
Speech Communication 48 (2006) 96–109

www.elsevier.com/locate/specom
Speech enhancement in nonstationary noise
environments using noise properties

Kotta Manohar, Preeti Rao *

Department of Electrical Engineering, Indian Institute of Technology, Powai, Bombay 400 076, India

Received 5 September 2004; received in revised form 17 August 2005; accepted 19 August 2005
Abstract

Traditional short-time spectral attenuation (STSA) speech enhancement algorithms are ineffective in the presence of
highly nonstationary noise due to difficulties in the accurate estimation of the local noise spectrum. With a view to improve
the speech quality in the presence of random noise bursts, characteristic of many environmental sounds, a simple post-
processing scheme is proposed that can be applied to the output of an STSA speech enhancement algorithm. The post-
processing algorithm is based on using spectral properties of the noise in order to detect noisy time–frequency regions
which are then attenuated using a SNR-based rule. A suitable suppression rule is developed that is applied to the detected
noisy regions so as to achieve significant reduction of noise with minimal speech distortion. The post-processing method is
evaluated in the context of two well-known STSA speech enhancement algorithms and experimental results demonstrating
improved speech quality are presented for a data set of real noise samples.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Speech enhancement; Nonstationary noise; Spectral subtraction
1. Introduction

The problem of enhancing speech degraded by
additive background noise, when only a single
channel is available, remains challenging due to
the limitations of existing methods in difficult
though realistic noise conditions. Single-channel
speech enhancement algorithms are generally based
on short-time spectral attenuation (STSA). Widely
researched and applied examples of STSA speech
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enhancement are spectral subtraction as originally
proposed by Berouti et al. (1979) and the
Ephraim–Malah MMSE short-time spectral ampli-
tude estimator (Ephraim and Malah, 1984). These
methods can be viewed in terms of applying a spec-
tral gain to each frequency bin in a short-time frame
of the noisy speech signal. Since the spectral compo-
nents are assumed to be statistically independent,
the gain is adjusted individually as a function of
the relative local SNR at each frequency. With
low SNR regions attenuated relative to high SNR
regions, an improvement in the overall SNR is
achieved. A good estimate of the instantaneous
noise spectrum is crucial in the estimation of the
local SNR, without which quality would degrade
.
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due to the presence of either high residual noise or
high speech distortion in the enhanced speech.

A common method of noise estimation involves
the use of a voice activity detector (VAD) to detect
pauses in speech. The noise estimate is then
obtained by a recursively smoothened adaptation
of noise during the detected pauses. In stationary
background noise, such an estimator is generally
reliable. However nonstationary noises, with noise
spectrum levels changing in time, cannot be tracked
adequately by a recursive noise estimation method
that adapts only during detected speech pauses. This
is especially true of environmental noises such as
factory or battlefield noise that are characterized
by large, irregular random bursts embedded in a rel-
atively stationary background. Even if the VAD is
reliable (which is unlikely at low SNRs and in non-
stationary noise), changes in the noise spectrum
occurring during active speech cannot influence
the noise estimate in a timely manner. Due to the
difficulty in tracking highly nonstationary noise
spectra, STSA-based algorithms are effective only
in suppressing the stationary noise component
generally leaving noise bursts unattenuated in the
enhanced speech.

In this paper, we focus on the extreme but
common form of nonstationary noise, one with
randomly occurring high-energy noise bursts
embedded in a stationary background. In the next
section, we discuss the shortcomings of available
methods in dealing with such noise. We propose
next a method which exploits known differences in
the spectro-temporal properties of noise and
speech to selectively attenuate noisy time–frequency
regions remaining in STSA-enhanced signals. This
post-processing method is evaluated in the context
of two well-known STSA speech enhancement algo-
rithms and experimental results on speech quality
are presented for a data set of real noise samples.

2. Suppressing nonstationary noise

Realizing the limitation of traditional STSA
speech enhancement methods in the presence of
nonstationary noise, research efforts have been di-
rected over the past decade to devise new solutions.
The proposed solutions generally fall into two cate-
gories, namely, improvements to the noise estimator
and modifications of the suppression rule. While the
former class of methods essentially targets the limi-
tation of VAD-based noise estimation, the suppres-
sion rule modifications are based on some prior
knowledge of the speech signal. In this section we
provide a brief overview of some of these methods
with a discussion of their shortcomings.

As discussed in Section 1, accurate estimation of
the instantaneous noise spectrum would make for
an effective STSA speech enhancement algorithm
in any background noise condition. Hence much re-
search has been focused on improving the noise esti-
mation block. Recognizing the limitations of VAD
accuracy in low SNR and varying background noise
conditions, a number of methods for noise spectrum
estimation without explicit speech pause detection
have been proposed (Hirsch and Ehrlicher, 1995;
Stahl et al., 2000; Martin, 2001). These methods
are based on tracking some statistic (e.g. minimum
or median) of past power spectral values for each
frequency bin over several frames. However the buf-
fer length necessary to bridge peaks of speech activ-
ity makes it difficult to follow any rapid variations
in noise spectrum. Fig. 1 illustrates the limitation
of this approach for speech in nonstationary noise
characterized by short-duration noise bursts. The
true instantaneous noise power in a frequency bin
near 800 Hz is compared with the noise power esti-
mated using a VAD-based estimator and using the
QBNE (quantile based noise estimation, Stahl
et al., 2000) method. In the QBNE method a buffer
of 0.64 s duration was employed with quantile value
0.5. The test file has a continuous stretch of speech
frames as indicated by the corresponding high/low
pulse in the plot. Factory noise is nonstationary in
nature having stationary noise background with
occasional random bursts to which the sudden
peaks in the instantaneous noise power spectra of
Fig. 1 can be attributed; frames where the �random
bursts� of noise have been detected manually are
indicated by a high/low pulse in the plot. We ob-
serve that the VAD estimator tracks the noise burst
level only when speech is absent. The QBNE estima-
tor, on the other hand, responds to the noise burst
only approximately and with a delay. That such di-
rect estimation methods for noise fail in conditions
such as factory noise has also been noted by Ris
and Dupont (2001).

A different approach to carry out the adaptation
of noise during both speech absence and presence is
via a speech absence probability based on an esti-
mate of SNR (Malah et al., 1999). However any
sudden increase in the background noise level is
not easily distinguished from speech and results in
high estimated SNR making the method relatively
less effective in highly nonstationary noise. Also
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Fig. 1. Instantaneous and estimated noise power spectrum values for a frequency bin at 800 Hz in the power spectrum of factory noise-
corrupted speech.
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based on the concept of speech absence probability
is work of Cohen (2003) wherein the noise estimate
is obtained by averaging past spectral power values,
using a time–varying frequency-dependent smooth-
ing parameter that is controlled by the signal pres-
ence probability. The speech presence probability
is determined by observing the minima of a
smoothed periodogram. However, the only non-
stationary noise for which performance results are
reported is white Gaussian noise with level increas-
ing at 2 dB/s which is a poor approximation to the
fast modulations of the bursty noises under consid-
eration here. Besides, as mentioned earlier, no direct
estimation methods can track highly nonstationary
noises accurately even if the noise estimate is up-
dated in every frame. To compensate for inaccura-
cies in the estimation of background noise, Malah
et al. (1999) suggest a multiplicative modifier to
the STSA enhancement gain function based on the
a priori probability of speech absence in each spec-
tral component of the noisy speech. However, the a
priori probability is a function of estimated SNR
and hence is not accurate enough when the noise
is highly nonstationary and of high energy.

Acknowledging the fact that in spite of applying
speech enhancement methods such as spectral sub-
traction, certain spectro-temporal regions will
remain noisy, Cooke et al. (2001) propose missing
data methods for robust ASR. A two-stage ap-
proach is followed in which spectral subtraction is
employed to suppress the stationary noise compo-
nent and then the recognition processor is
conditioned on the estimated reliability of spectro-
temporal regions of the signal as determined by
various speech spectrum cues. The authors have
commented upon the difficulty of detecting unreli-
able regions when the nonstationary noise compo-
nent is intermittent and impulsive as is the case
with factory noise. More importantly, the missing
data approach cannot be easily extended to
enhancement in noise for general speech perception.
A similar concept applicable to speech enhancement
is the use of statistical models of clean speech (At-
tias et al., 2001; Yao and Lee, 2004) or trained code-
books where a priori information in the form of
spectral envelope shapes is stored for both speech
and noise (Srinivasan et al., 2003). A joint or itera-
tive optimization over assumed speech and noise
models is carried out for each frame of noisy speech
to determine the noise estimate which is then used in
a noise reduction algorithm. Apart from the
computational complexity of such methods, their
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performance would be expected to depend critically
on a good match between training and actual usage
conditions.

The work presented in this paper is targeted
towards a robust algorithm for the suppression of
random noise bursts with minimal speech distor-
tion. It is motivated by the possibility of using avail-
able knowledge to distinguish between speech and
noise in order to identify, and further attenuate,
unreliable spectro-temporal regions in signals
enhanced by traditional STSA based on a simple
noise estimator. To achieve improved speech quality
using this approach requires solutions to two prob-
lems: (1) determining reliable cues for identifying
noisy spectro-temporal regions, and (2) finding a
suitable suppression rule applicable to the detected
noisy regions so as to achieve significant reduction
of noise with minimal speech distortion.

3. Proposed post-processing algorithm

Asmentioned earlier, we focus on a common form
of nonstationary noise characterized by high-energy
randomly occurring noise bursts in a stationary
background. Such noise bursts typically lead to the
partial or complete corruption of the short-term
spectrum of speech at their instants of occurrence.
A traditional STSA algorithm based on a simple
noise estimator, such as discussed in the previous
section, can effectively suppress only the stationary
background noise leaving mainly the speech together
with residual noise bursts in the enhanced signal. The
proposed post-processing algorithm involves identi-
fying regions in the spectrogram of the STSA-
enhanced speech that are dominated by the residual
noise. These regions are selectively attenuated fur-
ther with the goal to improve the overall quality of
the enhanced speech. The post-processed, enhanced
speech is then reconstructed from the resulting mag-
nitude spectrum and the original noisy speech phase
spectrum as in traditional STSA enhancement.

Although it would be ideal to have speech/noise
classification available at the time–frequency bin
level for the purpose of selective suppression of
noise, finding reliable cues to achieve this is difficult.
We instead attempt to identify time–frequency re-
gions at the coarser level of broad frequency bands
in each time frame that are dominated by noise sim-
ilar in approach to the missing features methods for
speech recognition (Seltzer et al., 2000; Cooke et al.,
2001). The post-processing scheme thus comprises
the following steps:
1. Divide the spectrum of each frame of the STSA-
enhanced speech into several, possibly overlap-
ping, frequency bands in view of the fact that
the noise spectrum may be localized in frequency.

2. Carry out speech/noise classification to detect
frequency bands that are dominated by residual
noise. Possible features to effect this classification
are discussed in the next section.

3. Using a suitable suppression rule, attenuate the
spectral values in the identified noisy bands.

The suppression rule should ideally depend on
the bin SNR in a manner as to apply more attenu-
ation in low SNR regions. This would help to min-
imize speech distortion while achieving an overall
improvement in the SNR. The definition of esti-
mated SNR is crucial in the design of the suppres-
sion rule. Since the ‘‘noise’’ estimated by the
STSA noise estimator is essentially the stationary
background component, an increase in SNR would
be linked to a local increase in the energy either due
to speech or from a noise burst. Thus noise bursts
too would give rise to high a posteriori SNR and
therefore high spectral gains.

However if the identification of noisy frequency
bands in Step 2 is reasonably reliable, a local SNR
increase in an identified nonspeech bin would signal
the onset of a noise burst. Given this, an appropri-
ate definition for the estimated SNR is given by the
‘‘average a priori SNR’’ computed as in (1)

nðkÞ � ð1� gÞ jSðkÞj2est
jbDðkÞj2|fflfflfflffl{zfflfflfflffl}

� current SNR

þg
jbSðkÞj2prev
jbDðkÞj2prev|fflfflfflfflfflffl{zfflfflfflfflfflffl}
previous SNR

ð1Þ

where jSðkÞj2est ¼ MaxðjY ðkÞj2 � jbDðkÞj2; 0Þ and �g� is
a smoothing constant fixed at �0.99�. Y(k) is the
noisy speech spectrum and while jbSðkÞj2prev refers to
the final enhanced speech power spectrum of previ-
ous frame (obtained by STSA enhancement and the
post-processing combined), jbDðkÞj2 refers to the
average noise power spectrum estimate as obtained
from the noise estimator of the STSA. This deci-
sion-directed, averaging formulation of SNR is the
same as that used in the gain function of the
Ephraim and Malah (1984) STSA algorithm. How-
ever, there it is motivated by the ability to suppress
random musical tones, an annoying artifact of spec-
tral subtraction processing based on instantaneous
estimated SNR. In the present problem, the advan-
tage of using the ‘‘average a priori’’ form of SNR
definition is that it serves as a good spectral cue
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for crude classification of speech/nonspeech bins in
an identified ‘‘noisy’’ band. Whenever a noise burst
occurs during speech, the n(k) value for a nonspeech
bin (such as inter-harmonic bins) would be low.
This would hold for the first several frames after
the onset of the noise burst because of the recursive
smoothing in its computation. Thus nonspeech bins
would be attenuated more as compared to the
speech bins in an identified noisy band leading to
effective noise suppression with relatively low speech
spectrum distortion. This aspect is especially useful
in the case of noises where the noise bursts are of
short duration.

A functional form of the suppression rule that
was found to work well in practice is to vary the
attenuation linearly with the estimated SNR in dB
(similar to Berouti spectral subtraction (Berouti
et al., 1979)). The attenuation factor k(k) is varied
linearly with the estimated a priori SNR n(k) in
dB but restricted to the range of 0.05–0.9.

kðkÞ ¼
0:05 nðkÞ < SNR low

f0 þ s� nðkÞ SNR low 6 nðkÞ 6 SNR high

0:9 nðkÞ > SNR high

8><
>:

ð2Þ
In (2) f0 is the value at 0 dB SNR and �s� is the slope
of the line (whose values depend on the parameters
�SNR_low� and �SNR_high�). The suppression rate
can be controlled by varying the parameters
�SNR_low� and �SNR_high�. After obtaining the
attenuation factors, we recalculate the speech
estimate as in (3) of an ith �noisy band� limiting
the values to a spectral floor; b is the spectral floor
gain parameter.

jbS iðkÞj2final ¼ kðkÞ � jbS iðkÞj2STSA;
if jbS iðkÞj2final > bjbDiðkÞj2;

¼ bjbDiðkÞj2 otherwise

ð3Þ

We note here that since overlapping of bands is al-
lowed, a particular frequency bin may fall in more
than one band. In this case, identification as ‘‘noisy’’
in at least one band suffices to label the frequency
bin as falling in a noisy band.

4. Features for detection of noise-dominated

regions

As discussed in Section 3, it is required to identify
time–frequency bins in the STSA-enhanced speech
that are dominated by residual noise. The available
estimate of the stationary background noise spec-
trum can be used to locate regions of energy level
higher than that of the background. The higher en-
ergy of these regions may be due to either (1) speech
or (2) a high-energy nonstationary noise compo-
nent. Since it is not possible to distinguish the two
possibilities based on instantaneous energy alone,
we turn to alternative features for speech–noise
discrimination.

Voice activity detectors often employ time-
domain features based on indications of voicing
such as zero-crossing count or autocorrelation
peak level (Itoh and Mizushima, 1997). However
these cannot be applied to detect noise in localized
frequency regions. Differences in spectral charac-
teristics could be more useful, with residual noise
in the enhanced speech showing nearly flat spectra
over extended frequency regions. On the other
hand, at low SNRs only the resolved harmonics
in the noisy speech spectrum which are not masked
by noise can be reconstructed on applying STSA
enhancement; unvoiced speech and unvoiced
high-frequency bands which have low energy will
be suppressed and hence the enhanced speech in
the absence of residual noise is mostly harmonic
in nature. The relatively flat spectral structure of
noise-dominated regions can be captured by the
measures, discussed below, that quantify ‘‘spectral
flatness’’.

4.1. Spectral flatness based classifiers

Based on the assumption that the STSA-
enhanced speech contains primarily harmonic
speech and frequency-localized noise bursts, we
investigate various implementations of spectral
flatness measurement for the detection of noise-
dominated regions at the frequency band level. Let
X[k] denote the magnitude spectrum values com-
puted via a DFT. The ith frequency band comprises
L frequency bins with bin index k in the range [bi,ei].
For instance, with a 256-point DFT at sampling fre-
quency of 8 kHz, the 0–1 kHz band will be bounded
by the bin indices: bi = 0 and ei = 31. We note here
that the frequency bands must be wide enough to
provide the needed averaging in the estimation but
may also take into account the noise frequency-
domain structure. The measures investigated are:

(1) SFM (spectral flatness measure): It is defined
as the ratio of the geometric mean to the arithmetic
mean of the magnitude spectrum values as given in
Eq. (4) (Johnston, 1988).
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SFMi ¼
Qei

k¼bi
X ½k�

� �1=L

1
L

Pei
k¼bi

X ½k� ð4Þ

The SFM lies in the range [0,1] taking low values
for harmonic regions representing speech, and high
values for noise-dominated regions which have a
relatively flat spectrum.

(2) Energy-normalized variance: The harmonic
structure or deviation from flatness of the spectrum
in any chosen frequency band is reflected in the
energy-normalized variance of the spectral values
computed as

n vari ¼
Pei

k¼bi
ðX ½k� � X iÞ2Pei
k¼bi

ðX ½k�Þ2
ð5Þ

where X i is the mean of the magnitude spectrum val-
ues (X[k]) within the band i. Eq. (5) is expected to
take high values for harmonic regions representing
speech, and low values for noise-dominated regions,
with the range of values spanning [0,1].

(3) Entropy: A related measure is ‘‘entropy’’ as
used in the VAD of Renevey and Drygajlo (2001)
on the assumption that the signal spectrum is more
organized during speech segments than during noise
segments. It can be redefined for a frequency band as

Hi ¼ � 1

logðLÞ
Xei
k¼bi

P ðjX ðkÞj2Þ logðPðjX ðkÞj2ÞÞ ð6Þ

where P ðjX ðkÞj2Þ ¼ jX ðkÞj2Pei
k¼bi

jX ðkÞj2
is the ‘‘probability’’ of

the frequency bin �k�. H takes maximum value of �1�
when the signal is a white noise, and minimum value
of �0� when it is a pure tone (sinusoid). Hence, the
entropy based method is well suited for speech
detection in white or quasi-white noises.

4.2. Experimental comparison of classifiers

A comparative evaluation of the different classifi-
ers can be achieved by experimental observations in
a typical application situation, i.e. by comparing the
receiver operating characteristics (ROC), or the hit
rate versus false-alarm rate plots, for noisy band
detection in a typical noise condition. By changing
the threshold criterion in the algorithm�s decision
rules, false-alarm rates can be decreased at the cost
of a decrease in the hit rates. A better classifier
would be characterized by a lower false-alarm rate
for a given hit rate. While �hit-rate� for a particular
band refers to the fraction of all the actual �noisy
bands� (i.e. noise-burst time–frequency regions) that
are correctly detected as �noisy band�, �false-alarm
rate� refers to the number of times �speech bands
with no noise burst� are erroneously detected as
�noisy band�, as a fraction of the total speech bands.
The actual noisy bands are determined from the
pure noise files.

Berouti spectral subtraction (BSS) (Berouti et al.,
1979) is used as front-end STSA algorithm to obtain
the enhanced speech estimate as given in Eq. (7)

jbSðkÞj2STSA ¼ jY ðkÞj2 � ajbDðkÞj2;
if jbSðkÞj2STSA > bjbDðkÞj2;

¼ bjbDðkÞj2 otherwise

ð7Þ

where a is the oversubtraction factor which is a lin-
ear function of segmental a posteriori SNR. The
parameter a0 (value of a at 0 dB SNR) is set to equal
to 5 and spectral floor gain parameter b in Eqs. (3),
(7) is chosen as 0.01. The noise estimate is updated
during the silence frames by using an averaging rule.
For these experiments, an ideal VAD is assumed
(i.e. frames are identified as speech or silence
manually).

Fig. 2 shows the ROC curves for SFM, energy-
normalized variance and entropy based features in
the case of an 8 kHz sampled speech test file
comprising of eight concatenated sentences from
the TIMIT database (Fisher et al., 1986) with fac-
tory noise added to achieve an SNR of 0 dB. Next
the noisy band detection algorithms based on each
feature are applied to the enhanced speech by divid-
ing the spectrum into four nonoverlapping fre-
quency bands each of 1 kHz width. The hit rate
and false-alarm rate are calculated for each band
separately and the exercise is repeated by varying
the thresholds to obtain the ROC plots for the three
features. The steepness or slope of the ROC curves
determines the suitability of the feature in terms of
providing an adequate level of discrimination be-
tween speech and noise. We note that all the three
features examined have fairly steep ROCs and thus
can be considered to exhibit discriminability suit-
able for the speech/noise classification at the band
level. However since the ROC curve of SFM falls
below the ROC curves of entropy and n_var
(energy-normalized variance) in a large portion of
the operating region, n_var and entropy can be
considered to provide slightly better discriminability
than the SFM. Further, energy-normalized vari-
ance exhibits slightly better ROC in bands 2 and
3. Hence in our post-processing scheme we chose
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Fig. 2. ROC plots of the energy-normalized variance, SFM and entropy in the detection of noisy regions for factory noise-corrupted
speech at 0 dB SNR.
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energy-normalized variance as the feature for
speech/noise classification based on applying a
threshold to n_vari in (5) to identify bands below
the threshold as noise dominated. We observe from
Fig. 2 that the ROC curve for band 1 (note the dif-
ference in the x-axis scaling for band 1) is worse (i.e.
low hit rate for a given false-alarm rate) than that
for the other bands for all features; this is explained
by the fact that speech energy occupies largely the
frequency range of 0–1 kHz with typically strong
harmonic structure. Therefore, for the residual noise
to influence the classification feature, the noise level
must be particularly high.

We note here that the proposed noise detection
method is based on the assumption that enhanced
speech in the absence of residual noise is chiefly
harmonic. At high SNRs however, unvoiced speech
or unvoiced high-frequency energy may also be
restored by STSA enhancement invalidating the
harmonicity assumption. To avoid the needless
suppression of speech in such circumstances, an
automatic post-processing switch off/on feature
may be incorporated. It is found adequate to
observe an estimate of the frame-level a posteriori
SNR (based on the noisy speech energy and average
noise energy as determined by the STSA noise esti-
mator) over a duration of 1 s, and switch the post-
processing off for the following 1 s if the SNR is
above a threshold (10 dB) for more than 25% of
the time.

5. Experimental evaluation

The performance of the post-processing algo-
rithm is evaluated for three real environmental
noises viz. factory noise, machine gun noise and
train interior noise; all the three noises are highly
fluctuating, characterized by random energetic
bursts. Noise-corrupted speech at selected SNRs is
generated by adding speech and noise digitally. The
global SNR is computed according to ITU P.56
standard (ITU-T Recommendation, 1993) based
on the rms ‘‘active speech level’’ and rms noise
level of the test sentence. The active speech level
and noise level are estimated by leaving out silence
and idle segments but including grammatical/
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structural pauses (i.e. those within 300 ms), and
therefore corresponds typically to a much lower
value in terms of segmental SNR. Two standard
STSA algorithms, the Berouti spectral subtraction
(BSS) (Berouti et al., 1979) and the multiplica-
tively modified log spectral amplitude estimator
(MM-LSA) (Malah et al., 1999) are chosen as the
front-end STSA algorithms. Spectral subtraction is
a simple and robust method that has been exten-
sively applied in practice. The MM-LSA evolved
from the MMSE estimator of Ephraim and Malah
(1984) which was motivated by the desire to elimi-
nate the musical noise artifact, characteristic of
spectral subtraction enhanced speech. This rela-
tively new class of STSA algorithms do successfully
eliminate musical noise but are generally considered
to be difficult to tune in terms of the noise reduc-
tion–speech distortion tradeoff (Accardi and Cox,
1999). For background noise estimation as required
by the STSA algorithm, a recently proposed VAD-
based method is used (Marzinzik and Kollmeier,
2002) which achieves a low false-alarm rate even
Table 1
Parameters selected for the STSA algorithms used in the evaluation

Berouti spectral subtraction (BSS) Berouti et al. (1979)

a0 = 5
b = 0.01

Multiplicatively modified LSA (MM-LSA) Malah et al. (1999)

a = 0.92
gmin ¼ �25 dB
cTH = 0.8
aq = 0.95

Table 2
Properties and post-processing algorithm parameters for the test noises

Noise Properties Selected post-p

Band width V

Factory Frequency-localized
bursts of 50–200 ms
duration with local noise
power 3–5 dB higher than that of
the stationary background

1 kHz 0
b
a

Machine gun Bursts of 30–40 ms duration
with low frequency localization

1 kHz 0
f

Train Broadband noise bursts of 50–150 ms
duration with local noise
power 6–10 dB higher than that
of the stationary noise

2 kHz 0
a

in low SNR conditions. The parameters of BSS
algorithm and the MM-LSA algorithm are selected
as shown in Table 1 (notations follow the referenced
publications). These values are chosen to achieve a
good trade-off between noise reduction and speech
distortion and serve to largely suppress the station-
ary background noise. In all experiments, a 32 ms
Hamming window with 50% overlap is applied to
8 kHz sampled speech. The spectrum is computed
using a 256-point DFT. The post-processing algo-
rithm is applied to the time–frequency bin levels of
the STSA-enhanced signal. The parameters of the
post-processor are adjusted considering the gross
properties of the noise as explained below.

5.1. Noise properties and post-processing

parameter settings

Three examples of environmental noises with
strongly fluctuating characteristics are chosen for
the experimental validation of the post-processing
algorithm. Table 2 lists some properties of the three
Value of oversubtraction factor at 0 dB SNR
Spectral gain floor

Weighting factor for the a priori SNR estimation
Lower limit for the a priori SNR
Threshold for hypothesis testing
Smoothing parameter for q estimation

rocessor parameters

ariance threshold SNR_low SNR_high

.775 for bands
elow 2 kHz
nd 0.682 for the rest

�5 dB for bands
below 2 kHz
and 0 dB for
other bands

10 dB for
all bands

.775 for band 1 and 0.65
or the other bands

�5 dB for bands
below 2 kHz
and 0 dB for
other bands

10 dB for
all bands

.775 for first two bands
nd 0.682 for the last band

0 dB for all bands 12 dB for
all bands
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noise samples. Factory noise from the SPIB data-
base (Signal Processing Information Base, 2004)
contains randomly occurring events such as ham-
mer blows embedded in a more homogenous back-
ground noise. Machine gun noise, also from the
same database, is a series of gunshots recorded in
a quiet environment. To make it more realistic, a
white background noise, also from the SPIB data-
base, has been added to the machine gun noise.
The third noise sample considered for testing is
‘‘train noise’’ (obtained from Essential Indian
Sound Effects, CD-ROM, 1999). It is sound re-
corded in the interior of an Indian electric train with
windows open (i.e. the noise arises from the moving
mechanical parts of the train). Spectrograms are
shown for samples of 5 s duration for the three
noises in Fig. 3. We observe that while factory noise
contains frequency-localized noise bursts, train
noise has broadband bursts of varying intensities
with respect to a relatively stationary background.
The machinegun noise is characterized by short-
duration noise bursts with strength decreasing rap-
idly in the frequency region beyond about 1 kHz.
We next provide guidelines on how the post-
processing parameters can be tuned to specific noise
Fig. 3. Spectrograms of segments of (a) factory, (b) train and (c) machin
50% overlap, DFT size = 256).
properties for situations where the noise characteris-
tics are known.

Table 2 depicts the selected noise specific post-
processing algorithm parameters for each of the
noises investigated. We note that the parameters
chosen differ only slightly across the noise types and
are influenced by the gross properties as listed in
Table 2 and the ROC plots of Fig. 2 besides infor-
mal listening tests. The frequency bandwidth for
the variance-based noise detection in (5) is selected
to provide a high-frequency resolution for noisy re-
gion detection while keeping in mind the need for
adequate averaging for a reliable estimate. For
instance, the frequency band should span at least
two harmonics of high-pitched voiced speech. In
general, a bandwidth of 1 kHz provides a good
compromise between the required averaging and
noise burst frequency localization. The bandwidth
is set to 1 kHz for the factory and machine gun
noises since the noise bursts are localized in fre-
quency. On the other hand in the train noise, noise
bursts have energy distributed over the entire
spectrum. Hence a higher bandwidth of 2 kHz has
been chosen for better averaging in (5). In all cases,
the total number of frequency bands searched
egun noise (spectrogram parameters: Hamming window of 32 ms,
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corresponds to 50% overlapping of the bands with
the specified bandwidths.

The choice of decision threshold on the variance
in (5) for the detection of noise-dominated bands
should be based on the desired hit rate or tolerable
false-alarm rate. A low false-alarm rate helps to
minimize speech distortion. Informal listening
showed that a false-alarm rate in the region of 0.2
achieved good noise reduction with low speech dis-
tortion. Accordingly, the thresholds for the different
bands were chosen from a study of ROC plots for
each noise (as demonstrated for factory noise in
Fig. 2). The slightly lower threshold (implying a bias
toward voicing) chosen for the high-frequency
bands is justified by the typically reduced harmonic-
ity of speech in these bands compared to that in the
lower frequency bands.

Coming to the attenuation factor calculation in
(2), the parameters SNR_low and SNR_high deter-
mine the amount of attenuation as a function of
the estimated a priori SNR. As such, the a priori
SNR is expected to take on higher values for noise
bursts with levels increasingly above the stationary
noise floor. Hence the slightly higher parameter
values for the train noise case, leading to a more
aggressive suppression rule relative to that for the
other noises. In the case of factory and machine
gun noise, it was necessary to increase the suppres-
sion in the high-frequency region due to the reduced
speech energy which leads to the reduced masking
of residual noise in this region.

In order to verify that the performance gains
from post-processing are not greatly dependent on
the tuning of the post-processor parameters to the
specific noise, the objective performances with train
and machine gun noises are computed again with
the parameter settings selected for factory noise in
Table 2.

5.2. Measuring speech quality improvement

The speech quality obtained after post-process-
ing, relative to that before, is expected to reflect
the amount of random burst noise suppression
achieved by the algorithm. Apart from noise reduc-
tion, naturalness and intelligibility of speech output
are important attributes of the performance of any
speech enhancement system. Since achieving a high
degree of noise suppression is often accompanied by
speech signal distortion, it is important to evaluate
both quality and intelligibility. In fact, for nearly
all methods of speech enhancement, significant
gains in noise reduction are accompanied by a de-
crease in speech intelligibility (Lim and Oppenheim,
1979). Formal subjective listening tests are the best
indicators of achieved overall quality. A–B compar-
ison tests of sentences processed by competing pro-
cessing methods can be used to obtain comparative
quality rankings. The chief attributes tested here are
the naturalness or overall quality of the processed
speech. Speech intelligibility, on the other hand, is
not easily quantified by general sentence level test-
ing. Rhyming words (Quackenbush et al., 1988)
and semantically unpredictable sentences have been
used in the past in the subjective testing of speech
intelligibility.

The subjective test employed in this work for
overall quality ranking is A–B comparison involv-
ing four listeners and eight distinct sentences from
the TIMIT database (Fisher et al., 1986), each from
a different speaker (four male and four female).
Each sentence pair presented for listening compari-
son comprises of the processed versions of a single
sentence, before and after post-processing. To avoid
bias, the order A and B are interchanged and ran-
domized across sentences and listeners. Thus for
each test condition, a total of 64 subjective judge-
ments is obtained across listeners and test sentences.
Speech intelligibility is tested by the SUS (semanti-
cally unpredictable sentences) test, originally pro-
posed for evaluating synthetic speech (Benoit
et al., 1996). Thirty SU sentences, six of each of five
syntax structures, were generated and played in ran-
dom order to each of four listeners who were asked
to write down the sentences they hear. To avoid
listener familiarity with a specific noise sample,
segments of the noise file to be added to the
sentences were chosen randomly from a larger noise
sample and digitally added to the clean speech.
Given the large number of conditions that need to
be evaluated in this work, formal subjective listen-
ing tests were limited to a subset with the remaining
conditions evaluated only via objective distance
measurements.

There are a large number of objective measures
that quantify the degradation in quality of pro-
cessed speech with respect to a reference speech
sample (Quackenbush et al., 1988). However, not
all objective measures may be appropriate for spe-
cific kinds of distortion. For instance, the popular
segmental SNR measure is useful only when the dis-
torted speech has the same phase alignment as the
reference speech as occurs in waveform coding.
For the purpose of speech enhancement, Marzinzik
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(2000) has investigated various objective measures
to predict sound quality in noise reduction algo-
rithms and found LAR distance and PSQM to be
most correlated with subjective judgements of qual-
ity degradation. The PSQM, originally designed for
the assessment of narrowband speech codecs, incor-
porates sophisticated auditory and cognitive
models. The ITU standard PESQ (ITU-T Recom-
mendation P.862, 2001) is an advanced version of
the PSQM which predicts subjective MOS for a
variety of speech distortions in transmission sys-
tems. On the other hand, a simple aural measure
that is known to show good correlation to subjective
data is the weighted spectral slope (WSS) distance
based on critical band filtering and comparison of
the slopes in each frequency band (Quackenbush
et al., 1988; Hansen and Pellom, 1998). Our own
informal listening tests and comparisons with the
predictions of several objective measures revealed
that the WSS distance measure is an accurate pre-
dictor of subjective quality differences across noise
reduction algorithms. Based on the above consider-
ations, we use PESQ and WSS in the experiments to
measure quality gains, if any, achieved due to post-
processing.

6. Results and discussion

The A–B comparison test was carried out to
compare enhanced speech obtained using Berouti
spectral subtraction (BSS) alone over that obtained
after added post-processing (BSS + PP). Table 3
shows the results obtained in percentage of the num-
ber of times a configuration was preferred across
sentences and listeners for each of the three noises
at 0 dB and 3 dB SNR. We observe that there is a
clear listener preference for the post-processed
speech over that before post-processing. Further,
the SUS speech intelligibility test was carried out
for the case of factory noise-corrupted speech. The
score results are computed by considering the over-
all percentage of correct words for the whole corpus
Table 3
A–B comparison test results as % preferred for BSS and
BSS + PP on various noisy speech samples

Preferred
configuration

Factory Machine gun Train

0 dB 3 dB 0 dB 3 dB 0 dB 3 dB

BSS 14.1 15.6 12.5 14.1 14.1 12.5
BSS + PP 75.0 71.9 78.1 70.3 79.6 78.1
Neutral 10.9 12.5 9.4 15.6 6.3 9.4
of 144 words for each of the four listeners. The per-
centage word intelligibility scores averaged across
the listeners are 60.7, 51.7 and 50.6 at 3 dB SNR
for the three configurations of noisy, BSS and
BSS + PP respectively. Although there is the ex-
pected decrease in intelligibility in going from noisy
to noise-reduced speech, we note that there is no
significant change in intelligibility scores due to
the post-processing. In a few specific cases, even a
slight improvement in intelligibility was noticed in
the case of stop consonants closely following a noise
burst. The forward temporal masking effect from
the burst was significantly diminished due to its
attenuation by the post-processor.

That the perceptual effects of noise bursts are
reduced by post-processing is also evident by an
examination of the spectrograms of the enhanced
speech, an example of which appear in Fig. 4. The
narrowband spectrogram (analysis Hamming win-
dow length = 32 ms) representation of a 2.5 s sam-
ple of clean speech is shown together with that of
the same sample corrupted with 0 dB factory noise.
Also shown are the spectrograms of the BSS-en-
hanced noisy speech and that obtained after further
post-processing. We note the nearly complete
removal of the stationary component of the back-
ground noise in the BSS-processed speech of
Fig. 2(c). However the noise bursts are clearly
visible particularly in the low energy speech regions;
also evident is the loss of some low-amplitude
speech harmonics. Fig. 2(d) indicates that post-
processing leads to a noticeable reduction in the
strengths of the noise bursts with respect to the
speech regions.

Tables 4–6 list the objective quality scores of
noisy and enhanced speech (with respect to the cor-
responding clean speech file) for a speech file (com-
prising of the concatenation of eight sentences: four
male and four female from the TIMIT database)
corrupted by the three noises at various SNRs.
The different configurations tested include post-pro-
cessing applied to each of the two STSA algorithms
as discussed in Section 5, namely, BSS and the
MM-LSA. The objective results are based on the
WSS distance and the PESQ MOS measure. We
observe that the WSS distance indicates a consistent
decrease (implying an improvement in quality) with
post-processing from that obtained with STSA
enhancement alone. The anomaly in estimated
WSS distance for noisy speech (i.e. the WSS score
for noisy speech is better than that of enhanced
speech) is due to the simplicity of the objective



Fig. 4. Narrowband spectrograms of (a) clean, (b) noisy, (c) BSS-enhanced speech and (d) after post-processing, for a speech segment in
factory noise (spectrogram parameters: Hamming window of 32 ms, 50% overlap, DFT size = 256).

Table 4
WSS distance and PESQ MOS scores for noisy and processed speech in factory noise

SNR (dB) Noisy BSS BSS + PP MM-LSA MM-LSA + PP

WSS MOS WSS MOS WSS MOS WSS MOS WSS MOS

�5 76.4 1.31 90.6 1.64 83.0 1.71 96.3 1.68 86.3 1.73
�3 71.6 1.33 86.5 1.76 77.9 1.78 91.4 1.90 82.2 1.87
0 66.6 1.65 77.7 2.01 70.5 2.01 82.9 2.09 76.8 2.10
3 60.5 1.84 72.5 2.20 66.8 2.20 76.4 2.29 73.4 2.29
5 54.7 2.01 65.6 2.37 63.2 2.30 68.7 2.42 67.8 2.43

Table 5
WSS distance and PESQ MOS scores for noisy and processed speech in machine gun noise

SNR (dB) Noisy BSS BSS + PP MM-LSA MM-LSA + PP

WSS MOS WSS MOS WSS MOS WSS MOS WSS MOS

�5 63.3 1.21 77.4 1.28 70.8 1.55 78.0 1.41 65.5 1.61
�3 59.3 1.35 72.9 1.49 67.0 1.73 73.2 1.63 62.1 1.79
0 52.9 1.59 67.1 1.75 62.2 1.90 66.7 1.90 57.4 1.97
3 46.7 1.85 60.6 2.01 56.6 2.14 59.9 2.16 52.0 2.20
5 42.6 2.01 56.6 2.14 52.8 2.26 55.5 2.31 48.6 2.32
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measure and its consequent inability to predict the
subjectively perceived quality of distinctly different
classes of degradation. The PESQ MOS on the
other hand is consistent with the subjectively
perceived trend of an improvement in speech quality
with STSA enhancement over that of noisy speech,
and a further improvement in quality with post-
processing. The improvement with post-processing



Table 6
WSS distance and PESQ MOS scores for noisy and processed speech in train noise

SNR (dB) Noisy BSS BSS + PP MM-LSA MM-LSA + PP

WSS MOS WSS MOS WSS MOS WSS MOS WSS MOS

�5 69.3 1.34 81.1 1.17 76.8 1.54 77.6 1.28 71.1 1.45
�3 64.9 1.48 77.0 1.31 72.8 1.70 73.5 1.49 67.1 1.70
0 58.0 1.73 69.9 1.59 66.6 1.84 66.7 1.77 61.1 1.92
3 50.9 1.93 63.2 1.88 60.2 2.06 59.8 2.03 55.5 2.14
5 46.3 2.07 58.9 2.05 56.2 2.16 55.4 2.19 51.1 2.26
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is particularly significant in the case of train noise
and machine gun noise corruptions. Further, both
the objective measures indicate that post-processing
has a greater influence at the lower SNRs relative to
that at higher SNRs.

Table 7 lists the objective quality scores obtained
after post-processing on machine gun noise and
train noise using the post-processor parameter
settings corresponding to factory noise in Table 2.
Comparing the scores in Table 7 with the corre-
sponding columns of Tables 5 and 6, we note that
the performance gains due to post-processing do
not change significantly with the change in the algo-
rithm parameters. The objective quality improve-
ment over speech before post-processing continues
to be clearly evident.

It may be mentioned that while our present study
employed an available VAD (Marzinzik and Kol-
lmeier, 2002) to identify the silence frames for the
noise estimation in the STSA algorithm, the relative
improvement obtained due to post-processing
remains unaltered when an ideal VAD (i.e. frames
are identified as speech or silence manually) is used.
Table 7
Objective scores obtained using the factory noise settings of Table
2 for the post-processing of speech in (Panel A) machine gun
noise, and (Panel B) train noise

SNR (dB) BSS + PP MM-LSA + PP

WSS MOS WSS MOS

Panel A

�5 69.1 1.52 72.8 1.54
�3 64.7 1.70 68.4 1.73
0 60.5 1.89 61.6 1.94
3 55.3 2.12 55.5 2.17
5 52.0 2.24 51.2 2.31

Panel B

�5 77.0 1.49 64.9 1.53
�3 72.6 1.68 61.4 1.72
0 66.2 1.86 57.0 1.92
3 60.3 2.06 52.0 2.15
5 56.0 2.17 49.0 2.26
7. Conclusion

Traditional STSA speech enhancement algo-
rithms perform inadequately in application to speech
corrupted by highly nonstationary noise. While sta-
tionary background noise components are effectively
suppressed, random noise fluctuations characteristic
of burst noises remain unattenuated in STSA-
enhanced speech output. A frequency-domain post-
processing algorithm to follow STSA speech
enhancement has been proposed with a view to im-
prove speech quality in the presence of random noise
bursts. The post-processing is based on the detection
of noise-dominated time–frequency regions in the
STSA-enhanced speech followed by selective bin-
dependent attenuation based on a measure of SNR.
The usual statistically optimal speech–noise classifi-
ers being signal energy-based cannot distinguish
speech from high-energy noise bursts. Hence the
detection of noise-dominated regions is based on
exploiting the difference in the spectral flatness of
noise spectra from that of harmonic speech. With
limited added complexity, the post-processing
algorithm is effective in significantly reducing the
perceived effects of the noise bursts at low SNRs
without further speech distortion. While the onsets
of noise bursts are greatly attenuated, bursts of long
duration are not suppressed completely due to the
difficulties in the reliable classification of bins as
speech or noise dominated within an identified noise
burst band. More detailed acoustic models for the
noise, over the present simple spectrum flatness cue,
would be expected to improve the noise suppression
capability of the post-processing algorithm further.
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