing. 

                                                           
1 Related audio examples, figures and experimental results are available at 

http://www.ee.iitb.ac.in/uma/~daplab/PitchTracking/index.htm 
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2   Percussion Signal Characteristics  

Typical Indian percussion (here, tabla) consists of a wide variety of strokes, each 
labeled with a mnemonic. Two broad classes are: 1. tonal strokes that decay slowly 
and have a near-harmonic spectral structure (thus eliciting a pitch percept) and 2. 
impulsive strokes that decay rapidly and have a noisy spectral structure. The spectra 
of some tonal strokes, soon after the onset, exhibit harmonics that lie in the same 
frequency range as those of the singing voice. During onset, the local Signal-to-Noise 
Ratio (SNR) can dip as low as -5 dB. Subtractive schemes to suppress the percussion 
prior to pitch detection are not expected to be effective due to the variety of tabla 
strokes and the high acoustic variability of any given stroke [5]. 
 

 
Fig. 2.a. Time domain waveform of a typical Na stroke b. Spectrum of a typical Na stroke 
immediately after its onset. A near-harmonic structure is clearly visible. 

 
An illustration of the degradation caused by tabla percussion is seen in Fig. 1, 

showing the pitch contour estimated by a modified ACF PDA [6], with recommended 
parameter settings. The estimated pitch contour is superimposed on a spectrogram of 
the signal, a typical classical vocal recording segment. In this segment, the sequence 
of tabla strokes is as follows: impulsive stroke (0.22 sec), impulsive stroke (1.15 sec), 
tonal stroke (1.2-1.7 sec), and impulsive stroke (1.7 sec). The impulsive strokes 
appear as vertical narrow dark bands. The tonal stroke (associated with the mnemonic 
‘Tun’) is marked by the presence of a dark (high intensity) horizontal band around 
290 Hz, which corresponds to its fundamental frequency. The other, relatively weak 
horizontal bands correspond to tanpura partials. We note that all the strokes degrade 
the performance of the PDA, which is otherwise able to accurately track the pitch of 
the voice in the presence of the tanpura, as indicated by the region where the pitch 
contour overlaps with the dark  band in the spectrogram corresponding to the voice 
fundamental frequency (between 0.4 and 1 seconds).  While the errors due to the 
impulsive strokes are localized, the tonal stroke causes errors that are spread over a 
long segment of the pitch track. These latter errors are not just voice octave errors but 
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interference errors i.e. when the pitch estimated is actually the interference pitch, 
indicated by the lower dark band present temporarily between 1.2 and 1.7 seconds. A 
tonal stroke is selected for further study because this class of strokes cause extended 
duration errors which cannot be corrected by common smoothing techniques. 

The acoustic characteristics of various tabla strokes were studied from [5]. In 
particular, the stroke associated with the mnemonic ‘Na’ is chosen because (a) it is 
commonly occurring, (b) it is slowly decaying (Fig. 2a), lasting for maximum 
durations of about 0.75 sec and (c) immediately after its onset, its spectrum shows the 
largest number of significant partials in a near-harmonic relationship (Fig. 2b) It is 
observed that just around the onset, partials in the frequency ratio 2:3:4:5 are the most 
significant, and that the second partial is always at least 5 dB stronger than the rest. 
Generally, these partials remain the most significant throughout the duration of the 
sound produced by the stroke. Also, in a classical singing performance, the tabla is 
always tuned such that the pitch perceived due to the Na stroke is the same as the 
tonic of the singer, resulting in the co-occurrence of voice and tabla partials in the 
same spectral region. Interference signals, simulated for use in the experiments in the 
following sections, are based on the aforementioned acoustic characteristics of the Na 
stroke. 

3   Performance Evaluation of PDAs 

From the last section, we see that the extended duration and complex tonal nature of 
the tabla strokes (such as ‘Na’ and ‘Tun’) cause the most significant degradation. 
Such strokes have spectra characterized by a few prominent harmonics. Since the 
melodic voice is also characterized by a harmonic pattern, it is hypothesized that a 
harmonic pattern matching algorithm may help to detect the melodic pitch. The two-
way mismatch (TWM) PDA is such a spectral-domain method [7]. It has been widely 
applied to monophonic pitch estimation [8]. To investigate the specific advantage, if 
any, of a spectral domain PDA, we also evaluate a well-known correlation domain 
PDA based on the ACF on the same signals. Some modifications to the 
implementation of the basic ACF are proposed in [6], which increase its robustness to 
additive noise, large pitch ranges and rapidly changing sounds and decrease its 
sensitivity to strong formants. These modifications have been incorporated in our 
implementation. 

In this section, we briefly review the TWM algorithm, and present a simulation 
experiment to compare pitch detection accuracy with that of the ACF PDA. 

3.1   Two-way Mismatch Method 

The two-way mismatch PDA [7] detects the pitch as that trial fundamental frequency 
that best explains the measured partials of the signal. A mismatch error is computed 
between a predicted harmonic spectral pattern and the spectral peaks detected in the 
signal. The trial fundamental frequency, in the selected search range, for which the 
best match between predicted and measured spectra is achieved, is indicated by the 
location of the global minimum of the TWM error. 
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The TWM error is computed as a weighted combination of two errors, one based 
on the frequency difference between each partial in the measured sequence and its 
nearest neighbour in the predicted sequence, and the other, based on the mismatch 
between each harmonic in the predicted sequence and its nearest neighbour in the 
measured partials. This two-way mismatch helps avoid octave errors in the absence of 
interference. The specific form of the error function (Eqs. 1-3 in [7]) applies an 
amplitude-weighted penalty to a normalized frequency error between measured and 
predicted partials for that trial fundamental frequency. 

The presence of strong white noise interference can distort the magnitude spectrum 
leading to an incorrect selection of peaks, resulting in a distortion of the data input to 
the pitch computation procedure itself. However, whether the presence of a harmonic 
interference causes pitch detection errors largely depends on the actual number of 
interference harmonics detected in the magnitude spectrum as compared to the target 
(voice) harmonics.  

Recommended TWM parameter values, empirically determined for quasi-harmonic 
signals [7], are p = 0.5, q = 1.4, r = 0.5 and ρ = 0.33. The most important parameter is 
‘p’, higher values of which serve to emphasize low frequency region errors. Since we 
do not explicitly take into account prior knowledge of the frequency location of 
interference partials, we use a lower value of p = 0.1 in our application. Additionally, 
it is found that using ρ = 0.25 leads to better pitch detection performance due to the 
consequent higher emphasis on predicted-to-measured partials differences. This 
favours the target voice fundamental when the interference is characterized by a few 
partials only. 

3.2   Experiment 

Generation of Test Signals. In order to comprehensively evaluate the accuracies of 
the TWM and ACF PDAs, simulated signals representing the worst case 
characteristics of the vocal and percussion combination were generated. In order to 
simulate the large and rapid pitch modulations in Indian classical singing and also the 
typical vocal range of a singer, two vowels (/a/) are synthesized, at a sampling 
frequency of 22050 Hz, with time-varying fundamental frequency. The time variation 
smoothly sweeps ± 1 octave from a chosen base pitch. To simulate male and female 
voices, low (150 Hz) and high (330 Hz) values of base pitch are chosen respectively. 
The maximum change of the pitch, which takes place around the base pitch region, 
between two frame centers (spaced 10 milliseconds apart) is 5% of the base pitch. The 
simulated vowel has a length of 12 sec (an approximate upper limit on the duration of 
a typical singing spurt) in which the pitch undergoes 10 oscillations around the base 
pitch. 

As for simulating the percussive interference, based on the spectral characteristics 
immediately after its onset, as discussed in Sec. 2, a steady complex tone having four 
partials in the ratio 2:3:4:5 for a fundamental frequency which is the same as the base 
pitch of the vowel, with the second partial being 5 dB above the remaining partials, is 
generated. The simulated vocal and interference signals are mixed at an SNR of 0 dB. 
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Simulation Results. For each of the PDAs under consideration, the detected pitch 
(computed once every 10 ms) was compared with the ground truth pitch of the 
simulated vocal signal.  A gross error is defined to occur when the detected pitch is 
outside the ±6% neighbourhood of the ground truth pitch. Table 1 shows the 
percentage gross error across the signal duration (1257 pitch estimates). It is clear that 
in both cases the TWM PDA demonstrates greater robustness to the complex tonal 
interference than the ACF PDA.   

In the absence of any interference the ACF PDA may make octave errors i.e. may 
incorrectly pick a multiple or sub-multiple of the true pitch as the final pitch estimate. 
However, the presence of a strong tonal interference, may suppress the periodicity of 
the target (in this case the voice) altogether in the correlation domain, in which case 
the ACF might incorrectly pick the pitch of the interference or its octave multiple as 
the final pitch estimate [9].  Further discussion regarding the advantages of TWM 
over ACF for this data is given in Section 4.1. 

Table 1. Gross error rates for TWM and ACF for the synthetic target signals at low and high 
base pitches + Na simulation added at 0 dB SNR 

Target synthetic signal Gross error rate (TWM) Gross error rate (ACF) 
Vowel at low base pitch  20.7 % 80.7 % 
Vowel at high base pitch  21.2% 73.3 % 

4   Dynamic Programming Based Post-processing 

Dynamic programming-based smoothing [4] is applied to continuously voiced 
segments. The operation of DP can be explained by considering a state space where, 
for a given frame (j), each state (p,j) represents a possible pitch candidate. Any pitch 
contour can be seen as the path ((p(1),1), (p(2),2),…, (p(j),j),…, (p(N),N)) through 
this state space where p(j) is the pitch estimate at the jth frame and N is the total 
number of frames in the given voiced segment. The measurement cost is the cost 
incurred while passing through each state i.e. E(p,j) is the measurement cost incurred 
at frame j for candidate p. For the time evolution of pitch, a smoothness cost W(p,p') 
is defined as the cost of making a transition from state (p,j) to state (p',j+1) where p 
and p' can be any candidate values in successive frames only. A local transition cost 
T, is defined as the combination of these two costs over successive frames (Eq. 1). 

T(p(j+1), p(j), j+1) = E(p(j+1), j+1) + W(p(j), p(j+1)) .      (1)

Finally, an optimality criterion to represent the trade off between the measurement 
and the smoothness costs is defined in terms of a global transition cost (S), which is 
the cost of a path passing through the state space, by combining local transition costs 
across a segment, as shown in Eq. 2, where N is the number of frames in the segment.  

N 1

j 1
S T(p( j 1), p( j), j 1)

−

=

= + +∑  .             (2) 
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 The pitch contour with the least global transition cost among all possible 
pitch contours for a given singing spurt is chosen as the final pitch contour.  

4.1   Measurement Cost Function 

The measurement cost function represents the reliability of each pitch candidate. For 
ACF the candidates available for a given frame are all those frequencies 
corresponding to lag values at which a peak is detected in the ACF, ranked in 
descending order of the strength of the ACF peak. For TWM, the candidates are all 
those trial frequencies at which a local minimum is found in the TWM error curve, 
ranked in ascending order of the TWM error value. 

For both ACF and TWM, the suitability for post-processing is determined by the 
quality of the measurement cost or the salience (reliability) of the underlying melodic 
(true) pitch. Salience of the candidate at the true pitch for both PDAs is computed as 
shown in Eq. 3, 

   
( )tr tp

tr

LS LS
Salience 1

LS

−
= −  ,                               (3) 

where LStr and LStp are the local strengths of the top-ranked and the true-pitch 
candidates respectively, as output by the PDA. The local strength of a candidate for 
ACF is computed as per [6], while the local strength of a candidate for TWM is 1 
minus  the TWM error value at that candidate frequency. 
 

Fig. 3. Histogram of the salience of the candidate at true pitch for the target at low base pitch 
for a. ACF PDA and b. TWM PDA. Absence of a candidate at the true pitch is indicated by a 
salience value of 0. 
 

 Fig. 3 shows the histogram of salience values of the candidate at the true melodic 
pitch for each of the ACF and TWM PDAs, for all frames, for the Na stroke 
simulation added to the target at low base pitch at 0 dB SNR. A salience of 1 indicates 
that the true and top ranked pitch candidate are the same while a salience of 0 
indicates that there is no candidate at the true pitch present in the list of candidates. It 
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can be seen that for a large percentage of frames (27.5%) for ACF, the true pitch does 
not appear in the list of candidates at all. So the lowest possible gross error rate 
achievable after DP-based smoothing is 27.5%. On the other hand, a candidate at the 
true pitch is always present in the TWM output. Also, the salience of the true pitch 
candidate, for TWM, is always very high (never below 0.7), but for ACF, a large 
number of true pitch candidates have low values of salience. The results are similar 
for the target at high base pitch. 

The high salience of the true pitch candidates for TWM, in the presence of a 
strong, pitched interference, is an indication of the robustness of TWM to such 
interference. When confronted with two simultaneously occurring pitched signals, the 
fundamental frequency of the signal with a larger number of detected harmonics will 
generally have a lower value of TWM error. In a separate simulation exercise, we 
found that gradually increasing the number of harmonics in the interference signal, 
keeping the overall target signal to interference power fixed, increases greatly the 
pitch detection errors. It also reduces, but to a lesser extent, the salience of the true 
pitch. Considering that the voice has a larger number of significant partials as 
compared to the tabla interference, the TWM PDA is able to detect the voiced pitch 
accurately or at most make octave errors. The ACF, on the other hand, is found to 
have a performance dependent on the relative power of the interference rather than on 
its spectral structure in terms of number of harmonics present.  This is consistent with 
the known behaviour of the ACF PDA where the stronger periodic signal dominates 
the autocorrelation function when simultaneous signals of different periodicities are 
present. 

The above results indicate that the TWM PDA shows significantly better potential 
in a pitch tracker based on DP post-processing for Indian classical music. 
Accordingly, the post-processor used, for all subsequent experiments, operates on the 
candidates output by the TWM PDA. 

4.2   Smoothness Cost Function 

The smoothness cost function should represent the knowledge that the vocal pitch 
contour is very likely to be smooth in some sense. Since the percussive interference is 
not continuous in time, smoothness constraints can play an important role in 
reconstructing the parts of the contour obscured by errors given that portions of the 
pitch contour are uncorrupted. In music, it is appropriate to define smoothness in 
terms of differences in log pitch.  The smoothness cost function in the DP formulation 
of [6] is shown in Eq. 4 

( )2W (p, p ) OctaveJumpCost. log p '/ p′ =  ,                       (4)  

where p and p' are the pitch estimates for the previous and current  frames.  The 
OctaveJumpCost (OJC) values tested are 0.35 and 1.0, corresponding to increasing 
penalties for the same pitch transitions. 

 With a view to determine a smoothness cost that is more musicological knowledge 
based, a distribution of inter-frame pitch transitions was obtained from pitch contours 
extracted from 20 minutes of continuous monophonic singing segments of two male 
and two female classical singers. The distribution, shown in Fig. 4, indicates that most 
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pitch transitions are in a close neighbourhood, and the probability of a given transition 
decreases rapidly (but nonlinearly) with increasing magnitude. At larger magnitudes 
of pitch transition, the probability falls off very slowly to near zero. It is reasonable to 
base the smoothness cost on the probability of the pitch transition. A cost function 
that satisfies the above criteria is defined in Eq. 5.  

           
( ) ( )( )22 2log p ' log p

2W(p, p ') 1 e
− −

σ= −   .                      (5)  

 
Fig. 4. Normalized distribution (solid curve) of log pitch transitions between adjacent frames 
(at 10 ms intervals) computed from true pitch contours of several songs sung by male and 
female singers. Log cost function (OJC =1) (dashed curve) and Gaussian cost function (σ = 0.1) 
(dotted curve) respectively. 

 
For convenience, the cost functions defined in Eq. 4 and Eq. 5 are henceforth 

referred to as the log and Gaussian cost functions respectively. They are shown as 
dashed and dotted lines respectively in Fig. 4. 

4.3   Experimental Evaluation of Different Smoothness Cost Functions 

Synthetic Target and Synthetic Interference. DP-smoothing is carried out on the 
output of TWM for the two cases of synthetic vowels (at low and high base pitches) 
added to a steady complex tone (Na simulation) at 0 dB SNR (see Section 3.2). The 
different cost functions experimented with are the Log cost function with OJC = 0.35 
and 1, and the Gaussian cost function with a standard deviation (σ) of 0.1. 

From Table 2, we can see that the least number of errors is achieved for the 
Gaussian log cost function for both cases. An analysis of the errors revealed that 
errors are made for those frames that are around regions where the target pitch 
contour is close to the interference pitch. For these frames, the minima values at the 
interference pitch in the TWM error are close to the minima at the target pitch, if at all 
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these are distinct. Thus the measurement cost for the interference and target pitches 
are very close. Pitch transitions in these regions lie within the interval where the 
distribution of pitch transitions is high (Fig. 4). As such, these transitions are 
penalized more by the log cost function than the Gaussian cost function, since the 
former is steeper in this region. As a result, the pitch contour estimated after DP with 
the log cost tends to ‘lock on’ to the interference pitch for short durations whenever 
the target pitch crosses the interference pitch, since a transition moving away from the 
interference pitch is penalized more. This is not the case for the pitch contour 
estimated by DP with the Gaussian cost function, which is able to track the target 
pitch contour quite accurately. Thus, the flatter nature of the Gaussian cost function, 
for pitch transitions ranging from -0.2 to + 0.2 octaves, as compared to the log cost 
function, results in fewer errors for DP smoothing.  

Table 2. Gross error rates (GER) for TWM+DP for different smoothness cost functions for 
targets at low and high base pitch.  

Cost Function Parameter value GER (low base pitch) GER (high base pitch) 
Log OJC = 0.35 5.7 % 5.7 % 

Log OJC = 1.0 3.2 % 2.5 % 

Gaussian Log σ = 0.1 1.0 % 1.0 % 

Synthetic Target and Real Interference. Real signals consisting of a rapid sequence 
of Tabla strokes, both impulsive and tonal, were added over the duration of the 
synthetic vowels at low and high base pitch, such that the average local SNR for each 
stroke onset was about -5 dB. The pitch tracker (TWM+DP) was tested using different 
cost functions on the resulting signals. Results are shown in Table 3. For the target at 
low base pitch, the log cost function (OJC = 1.0) yields the same result as the 
Gaussian cost function, but for the target at higher base pitch, the performance of the 
latter is marginally better. These results reinforce the case for using a probability-
based transition cost function for DP. 

Table 3. Gross error rates for TWM+DP for different smoothness cost functions for targets at 
low and high base pitch, and real interferences. 

Cost Function Parameter value GER (low base pitch) GER (high base pitch) 
Log OJC = 0.35 6.7 % 5.7 % 

Log OJC = 1.0 1.9 % 1.5 % 

Gaussian Log σ = 0.1 1.9 % 1.2 % 

4.4   Test Case with a Real Signal 

Fig. 5 compares the performance of ACF and TWM, with and without post-
processing using the same smoothness cost function, for the real signal mentioned in 
Fig. 1. The pitch contour estimated by the ACF PDA (Fig. 5a) is degraded by all 
strokes but DP is able to recover from the impulsive strokes. However, the estimated 
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pitch contour ‘locks on’ to the interference fundamental during a significant time 
period after the onset of the tonal stroke due to the low salience of the voice pitch in 
the presence of strong percussive interference. On the other hand, the TWM PDA 
estimated pitch contour (Fig. 5b) is not affected by the tonal tabla stroke at all in this 
case, and the solitary error is made due to the impulsive tabla stroke.  This error is 
corrected by DP-based smoothing. 

 

 
Fig. 5. Pitch contour for the real signal in Fig. 1 estimated by a. ACF and b. TWM, with (solid 
curve) and without (dashed curve) post-processing respectively. 

5   Conclusion 

The problem of pitch tracking in the presence of typical Indian percussive interference 
was considered. The salient characteristics of the tabla interference are that it is 
intermittent (not continuously present) and that its spectral structure comprises of 
strong, but few, harmonic components. A pitch tracker that uses the TWM PDA 
followed by DP-based smoothing was investigated on simulated and real signals. It is 
seen that the raw pitch estimate of the TWM PDA is accurate in the presence of the 
spectrally overlapping harmonic interference. This was attributed to the specific form 
of the TWM error function which emphasizes the spectral structure of the interference 
in terms of number of harmonics present and, to a lesser extent, the strengths of the 
harmonics. Even in unfavourable cases, when pitch detection errors occur, the target 
melodic notes remain salient in the PDA output. This allows DP-based post-
processing to recover the pitch contour based on smoothness constraints. A new 
smoothing cost based on the observed distribution of pitch transitions was shown to 
be particularly effective in recovering the melodic pitch from gross errors.  

From these results, two rules regarding the choice of measurement and 
smoothness cost functions for dynamic programming based smoothing of a pitch 
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contour output by a PDA can be formulated. (1) The measurement cost must reflect 
high salience of a candidate at the melodic pitch, even in the presence of interference. 
(2) An effective smoothness cost function must be related to inter-frame pitch 
transition probabilities. Future work is targeted toward the wider testing of the 
proposed pitch tracking algorithm, and comparison with more recently proposed 
PDAs such as a bandwise ACF based PDA [10]. 
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