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Abstract— Acoustic segmentation of speech based on landmark 
detection is an important stage in keyword spotting based on acoustic 
matching. In the present work, the class of plosive sounds is 
considered for detection and classification in continuous speech. 
Acoustic-phonetic features extracted in the vicinity of landmarks or 
speech events are shown to be reliable for the detection of unvoiced 
stops with high temporal accuracy. 
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I. INTRODUCTION 

There are several voice communication applications where 
the detection of specific target words or phrases in an incoming 
stream of unconstrained speech is important. These include 
command interfaces to machines, possibly operated by 
untrained users, and searching large spoken audio databases by 
keywords. Available large vocabulary continuous speech 
recognition (LVCSR) systems can be used for the purpose by 
applying text keyword spotting to the output recognized speech. 
Current day LVCSR systems achieve reasonable recognition 
accuracy owing largely to the use of sophisticated language 
modeling.  As such they have a limited applicability in the 
context of unconstrained speech with possibly out-of-
vocabulary target words. A conceptually (and computationally) 
simpler alternative to speech recognition followed by text 
mining, is keyword spotting based on acoustic matching 
between the keyword (represented by its phone sequence) and 
the speech signal.   

In the present work, we consider acoustic keyword spotting 
based on the detection of target phonemes in the continuous 
speech signal. Spectral representations such as the MFCC, 
widely used in LVCSR systems, can be used as the basis for 
acoustic matching between the input signal and keyword 
templates. However acoustic-phonetic representations for 
phoneme detection are expected to provide greater robustness 
in the context of speaker, language and environment 
variabilities [1]. Further, a knowledge-based approach based on 
acoustic-phonetic features enables the use of separate detectors, 
each best suited to a phonetic class.  

Acoustic-phonetic (AP) representations for speech are 
typically “landmark-based”. That is, the features used for 
recognition are extracted in a two-step process involving first 
detecting acoustic landmarks [1]. Landmarks are the time 
instants in the speech signal where characterstics of the signal 
change abruptly. Hence they are considered as information rich 
areas and features extracted from the signal region around the 
landmarks are the most salient. The actual AP features 
extracted will depend on the nature of the landmark. For 
example, the place of articulation of a stop consonant is best 
captured by the spectral characteristics of the signal near the 
burst and voicing onsets. Similarly, the begin and end of 

frication are important landmarks for the identification of 
fricatives, and landmarks corresponding to voicing onset and 
offset for sonorants which include vowels, semivowels and 
nasals.   

Labeling a speech segment with a sequence of phonemes 
thus involves the reliable detection of landmarks followed by 
signal analysis in the vicinity of the landmarks to extract 
features suitable to the broad phonetic class corresponding to 
the specific landmark. In the present work, we consider the 
broad phonetic class of plosives for landmark detection. 
Plosives comprise the stops and affricates, and are considered 
particularly challenging to recognise due to their highly 
dynamic characteristics. In the present work, we develop 
acoustic-phonetic features for the recognition of unvoiced stop 
consonants. Acoustic-phonetic (AP) features have been 
designed and evaluated extensively on the English unvoiced 
stop consonants (p,t,k). Several Indian languages, on the other 
hand, have a significantly larger set of linguistically distinct 
stop consonants and therefore require separate studies on AP 
features for recognition. Our work is currently focussed on the 
identification of unvoiced, unaspirated (UVUA) stop 
consonants of Marathi (which also happen to be common to 
several other Indian languages).  The UVUA stops correspond 
to four distinct places of articulation (PoA) viz. Labial, dental, 
retroflex and velar [2].  

In the next section, we review previous literature pertinent to 
the detection of landmarks and the extraction of AP features for 
recognition of unvoiced stops. This is followed by a description 
of the Marathi speech database that was developed for the 
training and evaluation of the classification system. The 
algorithms developed for landmark detection and classification 
are discussed next, followed by a presentation of the 
classification results.  In addition to AP features, we also 
evaluate MFCC-based features extracted at the landmarks as 
more general spectral features. 

   

II. PREVIOUS WORK 

Landmarks are time instants at which the signal properties 
change abruptly. They have been detected by observing energy 
changes in specific bands of the speech spectrum. An automatic 
method for detection of the burst release of aspirated stops, as 
proposed by Liu [3], is based on the time derivative of the 
energy computed in 4 frequency bands in the range of 800 Hz 
to 5000 Hz. The energy derivatives in these 4 bands show 
simultaneous peaks, indicating the burst onset. Further, the 
onset and offset of periodicity before and after the burst are 
detected from the energy derivative in the low frequency band 
(0-400 Hz). The burst landmark was recognized with error rate 
of 12%. Salomon et al. [4] improved the performance of the 
Liu’s landmark detector for noisy speech by refining the 
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definition of the energy derivative to suit the underlying local 
characteristics of the signal such as whether it belongs to 
silence, periodic or aperiodic regions of speech. An overall 
detection rate of 80.2% was obtained for event detection. 
Prasanna and Yegnanarayana [5] used excitation information 
contained in the LP residual for detecting the presence of pitch 
periodicity and thus the voicing onset. 90.2% of vowel onset 
points were detected correctly within a resolution of ±30 ms. 
Das and Hansen [6] used the signal band pass filtered with 300-
1200 Hz band and computed Teager energy of the signal and 
average Teager energy of forward and backward differences of 
signal. By this, the amplitude modulation component (AMC) of 
the signal in the band is obtained. Next, the time instant at 
which there occurs a rapid increase in AMC is marked as the 
voicing onset.  

Stops can be classified in terms of place of articulation by 
suitable features extracted from the vicinity of the burst and 
onset of voicing landmarks. Burst and voicing spectral shapes, 
formant transitions and temporal features have been used in the 
previous literature. Features extracted from the burst spectrum 
are relatively insensitive to the vowel context [7]. Early work 
[8] using burst spectra showed that labials and alveolars had 
diffuse spectra as compared with the peaked spectra of velars. 
The labials are further distinguished from alveolars by the 
spectral location of major energy concentration.  

Stops are short duration sounds and are, further, prone to co-
articulation effects from the following vowel. The vowel region 
also provides some useful information for the classification of 
stops.  Stevens et al. [9] and Suchato [7] used average power 
spectra derived from both burst and voicing regions and used 
features relating amplitudes of burst and voicing spectra in 
specified frequency regions and formant related parameters to 
classify English stops. Hoelterhoff and Reetz [10] distinguished 
German obstruents based on manner and place of articulation 
by considering only two PoAs: labial and alveolar. They 
computed relative amplitude (energy in the burst spectrum 
relative to energy in the voicing spectrum) in fixed frequency 
bands. These bands were of 1 kHz bandwidth, equally spaced in 
the region 0-8 kHz, and showed varying abilities to distinguish 
the obstruents. 

Representing the use of more generic spectral features is the 
work of Nossair and Zahorian [11]. They used DCTCs (discrete 
cosine transform coefficients) computed from amplitude and 
frequency scaled versions of the Fourier transformed spectrum 
for classification of English word initial stops.  By obtaining 7 
DCTCs from a static window placed at the burst onset, an 
accuracy of around 82% was obtained. Further, by using a 
larger portion of the signal (60 ms from the burst onset)  
including the following vowel, they obtained DCTC trajectories 
over time. Each of these was represented by 3 low cosine basis 
vector coefficients which were then used for classification. An 
improvement of 12% was observed over features extracted only 
from the static window. The similar broad approach of using 
spectral vectors extracted from an extended region aligned with 
specific landmarks was used by Gangashetty et al. [12] to 
classify CV syllables in an MFCC based SVM classifier. 

We may conclude that, in addition to using static features 
extracted from burst only, dynamic features derived over a  
larger segment of the signal which includes the vowel and 
formant transitions improves the classification accuracy for 
stops.  

 

III. DATABASE 

Two databases were constructed, one each for training and 
testing the classification system. Training data comprised of 
Marathi words with one of the four stops {p, t�, �, k} in the 
word-initial position followed by one of the eight vowels and 
two diphthongs of the language. Two distinct words for each 
stop-vowel combination were chosen from the dictionary to 
obtain 80 words. The words were each embedded in two 
different carrier phrases (one statement and one question). Five 
male and five female speakers of standard Marathi [2] were 
selected for the study. This led to a data set of 80 x 10 x 2 = 
1600 tokens (or 400 per stop consonant), recorded at a 
sampling rate of 16 kHz in quiet condition. 

The testing database comprised of 16 Marathi sentences 
spoken by each of one male and one female speaker recorded at 
a sampling rate of 16 kHz. The sentences contained a high 
concentration of plosives especially UVUA stops. In all, test 
data had 219 plosives. 

 The time locations of the release burst and the voicing onset 
for both training and testing data are labeled as follows. The 
burst onset was marked as the time instant after the closure 
silence at which a rapid change in the waveform amplitude sets 
in. The first negative to positive going zero crossing in the first 
cycle of the periodic waveform following the burst was labeled 
as the voicing onset. 

Fig.1 shows the landmarks for plosives the Marathi utterance 
/kithi kaam/. Labels ‘b’ indicate the burst onsets corresponding 
to the three burst /k, th and k/ and labels ‘v’ indicate the 
corresponding voicing onsets. 

Fig.1.  Manually marked landmarks with the waveform and 
spectrogram of Marathi utterance /kithi kaam/. 

 

IV. LANDMARK DETECTION FOR PLOSIVES 

The two landmarks for plosive phones are burst onset and 
voicing onset. The time derivative (or the rate of rise) of energy 
in different frequency bands is used to detect the burst onset 
The voicing onset is detected by the Teager energy method 
proposed in [6].  

A. Burst onset detection 

Similar to landmark detection by Liu [3], spectrogram is 
computed every 1 ms using 6 ms Hamming window and 512 
point FFT. Further, energies (E1 and E2) in two frequency bands 
(2-3.5 kHz and 3.5-5 kHz respectively, which are the fourth and 
fifth bands in [3]) are computed followed by the computation of 
rate of rise (ROR) in both the bands.  ROR at time t is defined 
as, 

)()()( stepiii ttEtEtROR −−=                                                 (1) 

where, i is the band number and tstep is 20 ms. The closure 
silence is detected by using a threshold on energy in the 
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frequency region: 0-8 kHz.  An interval of 10 ms after the end 
of silence is searched for the burst onset. Instants where RORs 
in both the bands cross a threshold of 9 dB are noted and the 
later of the two (indicating the time where both RORs have 
crossed 9 dB) is labelled as burst onset. Fig. 2  (b) and (c) show 
RORs in bands 1 and 2 respectively for the word /kaathyakoot/ 
which has four bursts; the ellipses indicate the regions where 
RORs in both the bands have crossed the 9 dB threshold.    

B. Voicing onset point (VOP) detection 

Following the computationally simple method of [6], voicing 
onset detection is performed using Teager Energy Operator 
(TEO) defined in Eq (2). 

)1()1()()]([ 2 +−−= nxnxnxnxTEO                                          (2) 
We note that the TEO at instant n, depends only on three 

samples of speech input which helps in providing high temporal 
resolution in marking energy fluctuations. 

Modelling speech resonances by amplitude modulation (AM) 
and frequency modulation (FM) using Teager energy, we can 
separate the low frequency (300-900 Hz) AM component of 
given speech signal [13]. This AM component is enhanced in 
the vowel region relative to the burst region in stop-vowel 
clusters [6]. AM component (xa(n)) and FM component (xf(n)) 
are given by following equations:  
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where ATEO is the average of the Teager energies of the 
forward and backward differences of the bandpass filtered 
signal. 

 An 85-ms segment (considering the maximum VOT of 
stops) following the detected burst onset point is processed to 
obtain AM and FM components. A rapid increase in AM 
component can be seen at the start of vowel region as shown in 
Fig.2 (d). To obtain reliable detection and localisation of 
voicing onset, xa(n) is convolved with the negative of the 
modulated Gaussian window g(n), given by Eq. (5). 
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where, � = 0.2, �=0.0114 and n=800. 
The “detection function” so obtained shows a prominent 

peak at the voicing onset. But sometimes, when the burst is 
strong, the output goes high even in the burst region as shown 
by the label in Fig.2 (e). But in such cases, the detection 
function falls below a threshold after some time. Considering 
these situations, a simple method is devised to reliably detect 
the voicing onset. Local peaks exceeding a threshold are 
marked in the detection function. Whenever the detection 
function dips below some threshold between two valid peaks,  
the valid peak after the dip is marked as a voicing onset.  

C. Results 

The burst and voicing onset detector is evaluated on the 
testing data described in Sec III. A correct detection is said to 
occur when the automatically detected location is within ±30 
ms of the manually labelled landmark; else, a deletion is 
recorded. Landmarks not actually present but detected by the 
algorithm are considered as insertions. The detection accuracy 
is computed as the ratio of detected to total landmarks. Results 
of landmark detection are shown in Tab. 1.  

 

 
Fig.2.  (a) Speech signal,  (b) and (c) RORs in band 1 and 2, (d) AM 
component, (e)detection function for the Marathi word /kaathyakoot/ 

 
 Total Detec-

ted 
Deleti-
ons 

Insert-
ions 

% acc. 

Burst  219 195 24 16 89.04 
VOP 205 186 19 3 90.24 

             
Tab. 1.  Evaluation of burst and voicing onset detection 

 
Tab. 2 shows % accuracy of detected landmarks for various 

tolerances. It can be noted that detection rate reaches above 
89% for both the landmarks for ±15 ms tolerance. Burst 
landmark shows better temporal resolution compared to VOP 
landmark. 

 
 ±5 ms ±10 ms ±15 ms ±20 ms ±30 ms 

Burst 85.84 87.67 89.04 89.04 89.04 
VOP 64.88 84.88 89.27 89.76 90.24 
 

Tab. 2.  Landmark detection rates (%)  for different tolerances 
 

V.  CLASSIFICATION OF UNVOICED STOPS 

Since knowledge of the following vowel context improves 
the identification of stops as discussed in Sec II, both static and 
dynamic features have been investigated in the present work. 
The effect of the preceding vowel is not significant, and only 
singleton stops followed by vowels or semivowels were used in 
the analysis. 

A. Acoustic analysis 

The average power spectrum [9, 7] is used to obtain the burst 
and voicing spectra. To compute the burst spectrum, the 
analysis data is restricted to the region between the labeled 
burst and voicing onsets.  This duration is known as voicing 
onset time (VOT) of the unvoiced stop. VOT measured for 
Marathi database showed a lower mean of 10 ms for retroflex 
and the largest mean of 28 ms for velars [14]. Based on these 
observations, the data used for burst spectrum analysis was 
limited to either a fixed 10 ms or the VOT, whichever was 
lower.  

A smooth power spectrum was obtained, following the 
method of [9, 7], by averaging the power spectra of a series of 
windowed data segments each of duration 6.4 ms. The Hanning 
data window was shifted every 1 ms starting from a center 
value of 7.5 ms before the burst onset to 7.5 ms after the burst 
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onset. If the VOT was found to be less than 7.5 ms, the last 
window was centered at 3.2 ms before the voicing onset so as 
not to encroach on the voiced region. Thus the maximum 
number of spectra averaged was 16. Similarly, average voicing 
spectrum is computed by averaging a series of spectra obtained 
by moving a 6.4 ms Hanning window starting from 12.5 ms 
after the voicing onset untill 27.5 ms after the voicing onset 
with a hop size of 1ms, thus averaging 16 segments. The time 
averaging of power spectra serves to compensate for possible 
errors in the manual labeling of the burst onset.  

Stops in Marathi contrast in four PoA as opposed to the three 
of English. Hence it is important to characterize differences in 
the spectra obtained from our database with that of the stops in 
English as noted in the literature. Fig. 3 shows typical average 
power spectra of the four stops from the data of a female 
speaker. Similar to [8], we find Marathi labials showing diffuse 
falling spectra but with a higher roll-off in the low frequency 
region (0-750 Hz) compared to the rest of the frequency band. 
The velars show a compact peak near F2 of the following 
vowel.  

However, burst spectral characteristics of the English 
alveolar [t] (diffuse, rising) do not completely describe the 
observed spectra of dentals and retroflex. It can be seen that the 
dental [t�] has a diffuse flat spectrum and retroflex [�] exhibits a 
slightly more compact and high-energy spectrum up to 4 kHz 
with an abrupt decrease in energy beyond that. The observed 
spectral characteristics are consistent with articulatory 
movements [14].   

 

Fig. 3.  Average power spectra of the four stop bursts followed by 
the vowel /a/ from a female speaker 

 

B. Acoustic feature extraction and evaluation 

Spectral features derived by Suchato [7] for English stops are 
evaluated for the Marathi database and modifications are 
suggested considering the observed spectral characteristics of  
the Marathi stops. First static features derived from only the 
burst spectrum are discussed followed by the dynamic features 
related to both burst and voicing spectra.  
 
Static features: 

Three attributes of Suchato [7] are related purely to the burst 
spectral shape.  The three features were tested on the Marathi 
unvoiced stops data and improvements are suggested along 
with the addition of  new features in [14]. A brief review is 
here. Two of these features give the burst spectral tilt in terms 
of energy and amplitude differences. Energy difference Ediff is 
defined as the ratio of total energy in the high frequency band, 

3.5-8 kHz  to that in the mid frequency band, 1.25-3 kHz. By 
considering the steep spectral roll-off of labials, this feature was  
modified as Eml where, mid frequency band was replaced by 
low frequency band of 0-0.75 kHz and high frequency band 
was changed to 3-7 kHz. Amplitude difference was defined  as, 

                   
�
�
�
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�
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�

�
=

2

1log20
A
A

Adiff
                                                    (6)                                     

where, A1 is the amplitude of the biggest peak of the burst 
spectrum in the range 3.5-8 kHz and A2 is the average peak 
amplitude of the burst spectrum in the range 1.25-3 kHz. Owing 
to the insignificant peaks in the labial spectrum beyond 500 Hz, 
Adiff  was modified to Ahl given by Eq. (6), where, A1 is the 
amplitude of the biggest peak in the region 0.5-7.5 kHz and A2 
is the average amplitude of the burst spectrum in the region 0-
0.5 kHz. In addition to these, additional features like spectral 
center of gravity and spectral slope in different sub bands are 
also added. 

      
Dynamic features: 

Suchato [7] used features relating amplitude of the peaks in 
burst and voicing spectra in four frequency bands. Two of these 
frequency bands are the same as those used to derive static 
features. In addition to these, the mid frequncy band, 1.25-3 
kHz was split into F2 (1.25-2.5 kHz) and F3 (1.5-3 kHz) regions 
thus making four subbands.  

Two of these features measure the amplitudes of mid and 
high frequency prominences of the burst normalized with 
respect to the vowel first formant prominence. Normalization 
with the first formant prominence reduces the speaker 
dependency. These two features are given by, Eq. (6), where, 
A1 is the amplitude of the first formant of the vowel for both the 
features and A2 is the biggest peak in the region 1.25-3 kHz of 
the burst spectrum for one and 3-8 kHz for the other. 

Owing to the modified static features explained earlier, 
where frequency bands used for Eml and Ahl were different from 
that of Ediff and Adiff, different frequency regions are used in 
deriving dynamic features too. Also because of the absence of 
clearly defined peaks in the spectra of labials, the definition of 
these features is slightly modified. Instead of the amplitude 
peak, spectral amplitude at the center of gravity in that 
particular region is used in deriving the features. Modified 
features Avf1,bmid and Avf1,bhi are given by Eq. (6), where, A1 is 
the vowel first formant prominence and A2 are the spectral 
amplitudes at center of gravities in regions 1-2.5 kHz and 5-7 
kHz. 

Other dynamic features used by Suchato [7] were amplitudes 
of the biggest peak in particular frequency band of the burst 
spectrum relating to the  amplitudes of the biggest peak in the 
same frequency band in the voicing spectrum. These three 
features are given by Eq. (6), where, A1 are the amplitude of the 
biggest peaks in the regions 1.25-2.5 kHz, 1.5-3 kHz and 3-8 
kHz of the burst spectrum and A2 are the biggest peaks in same 
frequency regions of the voicing spectrum. Again considering 
the observed spectral characteristics, modified features Avf2,bf2, 
Avf3,bf3 and Avhi,bhi are given by  Eq. (6), where, A1 and A2 are 
the spectral amplitudes at center of gravities in regions 0.75-2.5 
kHz, 1.5-3 kHz and 5-7 kHz, of burst and voicing spectrum 
respectively. Finally, similar to [10], relative amplitudes in 8 
frequency bands are computed by using the burst and voicing 
average power spectra obtained in Sec. V A. resulting in 8 
additional features, RAB1 to RAB8.  

 VOT is further included as a dynamic feature. In all,  there 
are 11 static and 14 dynamic features resulting in 25 AP 
features. 

[p] [t�] 

[�] [k] 
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C. Results of classification 

Based on the discussion in Sec. V B, a feature vector is 
formed comprising the 25 AP features.  A diagonal covariance 
GMM classifier was trained on the Marathi words database 
(with manually marked landmarks) using EM algorithm with 1, 
3, 5 and 8 mixtures per class for the four-way classification of 
PoA. Further, to obtain comparisons with general spectral 
vector approaches, MFCC and their first and second derivatives 
were computed over an interval starting from the burst onset to 
100 ms (assuming that the VOT of unvoiced stops does not 
exceed 60 ms) after that. The speech signal in this interval is 
divided into 11 frames by centering 20 ms Hamming window at 
the burst onset and sliding the window by 10 ms each time. A 
feature vector of MFCC (only the lower coefficients: 2 to 6 
were considered due to the superior performance reported in 
[14])  and their and first and second derivatives were obtained 
for each frame, resulting in a 135-dim feature vector. This 
feature vector was reduced to 25 elements (to make it 
comparable with the dimensionality of AP feature vector) by 
using a mutual information based greedy algorithm [15]. A 
GMM classifier was trained on the training data MFCC vectors. 
On the testing data, both the  feature vectors (AP features and 
MFCC-based of length 25) were computed for both manual and 
automatically detected landmarks which resulted in four sets of 
feature vectors. Thus computation of AP features involved both 
the landmarks while MFCC used only the burst onset. 
Classification results in % accuracy (% of 162 and 161 test 
tokens identified correctly for manual labeling and 
automatically labeled data respectively) are given in Tab. 3. 

 
No. Of GMM mixtures  Feature set  
1 3 5 8 
Manual labeling 

AP features  83.33 88.27 85.19 88.89 
MFCC+�+�2 72.84 80.25 86.42 87.04 

Automatic labeling 
AP features 81.37 85.71 80.75 88.82 
MFCC+�+�2 69.56 83.85 85.71 86.34 

 
Tab. 3.  Classification results for both manual and automatically 

detected landmarks 
 

VI. CONCLUSION 

The automatic landmark detection methods have shown good 
localisation and accuracy for burst and voicing onsets. Most of 
the deletions involved voiced stops due to the presence of the 
voice bar at low frequencies during closure causing the closure 
to go undetected. Some of the deletions were due to weak 
release burst in the unaspirated stops for which ROR was not 
prominent. Insertions are found for vowels following silence, 
where energy increases sharply as also noted in [16].  

A comparison of the classification performances of the AP 
features with MFCC-based features is reported. It must be 
noted that, unlike the traditional HMM speech recognition 
systems which employ regularly spaced frame-based MFCC 
vectors, the present work obtained MFCC feature vectors 
aligned with acoustic landmarks. The classification 
performance of the proposed set of 25 AP features derived from 
a study of burst and voicing spectrum characteristics across the 
four PoA of Marathi stops is found to be comparable to that of 
the 25-MFCC based features (obtained by reducing the 135-
MFCC, comprising of lower order MFCC and their 
derivatives). Whether this continues to hold outside the clean 

recording and matched training-testing conditions remains to be 
investigated. It may also be noted that the AP features were 
derived from a restricted region of the signal (at the most 15 ms 
interval of the speech signal around the burst onset and 15 ms 
interval in the voicing region) while the MFCC based features 
were derived from a larger part of the signal (100 ms of the 
signal after the burst onset) potentially capturing formant 
transition information better. Classification results obtained for 
manual and automatically detected landmarks are comparable 
indicating the efficacy of the automatic landmark detection.  

In summary, the results presented encourage the further 
exploration of AP features for segmentation of speech into 
phonemes, an important step towards keyword spotting based 
on acoustic matching.  The set of AP features can be extended 
by adding formant transitions or features extracted from a series 
of spectra from burst onset to the voicing region which capture 
fine variations to further improve the classification accuracy. 
Future work will be directed towards the detection and 
classification of other broad phone classes.  
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