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ABSTRACT 

The suitability of optimal path finding methods for vocal melody 
extraction in polyphonic music is well recognized since they 
combine local pitch strength and temporal smoothness considera-
tions in a global sense. However, when such single-F0 tracking 
systems are applied to sound mixtures in which pitched accom-
paniment is of comparable strength to the singing voice, they suf-
fer from irrecoverable degradations. In this study we investigate 
the use of an optimal path finding method that is allowed to dy-
namically track multiple F0 paths, specifically two, through the 
F0 candidate space. It is shown that when such a system is ap-
plied to typical polyphonic mixtures with vocal solo the melodic 
information is indeed retrieved. Audio examples are available at 
http://www.ee.iitb.ac.in/daplab/DualF0TrackingResults_DAFx 

1. INTRODUCTION 

Automatic melody extraction is an area of research that has re-
ceived increased attention over the past decade. The majority of 
melody extraction algorithms in recent literature by-and-large 
adhere to the framework depicted in Figure 1. Here, initially a 
short-time, usually spectral, feature set is extracted from the input 
polyphonic audio signal. This is then input to a multi-F0 estima-
tion block whose goal is to estimate candidate F0 and associated 
pitch salience/strength values. The melody identification stage 
attempts to identify a trajectory through the F0 candidate-time 
space that most likely represents the melody of the song, mani-
fested as the pitch-curve of the lead melodic instrument, usually 
the singing voice for popular music. The voicing detection block 
identifies segments of audio in which the lead melodic instru-
ment is present.  
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This study is mainly focused on improvements to the melody 
identification stage. In this stage most algorithms exploit F0 sali-
ence values, from the multi-F0 estimation stage, and impose 
smoothness constraints to identify the melodic trajectory. Two 
approaches have been widely used. The first involves finding an 
optimal path through the F0 space over time by dynamically 
combining F0 salience values and smoothness constraints [1]-[4]. 
All systems use optimal path finding methods either based on the 
Viterbi algorithm [5] or dynamic programming (DP) [6] to gen-
erate the final melodic trajectory. The second approach applies 
variants of the partial tracking (PT) algorithm, used in classical 
sinusoidal modeling [7], to forming multiple F0 trajecto-
ries/contours through the F0 candidate space over time [8]-[11]. 
The only criterion usually used in linking an F0 candidate to a 
‘track’ is the frequency proximity of the candidate to the last 

tracked F0. The salience of the F0 is used to evaluate track 
strength and is not used as such in the linking process except 
sometimes in the case of when multiple tracks are competing for 
a single F0 candidate [9]. The final melodic contour is usually 
chosen as that track with the greatest salience /energy. Hereafter 
methods that use the first approach are referred to as DP and 
methods that use the second are referred to as PT. 

Apart from finding the optimal path in terms of the defined 
cost functions, a further advantage of DP over PT is that it com-
bines the trajectory forming and melodic contour identification in 
one, computationally-efficient, global framework i.e. a black box 
that outputs a single F0 contour given suitably defined local and 
smoothness costs. PT, on the other hand, first forms trajectories 
using local frequency proximity and subsequently identifies me-
lodic ‘tracks’. This last is not a trivial task [8] as the track-space 
can be densely populated especially in polyphonic music audio. 
Here multiple trajectories may be formed through the instrument 
F0 contours and their (sub) multiples since typically there will be 
F0 candidates at these values output by the multi-F0 module. 

One condition under which both DP and PT may output an 
(partially) incorrect melody is when a strong, pitched accompa-
nying instrument is also present i.e. low signal-to-
accompaniment ratio (SAR). For such signals most multi-F0 
modules would output an accompaniment F0 candidate with a 
salience comparable to the melodic F0 candidate, especially if the 
accompaniment has several, strong partials in the same frequency 
band as the melodic instrument. The melody identification stage 
then may incorrectly identify segments of the accompaniment 
pitch contour as the melody [8]. For PT based approaches the 
recovery of the actual melodic tracks may still be possible by the 
extraction of timbrally motivated features; based on the assump-
tion that the melodic track is formed but not identified. DP, on 
the other hand, is forced to output only a single, possibly ‘con-
fused’, contour. 
 

 

Figure 1: Block diagram of a typical melody extraction 
system 
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The reduction in pitch accuracy of a DP-based melody ex-
tractor, due to a strong, pitched accompanying instrument, may 
be alleviated if DP is extended to tracking multiple F0 contours 
simultaneously. This can be achieved by performing DP over a 
node-space as opposed to an F0 candidate space, where a node 
represents an ordered group of F0 candidates. The additional F0 
members of the node help to better deal with the accompanying 
pitched instrument(s). The output would thus contain multiple F0 
contours, which would then have to be examined for melodic 
contour identification. Although such a system is similar to the 
PT approach, in that the trajectory forming and melody identifi-
cation are separate steps, the resulting trajectory-space formed as 
a result of node-based DP is significantly sparser than when us-
ing PT apart from being optimal cost. 

In this study we propose such a system that tracks two simul-
taneous F0 contours (hereafter referred to as the dual-F0 system). 
We restrict ourselves to tracking only two pitches simultaneously 
on the realistic assumption that there is only one relatively domi-
nant melodic or pitched instrument present at a given time be-
sides the voice. Section 2 describes the implementation of the 
complete system. In Section 3 the single and dual-F0 systems are 
comparatively evaluated on a test data set of two-sound mixtures 
that exemplify the signal degradations that result in reduced pitch 
accuracy of the single-F0 tracking system. A simple post-
processing method to correct errors peculiar to the dual-F0 sys-
tem is also described. The last section presents the conclusions 
and directions for future study. 

2. SYSTEM DESCRIPTION 

The proposed system block diagram is shown in Figure 2. The 
system comprises of four modules. The first two modules (Sinu-
soid ID and F0 candidate selection) constitute the multi-pitch 
analysis that determines multiple F0s per frame. The next two 
modules (node forming and node tracking) describe the tracking 
stage in which F0 pairs are formed and are jointly tracked 
through the F0 candidate v/s time space. Parameter values for the 
algorithm are available in Table 1. 

2.1. Multi-pitch analysis 
The proposed system uses a method of extracting multiple F0 
candidates, very similar to our previous melody extraction algo-
rithm [12], which demonstrated high pitch tracking accuracies in 
the audio melody extraction task at the recent Music Information 
Retrieval Evaluation eXchange (MIREX 2008)1. The inputs to 
this system are the frequency locations and amplitudes of the lo-
cal sinusoids/partials extracted from the feature extraction mod-
ule, which detects sinusoids in the magnitude spectrum, obtained 
from a fixed-frame signal analysis and a high-resolution STFT, 
using a main-lobe matching criterion and refines the sinusoid 
frequency and amplitude estimates using parabolic interpolation. 
      For the dual-F0 case it is required to reliably detect both 
source F0s for each analysis frame in order to ensure that the me-
lodic F0 is not lost. Different methods of estimating two distinct 
F0s simultaneously from a monophonic pitch detection algorithm 
(PDA) were studied by de Cheveigné [13], [14]. The first of 
these is to extend a single-F0 algorithm to estimate two F0 e.g. 
identifying the largest and second largest peak in the autocorrela-
tion function. The next method is to use an iterative “estimate-
                                                           
1 Detailed results are available at http://www.music-
ir.org/mirex/2008/index.php/Audio_Melody_Extraction_Results 

cancel-estimate” method that first estimates a dominant F0 and 
then removes its effect from the signal and re-estimates the 
dominant F0. The third method is to jointly estimate 2 F0s from 
the signal. This usually involves searching a two-dimensional 
space of F0 pairs for that pair that minimizes/maximizes some 
function of 2 F0s. It was found [14] that the third method, while 
computationally expensive, had a lower error rate than the second 
method, which in turn performed better than the first method. 

2.1.1. Implementation 
Our system uses a computationally-efficient method of relia-

bly extracting multiple F0 candidates, without having to resort to 
the iterative or joint estimation approach, by separating the F0 
candidate detection from the salience computation along the lines 
of [15]. Probable candidate locations are first identified as sub-
multiples of the frequencies of well-formed sinusoids i.e. those 
having a sinusoidality (S) greater than 0.8. Candidates that do not 
lie within the F0 search range (from 70 to 1120 Hz, spanning 
four octaves) are erased. 

For each of the above detected candidates their correspond-
ing salience is computed as the normalized Two-Way Mismatch 
(TWM) error [16]. In a previous study we had found that the me-
lodic (voice) F0 candidate was detected with significantly higher 
salience, in the presence of strong, spectrally sparse, tonal inter-
ferences, by searching for local minima from the TWM error 
curve for different trial F0 [1]. The TWM PDA falls under the 
category of harmonic matching (monophonic) PDAs that are 
based on the frequency domain matching of a measured spectrum 
with an ideal harmonic spectrum. However, unlike typical har-
monic matching algorithms that maximize the energy at the ex-
pected ideal harmonic locations, the TWM PDA minimizes a 
spectral mismatch error that is a particular combination of an in-
dividual partial’s frequency deviation from the ideal harmonic 
location and its relative strength. Rather than dependence on in-
dividual harmonic strength, which is the case with most ‘har-
monic-sieve’ based methods [17], we found the TWM error val-
ues to be more dependent on the harmonic spectral spread. This 
has two advantages. F0s belonging to the singing voice, which is 
known to have a large harmonic spread, are expected to have 
lower TWM errors i.e. better salience. Additionally even strong 
(loud) pitched accompaniment which is spectrally sparse, such as 
guitar, piano, pitched percussion, will have lower salience. 

The overall TWM error (ErrTWM), for a given trial F0 (f), is a 
weighted sum of two errors, the predicted-to-measured error 
(Errp→m) and the measured-to-predicted error (Errm→p), as shown 
in Equation 1. 

Table 1: Multi-pitch analysis parameters.  

Parameter Value 

Frame length 40 ms 

Hop 10 ms 

Lower limit on F0 70 Hz 
Upper limit on F0 1120 Hz 

Upper limit on spectral content 5000 Hz 

NFFT 8192 

Single-F0 TWM param. (p, q, r & ρ) 0.5, 1.4, 0.5 & 0.1 

Dual-F0 TWM param. (p, q, r & ρ) 0.5, 1.4, 0.5 & 0.33 
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where N and M are the number of predicted and measured har-
monics respectively and ρ is the weighting factor. Errp→m is 
based on the mismatch between each harmonic in the predicted 
sequence and its nearest neighbor in the measured partials while 
Errm→p is based on the frequency difference between each partial 
in the measured sequence and its nearest neighbor in the pre-
dicted sequence. Both of these share the same form. Errp→m is 
defined below. 
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where fn and an are the frequency and magnitude of a single pre-
dicted harmonic. Δfn is the difference, in Hz, between this har-
monic and its nearest neighbor in the list of measured partials. 
Amax is the magnitude of the strongest measured partial. Thus an 
amplitude weighted penalty is applied to a normalized frequency 
error between measured and predicted partials for the given trial 
F0. p, q, and r are independent parameters. Note that here we use 
a value ρ = 0.1. This gives lesser weight to Errm→p and leads to 
ErrTWM being almost the same as Errp→m since Errm→p for single-
F0 values will be unreliable in the presence of harmonics of an-
other pitched source. 

Next, the F0 candidates are sorted in ascending order of their 
individual TWM errors (ErrTWM). Weaker candidates (having 
higher TWM error) that lie in the close vicinity (25 cents) of a 
stronger candidate are erased from the list of possible F0 candi-
dates. Only the top 10 candidates and their corresponding nor-
malized TWM error values from the final list are chosen for fur-
ther processing. 

2.1.2. Evaluation 
In a preliminary evaluation of our multi-pitch analysis system 

we used complex tone mixtures made available by Tolonen [18] 
in which two harmonic complexes, added at different amplitude 
ratios of 0, 3, 6 and 10 dB, whose F0s are spaced a semitone 
apart (140 and 148.3 Hz) are considered. It was shown that the 
discernibility of a peak at the weaker F0 candidate in an en-
hanced summary autocorrelation function (ESACF) progres-
sively gets worse; while at 6 dB it is visible as a shoulder peak, at 
10 dB it cannot be detected [18]. For our study an evaluation 
metric of ‘percentage presence’ was defined as the percentage of 
frames that an F0 candidate is found within 15 cents of the 
ground truth F0. We found that for all mixtures (0, 3, 6 and 10 
dB) both F0s (140 and 148.3 Hz) were always detected by our 
system i.e. percentage presence = 100%. This indicates that the 
F0 presence of the relatively weak source is clearly signaled in 
the TWM error curve as obtained by us.  

2.2. Multi-pitch tracking 

2.2.1. Related literature 
There is relatively sparse literature on joint tracking of F0 com-
binations. The system proposed by Li and Wang [4] was specifi-
cally designed to track the F0 of the singing voice in polyphonic 
audio. This system used HMMs to track pitch states. Each pitch 
state could be represented by a 0, 1 or 2-pitch hypothesis. The 2-
pitch hypothesis introduced to deal with the interference from 
concurrent pitched sounds. Here, however all possible pairs of 

locally salient F0 candidates are considered. This may lead to the 
irrelevant and unnecessary tracking of an F0 and its (sub)-
multiple, which often tend to have similar local salience as the 
true pitch. Also when two pitches are tracked the first pitch is 
always considered to be the voice pitch since it is considered to 
be the dominant pitch whenever present. 

2.2.2. Implementation 
Our system extends the single-F0 tracking DP algorithm to track 
ordered F0 pairs called nodes. If we consider all possible pairs of 
F0 candidates the combinatory space will become very large 
(Number of permutations of F0 pairs formed from 10 F0 candi-
dates is 10P2 = 90) and tracking will be computationally intensive. 
More importantly, we may end up tracking an F0 and its (sub)-
multiples, as mentioned before. Our method to overcome this is 
to explicitly prohibit the pairing of harmonically related F0s dur-
ing node generation. Specifically, two local F0 candidates (f1 and 
f2) will be paired only if  

( )1 2 2min . ; . ,low highk
f k f T k f F F⎡− > ∈⎣ ⎤⎦

  (3) 

where k.f2 represents all possible multiples and sub-multiples of 
f2, T is the harmonic relationship threshold and Flow and Fhigh are 
the lower and upper limit on the F0 search range (see Table 1). 
Using a low threshold (T) of 5 cents does not allow F0s to be 
paired with their multiples but allows pairing of two source F0s 
that are playing an octave apart, which typically suffer from 
slight detuning especially if one of the F0 sources is the singing 
voice.  

The measurement cost of a node is defined as the jointly es-
timated TWM error of its constituent F0 candidates [19]. In the 
interest of computational efficiency the joint TWM error is com-
puted as shown below 

1 2
1 2

1 2
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where N1 and N2 are the number of predicted partials for f1 and f2 
resp. and M is the number of measured partials. The first two 
terms in Equation 4 will have the same values as computed dur-
ing the single F0 TWM error computation (Equation 1). Only the 
last term i.e. the mismatch between all measured partials and the 
predicted partials of both F0s (f1 and f2), has to be computed. 
Note that here we use a larger value of ρ (0.33) than before. This 
is done so as to reduce octave errors by increasing the weight of 
Errm→p thereby ensuring that ErrTWM for the true F0 pair is lower 
than that of the pair that contains either of their respective (sub)-
multiples.  

The smoothness costs between nodes are the sum of smooth-
ness costs between the constituent F0 candidates given by 

( ) ( )( )22 2log ' log
2( , ') 1

p p

W p p e σ
− −

= −    (5) 

where p and p' are the ordered F0 candidates of nodes in the pre-
vious and current frames. A value of σ = 0.1 results in a function 
that assigns very low penalties to pitch transitions below 2 semi-
tones [20]. Larger rates of pitch transition, in the 10 ms frame 
interval chosen in this work, are improbable, even during rapid 
singing pitch modulations, and are penalized accordingly. 
  A globally optimum path is then computed through the node-
time space using the DP algorithm (hereafter referred to as the 
dual-F0 tracking system). Two pitch contours are then output. 
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Table 2: Statistics of testing dataset. 

Category Description Vocal 
(sec) 

Total 
(sec) 

1 One pitched sound 
always present 24.1 26.1 

2 0 pitched sounds may 
be present 25.2 30.4 

3 F0 Collisions may 
occur 20.4 21.6 

TOTAL 70.1 78.1 

3. MELODY EXTRACTION EXPERIMENT 
In this section the performance improvement of the proposed sys-
tem (dual-F0) over the previous melody extraction algorithm 
(single-F0) is demonstrated on test data that comprises of cases 
for which the SARs between the singing voice and a pitched, ac-
companying instrument/another singing voice are very low.  

3.1. Data Description 
The data has been divided into three categories, as shown in Ta-
ble 2. The first category contains mixes of real singing voice sig-
nals and real harmonium signals at 0 dB SAR. In these mixes, at 
any given time instant, there is at least one pitched sound present. 
Category 2 consists of a set of mixes of real singing voice signals 
and synthetic organ, and a set of mixes of two real singing voice 
signals. Here a complication is introduced that the instrumental 
note boundaries very often occur simultaneously with voice note 
boundaries, which are marked by unvoiced utterances. This leads 
to a case of zero pitched sounds being present at certain instants. 
The former set was specifically created for the source separation 
experiment in [21] but is also well suited for our evaluation. In 
this set the instrumental accompaniment is always playing the 
melody but at an octave higher than the voice. In the latter set, 
obtained from multi-track, studio-recorded, Indian film music, 
one voice is singing the melody while the other is ‘harmonizing’ 
with the first voice. All the mixes in this category are again at 0 
dB SAR. Category 3 introduces a further complication of F0 col-
lisions between the singing voice and instrument signals. This 
category contains 0 dB SAR mixtures of excerpts of real singing 
voice and real harmonium signals from multi-track recordings of 
actual North Indian classical vocal performances. The individual 
monophonic tracks were obtained by ensuring acoustic isolation 
between the instrument-performing artists by spreading them out 
on the same stage with considerable distance between them.

The statistics of each of the categories is shown in Table 2. 
Here total duration refers to the length of the entire audio and 
vocal duration refers to the duration for which sung voiced utter-
ances are present. 

3.2. Experiment and Results 
A fixed set of PDA analysis parameters was used across the ex-
periments (see Table 1).  Note that our system does not place any 
restrictions on the relative pitch ranges of the two melodic 
sources nor does it impose specific rules on the kind of pitch 
transitions allowed. Additionally, no discretization of the melody  

Table 3: Percentage presence of melodic and accompanying 
ground truth F0 in candidate list output by multi-F0 module. 

Percentage presence (%) 
Category 

Voice F0 Instrument F0 
1 99.7 98.5 
2 98.4 97.5 
3 96.6 99.2 

 

Table 4: Pitch accuracies (PA & CA) for test dataset using 
single and dual-F0 tracking. 

Dual-F0 
Category  Single-

F0 Best 
 contour Overall 

PA (%) 57.0 97.4 97.4 1 CA (%) 58.5 98.4 98.4 
PA (%) 48.0 80.4 91.7 2 CA (%) 55.1 83.2 94.0 
PA (%) 52.5 66.3 85.0 3 CA (%) 53.0 67.3 90.0 

 
in terms of note event [2], [8] is used since the melody in Indian-
classical music is a continuously varying curve rather than a se-
quence of note events [20].  

In all cases the ground truth voice pitch is computed from the 
clean voice tracks then hand corrected for voicing errors. Only 
valid ground-truth values i.e. for frames in which a pitched utter-
ance is present, are used for evaluation. 

The multi-pitch extraction part of our system is separately 
evaluated in terms of percentage presence, in the F0 candidate 
list, of the instrument and voice ground truth pitches. Results for 
this experiment are given in Table 3. Clearly the true F0 candi-
dates for both sound sources are being detected with a high de-
gree of accuracy.  

The evaluation metrics used for melody extraction were pitch 
accuracy (PA) and chroma accuracy (CA) [17]. PA is defined as 
the percentage of voiced frames for which the pitch has been cor-
rectly detected i.e. within 50 cents of a ground-truth pitch. CA is 
the same as PA except that octave errors are forgiven. Results of 
the experiment are given in Table 4. Here the above metrics have 
been computed for the single-F0 tracking and the dual-F0 track-
ing system. Note that since no decision is currently being made 
about which of the 2 contours (in the form of one ordered pair of 
F0s per frame) output by the dual-F0 tracking system is the vocal 
contour, the results report that contour with the higher accuracy 
with respect to vocal pitch ground truth, and also present the 
overall accuracy as a measure of the correct pitch at a given in-
stant being tracked by at least one of the two contours. In all 
cases the overall accuracy of the dual-F0 tracking system is seen 
to be higher than that of the single-F0 tracking system. 

3.3. Discussion 

3.3.1. Category 1 

We observe, from the results presented in Table 4, that there is no 
difference between the accuracies of the best contour and the 
overall accuracy for this category of signals. This indicates that 
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the best contour has faithfully tracked the voice F0 through the 
entire signal. Also the improvement over the single-F0 tracker is 
significant. To illustrate this point consider the contours output 
by the single and dual-F0 tracking systems for a single file in this 
category (See Figure 3). This file contains a mix of a female 
voice singing lyrics (i.e. both voiced and unvoiced sounds) with a 
harmonium signal that is playing notes with successively increas-
ing pitch. In each plot, the ground truth of the singing voice (thin 
line) and the harmonium (dashed line) are also plotted. The gaps 
in the thin curve indicate unvoiced utterances. The thick curve 
represents the tracked contour. In Figure 3(a), we can see that the 
single-F0 tracker misses large parts of the voice pitch contour, 
during which it incorrectly tracks the harmonium contour. Figure 
3(b) shows that contour 1 of the dual-F0 tracking system faith-
fully follows the voice pitch while Figure 3(c) shows that contour 
2 faithfully tracks the harmonium pitch.  

We observe from Figure 3(a) and (b) that during unvoiced ut-
terances, an F0 pair (node) that consists of the harmonium F0 
with a spurious F0 candidate is tracked. However, when the next 
voiced utterance occurs the tracked node pair consists of the 
harmonium and voice F0 again. The spurious candidate may be 
related to the harmonium F0 by a ratio of small integer numbers; 
as such candidates are usually available for pairing. The smooth-
ness cost constraints will bias the system towards tracking such 
candidates that are in the neighborhood of the F0s of adjacent 
voiced utterances. The tracking of the spurious candidate does 
not degrade the pitch accuracy of the system since only the 
ground truth pitch of known voiced utterances are used in the 
computation of the evaluation metrics. 
 

3.3.2. Category 2 

From rows 3 and 4 of Table 4 we observe that the pitch tracking 
accuracies of the best tracked contour as well as the overall accu-
racies for the dual-F0 tracking system are again significantly 
higher than the single-F0 system output contour. However the 
overall accuracy values of the dual-F0 tracking system are higher 
than the best contour accuracies. This is due to the occurrence of 
‘switching’ between the actual voice and instrument pitches 
across the two contours in the dual-F0 tracking system. This 
‘switching’ is found to occur when the instrument note change 
occurs simultaneously with an unvoiced (un-pitched) sung utter-
ance. All files in this category have frequent occurrences of the 
above situation as illustrated by the example of Figure 4. This 
example is a mix of a male voice singing lyrics and a synthetic 
organ. The convention for the different contours is the same as 
for Figure 3. Figure 4(a), (b) and (c) indicate the contour output 
by the single-F0 tracking system, contour 1 and contour 2 of the 
dual-F0 tracking system respectively. 
The co-incident gaps in the thin and dashed contours indicate 
segments when no pitched sound is present. Figure 4(a) indicates 
that the output of the single-F0 tracking system is again ‘con-
fused’ between the F0s of the two sources. However, even the 
dual-F0 output contours (Figure 4(b) and 4(c)) show similar deg-
radation. It can be seen that contour 1 of the dual-F0 tracking 
system tracks the first note of the voice but then ‘switches’ to the 
organ F0 while the reverse happens for contour 2. 
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Figure 3: Extracted F0 contours (thick) v/s ground truth F0s 
voice (thin) and harmonium (dashed) for (a) single-F0 tracking, 
(b) dual-F0 tracking: contour 1 and (c) contour 2 for an example 
from Category 1.
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Figure 4: Extracted F0 contours (thick) v/s ground truth F0s 
voice (thin) and organ (dashed) for (a) single-F0 tracking, (b) 
dual-F0 tracking: contour 1 and (c) contour 2 for an example 
from Category 2.
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Figure 5: (a) Ground truth F0s voice (thin) and harmonium 

(dashed) v/s (b) extracted F0 contours (thick) dual-F0 tracking: 
contour 1 and (c) contour 2 for an example from Category 3 
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The current system cannot ensure that the contours will remain 
faithful to their respective sound sources across regions in which 
no clear pitched sound exists. Even if a zero-pitch hypothesis was 
made during these regions it would be difficult to ensure faithful-
ness, especially if the next note of the different source rather than 
the same source is closer to the previous note of a sound source. 
Further, it is seen occasionally that the slight detuning required 
for the correct clustering of pitches for the DP node formation 
does not always hold in the octave separated mixture. In such 
cases, spurious candidates are tracked instead as can be seen by 
the small fluctuations in the output contours of the dual-F0 track-
ing system (Figure 4(b) and (c)). Such fine errors do not occur in 
the cases of vocal harmony tracking. 

 
3.3.3. Category 3 

From rows 5 and 6 of Table 4 we can see that although the best 
contour accuracy of the dual-F0 tracking system is significantly 
better than the accuracy for the single-F0 tracking system, the 
overall accuracy of the dual-F0 system is still significantly higher 
than the former. This indicates that some ‘switching’ has taken 
place. Here F0 collisions are an additional complication. To illus-
trate this problem consider Figure 5 (b) and (c), which show the 
ground truth voice and instrument F0s along with the dual-F0 
system output for a voice and harmonium mix from this category. 
For clarity, we have avoided plotting the single-F0 system output 
pitch contour in Figure 5(a), which now only shows the voice 
and harmonium ground truth values.  

Figure 5(a) brings out a peculiarity of Indian classical music 
that causes F0 collisions to be a frequent rather than a rare occur-
rence. In this genre of music the harmonium accompaniment is 
meant to reinforce the melody sung by the singer. There is no 
score present as each vocal performance is a complete improvisa-
tion. So the instrumentalist attempts to follow the singer’s pitch 
contour as best he/she can. Since the harmonium is a keyed in-
strument, it cannot mimic the finer graces and ornamentation that 
characterize Indian classical singing but attempts to follow the 
steady held voice notes. This pitch following nature of the har-
monium pitch is visible as the dashed contour following the thin 
contour in Figure 5(a).  

At the locations of harmonium note change, the harmonium 
F0 intersecting with the voice F0 is similar to the previous case 
during unvoiced utterances when instead of two F0s only one 
true F0 is present. Here the contour tracking the harmonium will 
in all probability start tracking some spurious F0 candidates. Dur-
ing these instances the chances of switching are high since when 
the voice moves away from the harmonium after such a collision, 
the pitch-proximity based smoothness cost may cause the present 
contour to continue tracking harmonium while the contour track-
ing the spurious candidate may start tracking the voice F0. 

Cases of the voice crossing a steady harmonium note should 
not usually result in a switch for the same reason that switching 
occurred in the previous case. The smoothness cost should allow 
the contour tracking harmonium to continue tracking harmonium. 
However the first collision, which is an example of voice F0 
cross steady harmonium F0, causes a switch. This happened be-
cause of multiple conditions being simultaneously satisfied. The 
crossing is rapid and takes place exactly between the analysis 
time instants, the harmonium and voice F0 candidates are present  

Table 5: Pitch accuracies (PA & CA) of best contour before 
and after switching correction and overall accuracy for 
Category 2 

Category 2 PA (%) CA (%) 

Before post processing 80.4 83.2 

After switching correction 89.4 90.7 
Overall accuracy 91.7 94.0 

 
on either side of the crossing but slightly deviated from their cor-
rect values due to the rapid pitch modulation. As Indian classical 
singing is replete with such rapid, large pitch modulations such a 
situation may not be a rare occurrence. 

3.4. Switching correction 
From the previous results it has been shown that when short si-
lences are present simultaneously for both sound sources (cate-
gory 2) or when the F0 of the two sources ‘collide’ (category 3) 
individual contours tracking the F0s of either source may 
‘switch’ over to tracking the F0s of the other source. This leads 
to lesser values of best contour accuracies when compared to the 
overall accuracies though they are still significantly higher than 
the single-F0 tracking accuracies. One simple solution to this 
problem proposed here is applicable when the F0 contours of the 
melodic and accompanying instruments do not collide (category 
2). Often in western music, for the mixture of the tonal accompa-
niment and the melody to sound pleasing, their respective pitches 
must be musically related. Further, as opposed to Indian classical 
music, western (especially pop) music does not display such 
rapid pitch modulations. As a result, F0 collisions most often do 
not occur. This is also the case with musical harmony and duet 
songs. 

 With the above knowledge we implement switching correc-
tion by forcing one of the two F0 contours to always be higher or 
lower, in pitch, than the other F0 contour. To make the initial de-
cision about which contour is lower/higher than the other we use 
a majority voting rule across the entire contour. From Table 5 we 
find that by applying the above correction the best contour PA 
and CA values of the dual-F0 tracking output for category 2 (row 
2) come closer to the overall accuracy values (row 3). 

4. CONCLUSION 

In the context of melody extraction for vocal performances, it 
was found that a system that uses a dynamic programming 
framework for melody identification results in a single, degraded 
melodic contour when a strong, pitched accompanying instru-
ment is present. This degradation is caused by the incorrect iden-
tification of the instrument pitch as the melody. In order to enable 
the recovery of the actual melodic contour it is proposed to ex-
tend the use of DP to tracking multiple pitch contours simultane-
ously. Specifically, a system that dynamically tracks F0-
candidate pairs, generated by imposing specific harmonic rela-
tion-related constraints, is proposed to alleviate the above degra-
dations. It is also possible to increase the number of F0s dynami-
cally tracked further if there is more than one loud, pitched ac-
companying instrument. However, we have found in several 
cases of singing voice in polyphony that tracking just the one ex-
tra pitch is sufficient to retrieve the vocal pitch information. This 
can be explained by the fact that at any given time, there is usu-
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ally not more than one accompanying instrument of comparable 
strength co-occurring with the singing voice. 

It is found that when the proposed system is evaluated on 
mixtures of melodic singing voice and one loud pitched instru-
ment and also cases of vocal harmony i.e. mixtures of two sing-
ing voices, the melodic voice pitch is tracked with increased ac-
curacy by at least one of the contours at any given instant. This is 
an improvement over the previous single-F0 tracking system 
where the voice pitch was unrecoverable during pitch errors.  

The proposed system does not make a decision on which of 
the 2 output F0 contours (or their sub-segments) belong to the 
singing voice. However, preliminary experiments have validated 
the performance of a vocal segment detection system that detects 
the relative instability of the voice pitch contours (via the fre-
quency fluctuations of the harmonics) as compared to keyed in-
strument notes and uses it to label F0 contour segments as vocal 
or instrumental [22]. A problem pending investigation is that of 
F0 collisions. Such collisions, found to occur frequently in Indian 
classical music, induce contour switching and also the same pitch 
values have to be assigned to both contours during extended col-
lisions. The latter condition can be achieved by pairing F0 candi-
dates with themselves. But an indication of when such an excep-
tion should be made is required. We propose to investigate the 
use of predictive models of F0 contours, similar to those used for 
sinusoidal modeling in polyphony [23], and also possibly musi-
cological rules to detect F0 collisions. 
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