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The extraction of pitch (or fundamental frequency) information from polyphonic audio
signals remains a challenging problem. The specific case of detecting the pitch of a melodic
instrument playing in a percussive background is presented. Time-domain pitch detection
algorithms based on a temporal autocorrelation model, including the Meddis–Hewitt algo-
rithm, are considered. The temporal and spectral characteristics of percussive interference
degrade the performance of the pitch detection algorithms to various extents. From an
experimental study of the pitch estimation errors obtained on a set of synthetic musical
signals, the effectiveness of the auditory-perception–based modules of the Meddis–Hewitt
pitch detection algorithm in improving the robustness of fundamental frequency tracking in
the presence of percussive interference is discussed.

0 INTRODUCTION

The problem of pitch (or fundamental frequency) ex-
traction of periodic signals in the presence of interfering
sounds and noise is an important problem in both speech
and music applications. Apart from the value of pitch in-
formation per se, a knowledge of the time-varying funda-
mental frequency can be useful in the separation and re-
construction of a harmonic source from a sound mixture.
A number of pitch detection algorithms (PDAs) have been
proposed over the decades. But while each has had a mea-
sure of success in the targeted application, no single PDA
is found suitable for all types of signals and conditions.
This engineering report presents an investigation of the
performance of some well-known PDAs in estimating the
fundamental frequency of a melodic instrument playing in
the presence of percussive background. This is a restricted
case of the larger problem of musical pitch detection in
polyphony. Nevertheless it is an important problem. For
instance, classical Indian vocal and instrumental music is
always accompanied by percussive instruments providing
the rhythmic structure. The melody itself is strongly char-
acterized by the presence of microtones and continuous
pitch variation. Detecting the melodic pitch contour has
important applications in music recognition and for gen-
erating metadata in audio content retrieval systems.

Pitch determination of speech signals has been the sub-
ject of research for decades [1]. It is marked by challenges
arising from the complex temporal and spectral structure
of speech as well as its nonstationary nature. While mu-
sical applications require a higher accuracy of pitch esti-
mation than speech applications, tracking the pitch of a
melodic instrument or singing voice is easier than tracking
that of speech signals due to the relatively slowly changing
signal characteristics. The presence of interfering sounds
from percussive accompaniment, however, would be ex-
pected to adversely affect the accuracy of pitch estimates
of any given PDA for musical applications. Percussive
sounds are characterized by rapidly varying temporal en-
velopes, mixed partials-plus-broad-band noise spectra, and
low values of signal-to-interference ratio in localized time
intervals. The peculiar problems in pitch detection posed
by such interference form the main focus of the present
study. In particular, we consider the degradation caused by
the presence of inharmonic interfering partials. The ro-
bustness of pitch detection methods to additive broad-band
noise has been studied in various contexts in the literature
(see, for example, [2]). While the motivation for the pres-
ent work is the pitch tracking of the melodic instruments
including the singing voice in the presence of percussion,
we use in our experiments test signals from a set of MIDI
instrument voices to enable controlled experiments focus-
ing on the effects of percussion, with access to the “ground
truth” pitch available.

In this study an important subclass of PDAs, namely,
those based on the detection of periodicity in the time-
domain signal by means of short-term correlation, is con-
sidered. Autocorrelation-based pitch determination, used
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widely in speech analysis [1], has also been found suitable
for the pitch tracking of monophonic musical signals [3].
The present study investigates the Meddis–Hewitt percep-
tual PDA as an example of a more sophisticated algorithm
also based on the detection of periodicity via temporal
autocorrelation.

The engineering report is organized as follows. Section
1 provides a brief overview of various PDAs, with an
introduction to the PDAs chosen for the present study. The
subsequent sections describe the implementation of the
functional blocks of the PDAs and the evaluation of
the PDAs by an experiment on the synthetic signal test
set. The study concludes with a discussion of the obser-
vations targeted toward obtaining insights into the perfor-
mance of the PDAs with respect to signal and interference
characteristics.

1 PITCH DETECTION ALGORITHMS

Time-domain PDAs, the oldest pitch detection algo-
rithms, are based on measuring the periodicity of the sig-
nal via the repetition rate of specific temporal features.
Frequency-domain PDAs, on the other hand, are based on
detecting the harmonic structure of the spectrum. Among
the simpler time-domain PDAs is the popular autocorre-
lation function (ACF)–based PDA. The definition of the
“biased” autocorrelation function is given by [1]

ACF�k,�� = �
i=0

N−�−1

y�k + i)y(k + i + �) (1)

where k and � are position of window and correlation lag,
respectively, and y is the input signal.

For a pure tone, the ACF exhibits peaks at lags corre-
sponding to the period and its integral multiples. The peak
in the ACF of Eq. (1) at the lag � corresponding to the
signal period will be higher than that at the lag values
corresponding to multiples of the period. For a musical
tone consisting of the fundamental frequency component
and several harmonics, one of the peaks due to each of the
higher harmonics occurs at the same lag position as that
corresponding to the fundamental, in addition to several
other integer multiples of the period (subharmonics) of
each harmonic. Thus a large peak corresponding to the
sum contribution of all spectral components occurs at the
period of the fundamental (and higher integral multiples of
the period of the fundamental). This property of the ACF
makes it very suitable for the pitch tracking of monopho-
nic musical signals. The ACF PDA chooses as the pitch
period the lag corresponding to the highest peak within a
range of lags.

In contrast to the simplicity of the ACF pitch detector
are more recent PDAs, also based on autocorrelation, but
derived more closely from the mechanism of temporal
coding in the human auditory system. These PDAs can in
fact be viewed in terms of preprocessing of the signal
followed by autocorrelation-based detection. There are a
number of variants in this class of PDAs, but they all share
some important characteristics [4]. They decompose the
signal into frequency bands defined by the auditory filters
of the cochlea. Next, nonlinear processing corresponding

to hair-cell transduction is applied and the temporal peri-
odicity detected separately in each frequency channel by
means of autocorrelation. Finally the across-channel infor-
mation is combined to produce a single pitch estimate. The
recent pitch perception model of Meddis and Hewitt [5]
has gained much prominence due to its demonstrated abil-
ity to predict the results of certain crucial pitch perception
experiments. The Meddis–Hewitt PDA is based on the
functional modules of the auditory periphery with added
processing stages that emulate auditory processing, which
is considered to be more central. The various stages of the
PDA are a bandpass filter representing the transfer func-
tion of the outer ear and middle ear canal, a bank of filters
modeling the basilar membrane response, followed by a
model of the inner hair cell applied to each filter channel
output to simulate neural transduction, obtaining a series
of firing probabilities. Next an ACF periodicity detector is
applied to each of the hair-cell model outputs. Finally a
summary autocorrelation function (SACF) is formed by
adding the ACFs so obtained across the frequency chan-
nels. A search for the highest peak in the relevant range of
SACF lags provides an estimate of the pitch period.

The added presence of noise and inharmonic partials
due to an interfering signal perturbs the shape and location
of the peaks contributed by the signal harmonics in the
ACF. Thus the traditional ACF pitch detector applied to a
musical signal with percussive accompaniment would be
expected to be adversely affected by the presence of noise
and inharmonic frequency components contributed by the
percussion. On the other hand, in the case of perception-
based PDAs, the signal is processed by a number of au-
ditory-model–based blocks before being subjected to pe-
riodicity extraction via the ACF. In particular, a combina-
tion of linear and nonlinear filtering is applied, and the
temporal periodicity information itself is computed via the
ACF separately in each frequency channel. It is of interest
to examine whether and to what extent these perceptually
motivated enhancements improve the reliability of the
pitch estimation for harmonic musical signals with con-
spicuous background interference. While much recent
work has investigated the ability of perceptual PDAs to
predict subjectively perceived pitch in psychoacoustic ex-
periments, the present work examines the robustness of the
PDA for estimating the signal fundamental frequency in
the presence of interference. By means of carefully de-
signed test signals, we study the pitch estimation errors
obtained by the PDAs in the presence of percussive inter-
ference with respect to the underlying pitch of the melodic
voice, and later attempt to explain these observations.

2 IMPLEMENTATION OF PDA
FUNCTIONAL BLOCKS

Fig. 1 provides a modular structure for the PDA based
on the Meddis–Hewitt pitch perception model [5]. The
individual blocks represent various stages of the algo-
rithm, each of which may, in principle, be implemented in
multiple ways.

Block 1 represents the outer ear and middle ear (OEM)
prefiltering, with the magnitude response shown in Fig. 2.
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Essentially a bandpass filter with a resonance frequency
near 3 kHz, this block has been implemented by the cas-
cade of an eighth-order low-pass IIR filter and a second-
order parameterized high-pass filter with a high-pass filter
parameter value of 0.94 [6]. The magnitude response is
similar to the inverted absolute threshold-of-hearing curve,
whereas below 1 kHz it is approximated by the inverted
equal-loudness contour for high loudness levels.

Block 2 represents the cochlear filter bank with filter
center frequencies that are equally spaced on the ERB
(equivalent rectangular bandwidth) scale with the band-
width increasing with the center frequency. A filter bank
of 27 ninth-order gammatone filters of bandwidth 1 ERB
each are based on the corresponding function of the
HUTear library [7]. These filters have center frequencies
ranging from 123 Hz to 5.636 kHz, or 4 to 30 on the ERB
scale. The output of each filter simulates the pattern of
vibration at a particular location on the basilar membrane.

Next the conversion of this mechanical activity to the
neural spike generation events of the auditory nerve is
simulated by block 3. The implementation of this module

can range from a full model of the hair cell derived from
a computational analysis of actual hair-cell and auditory-
nerve processes [5] to simple half-wave rectification fol-
lowed by low-pass filtering [8]. In 1986 Meddis proposed
a model for the hair cell which simulates, through differ-
ence equations rich in parameters, several properties of the
neural transduction and auditory nerve firing [9]. Impor-
tant characteristics of the hair-cell model are its nonlin-
earity and frequency selectivity. The present implementa-
tion is based on the hair-cell model of Meddis and
coworkers [9], [10] as implemented in the auditory model
library of Slaney [11].

Block 4 calculates the ACF [Eq. (1)] of the signal input
to this block. Keeping in mind the range of 150–800 Hz
for the expected fundamental frequency, we have used a
40-ms window with 50% overlap (frame space 20 ms) for
the computation of the ACF. Once the ACFs are obtained
for all the channels [by implementing Eq. (1) on the hair-
cell model output of each channel], block 5 performs the
task of combining them. Combining can occur in the form
of either simple or weighted addition. We use simple sum-

Fig. 1. Block diagram of functional blocks of Meddis–Hewitt PDA with postprocessing added.

Fig. 2. Magnitude spectrum of outer-ear–middle-ear (OEM) filter.
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ming. The combined ACFs are known as summary ACF
(SACF). In block 6 the SACF is searched for the highest
peak within a prespecified range (corresponding to the
expected fundamental frequency range of 150–800 Hz).
The lag value corresponding to the highest peak is ac-
cepted as the estimated pitch period. Block 7 is a postpro-
cessing block, which smoothens out local variations in the
pitch estimates across frames using a simple three-point
median filter. The combination of all seven blocks consti-
tutes the Meddis–Hewitt PDA with added postprocessing.
In the next section we describe a procedure for evaluating
the contribution of the various functional blocks of the
Meddis–Hewitt PDA to improving robustness over direct
ACF peak-based pitch detection.

3 EXPERIMENTAL EVALUATION

In order to investigate the performance of the pitch de-
tection algorithms for the pitch estimation of a harmonic
signal in a percussive background, a set of test signals was
designed from available MIDI songs. Apart from the ac-
cess to the “ground truth” pitch, the use of MIDI files
provides great flexibility by allowing the inclusion or
elimination of individual monophonic instrument chan-
nels, modifying the relative strengths of the component
sounds, pitch transformations, and choice of the instru-
ment playing the melody line as well as the percussive
instrument.

3.1 Test Signal Set
A MIDI song of length 8 seconds was selected. It had a

single harmonic instrument (alto sax) playing the melody
accompanied by several percussive (nonpitched) voices,
namely, hi hat, kick drum, and low agogo channels. The
pitch range of the melody was 350–620 Hz and consisted
of four similar phrases, with each phrase comprising five
notes of various durations. [The pitch contour of the
melody can be seen as the solid line in Fig. 5(b).] Further,

in order to create a number of different test conditions,
pitch-shifted versions of the melody were created as fol-
lows: high (up by 4 semitones to the range of 440–787 Hz)
or low (down by 12 semitones to the range of 174.5–311
Hz). It may be remarked that the pitch transformations are
achieved via “instrumental” pitch shifting, which implies
that the relative amplitudes of the harmonics remain un-
changed across fundamental frequency changes, in con-
trast to formant-corrected pitch shifting.

The set of percussive instruments represents a range of
signal characteristics, as illustrated in the spectrograms of
Fig. 3. The kick drum is a relatively fast decaying signal
with predominantly low-frequency content. The hi hat is
characterized by a slow time decay and a broadly spread
spectral mixture of moderately strong partials and noise.
Low agogo has low-noise content and strong partials all
the way from 1.1 to 10 kHz, with a moderate rate of decay.

To obtain a variety of combinations of target and inter-
ference timbres, the song was transformed by changing the
target instrument and then selecting only one of the inter-
fering (percussive) instruments at a time. The selected
target instrument voices were of different timbres, as
shown by the magnitude spectra of a fixed note in Fig. 4.
For the middle- and high-frequency ranges, baritone sax
(prominent high harmonics), flute (weak high harmonics),
and oboe (harmonics spread in frequency) were used. For
the low-frequency range the flute was replaced by alto sax
to incorporate a more natural sound.

The JAZZ MIDI sequencer, available as shareware,1

was used to achieve the needed transformations. The
melody line was recorded, switching off all the other chan-
nels, in each of the three pitch ranges with each of three
target instruments. Thus a set of nine files containing pure
melody was obtained. For each of these melody files we
created three “corrupted” versions, each with only a single
percussion channel turned on. The synchronization be-

1www.jazzware.com.

Fig. 3. Spectrogram illustrating time–frequency behavior of three percussion instruments.
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tween the melody and each of the percussion tracks was
such that a minimum number of percussion strikes fell in
the silence region between target instrument notes. This
led to percussion onsets being located at a variety of po-
sitions with respect to target note onset, steady state, and
decay. Then relative amplitudes of the target and interfer-
ing signals were set so that the ratio of signal power to
interference power (each of the powers being computed as
the corresponding average over the nonsilent regions of
the musical piece) remained at a fixed predefined value
(equal to 2.0) for a set of test signals across various target
instruments, percussive instruments, and pitch ranges. The
signal-to-interference ratio, however, is only an average
value with local values deviating greatly, depending on the
position of the percussion strike with respect to the target
instrument note onset. We thus obtained a total of 27 test
signals, all sampled at 44.1 kHz.

3.2 Experiment
The PDAs were run on the pure test signals, with the

same postprocessing applied to each PDA estimate to en-
sure a fair comparison.

Fig. 5 shows a sample of the experimental results ob-
tained. The selected test signal is the combination of bari-
tone sax and low agogo percussion. Fig. 5(a) shows the
spectrogram of the test signal. The relatively continuous
dark lines correspond to the harmonic partials of the bari-
tone sax, and the very short dark segments that occur
during the first (2 strikes), third, and fourth notes of each
phrase correspond to the partials of the low agogo. Fig.
5(b) compares the true pitch track with the pitch track
estimated by the traditional ACF pitch detector followed
by a three-point median filter. We see that there are large
pitch estimation errors, which coincide with the occur-
rence of the percussion and last over several frames. The

simple three-point median postfilter only corrects isolated
pitch errors. The instances of percussion where pitch er-
rors do not occur seem to be characterized by overlapping
partials between target and percussion. Fig. 5(c) illustrates
the pitch contour obtained by using the Meddis–Hewitt PDA,
also followed by the postfilter, on the same test signal. Indeed
the performance has improved on using this algorithm.

A controlled-parameter experiment was carried out to
study the behavior of the PDAs on the underlying signal
characteristics, and to obtain an understanding of the role
of each of the functional modules of the Meddis–Hewitt
algorithm in influencing the pitch detection. Specifically,
four PDAs were evaluated on the test data set. All four
algorithms are derived from the generic block diagram of
Fig. 1 by choosing different combinations of subblocks
and/or different realizations of a specific subblock. The
postprocessor of block 7 is a three-point median filter that
is included in all four algorithms. The details of the four
PDAs are as follows.

1) AC1: This algorithm incorporates blocks 4, 6, and 7
only. It corresponds to the traditional ACF pitch detector.
Block 4, that is, the ACF calculation block, uses a rectan-
gular window and the biased ACF computation of Eq. (1).

2) AC2: This algorithm incorporates block 1 with
blocks 4, 6, and 7. This again is a traditional ACF pitch
detector, but with outer ear/middle ear filtering included as
a preprocessing function.

3) AC3: This algorithm comprises blocks 1, 3, 4, 6,
and 7. This algorithm is an extension of AC2, where the
neural transduction block (based on the hair-cell model of
[9]) has been introduced. Unlike the Meddis–Hewitt PDA,
the signal is not decomposed into separate frequency chan-
nels. Rather, the hair-cell nonlinearity is applied to the full
band signal followed by ACF pitch detection to result in a
single estimate of temporal periodicity per frame.

Fig. 4. Magnitude spectra of melodic instruments used in experimental study.
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4) MH1: All blocks 1 to 7 are included, making this a
complete implementation of the Meddis–Hewitt algorithm
with postprocessing added. For the ACF, a Hamming-
windowed biased ACF is computed for each channel using
an efficient fast Fourier transform implementation.

3.3 Observations
The bar charts of Figs. 6 to 9 display the results of the

experiment in terms of a count of the pitch errors with
respect to the known reference pitch contour, arranged by
the PDA configuration used. A pitch estimate is obtained
for every analysis frame only in regions where the target
instrument is playing. At a frame spacing of 20 ms, this
comprises a total of 285 frames. A pitch error is defined to
occur whenever the detected pitch deviates from the
reference pitch by 3% or more (about half a semitone) of
the reference pitch frequency. Of the detected pitch
errors, those of magnitude less than 6% are labeled “fine”
errors, whereas those of higher magnitude are labeled
“gross.” The gross errors are found typically to be pitch
octave errors. It may be noted that in the absence of per-
cussion, no pitch errors were observed in any of the PDA
configurations.

From an inspection of the bar charts we note that the
extent of pitch errors depends not only on the PDA but
also on the percussion instrument, the pitch range of the
target instrument, and the target instrument itself. Of the
latter three factors, the most marked is the dependence of
the PDA performance on the percussion characteristics.
The ACF pitch detector AC1 makes a large number of
errors for all three percussions. The target instrument pitch
range that is most affected is seen to depend on the spec-
tral characteristics of the interference. The kick drum with
its low-frequency support affects the lowest pitch range
the most, whereas the low agogo with its broad spectral
mixture of partials and noise impacts all three pitch ranges.
The introduction of OEM filtering in AC2 has the effect
of an overall lowering of the extent of pitch errors. A
strong exception to this happens to be the hi hat in the
high-pitch range (note the changed scale of the error axis).
The hair-cell model followed by autocorrelation (AC3)
serves to reduce all errors further, with the only significant
errors remaining in the low agogo signals. Finally, the
full Meddis–Hewitt PDA MH1 reduces the errors in the
low agogo signals of the low- and middle-pitch ranges, but
worsens the performance slightly in the high-pitch range.

Fig. 5. Pitch estimates for test signal “middle pitch, baritone sax with low agogo.” (a) Input signal spectrogram (prominent low-
frequency partials of percussion encircled). (b) Actual pitch (——) and pitch estimated from AC1 PDA (-- -). (c) Actual pitch (——)
and pitch estimated from MH1 PDA (-- -).
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4 DISCUSSION

In each of the PDA configurations used in the experi-
ment, the final pitch estimate (prior to postprocessing) is
obtained by searching the ACF (or SACF) for the lag
value corresponding to the highest peak within the ex-
pected range of lags. The ACF is computed either directly
on the input signal or after nonlinear processing by the
hair-cell model. In the case of the Meddis–Hewitt PDA,
the hair-cell nonlinearity followed by the ACF is com-
puted separately in frequency bands as determined by the
gammatone filter bank, and then combined linearly to ob-
tain the SACF. To understand the behavior of ACF peak-
based pitch detection better it is useful to think of the ACF
of a signal comprising several components (harmonic and

inharmonic) as the inverse Fourier transform of the power
spectrum of the signal [1]. The signal power spectrum is
insensitive to the relative phases of the components, to the
extent that the window is long enough that there is no
significant leakage of the frequency components. Due to
the linearity of the Fourier transform, the ACF of the
signal is the summation of the ACFs of the individual
components in the signal power spectrum, and is therefore
insensitive to the phase relations between components. Based
on this interpretation of the ACF, the observations of the
previous section are discussed and justified via simula-
tions using simplified implementations of channel separa-
tion (ideal bandpass filters) and hair-cell nonlinearity (a
half-wave rectifier followed by a low-pass filter given by
first-order Butterworth with 1-kHz cutoff frequency).

Fig. 6. Error performance of AC1 PDA for various target instruments and pitch ranges with percussion instrument in background. (a)
Kick drum. (b) Hi hat. (c) Low agogo.
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For the pure target signals, each of which contains a
number of harmonics, including the fundamental, the win-
dowed ACF of the input signal computed according to Eq.
(1) shows peaks at lags corresponding to the pitch period
and multiples of the pitch period. The highest peak corre-
sponds to the pitch period, and there is no error in the
estimated pitch. On the other hand, when the input signal
to the ACF contains noise or interfering partials, there is a
perturbation of the peak corresponding to the correct pitch
period. The ACF of the interference partial (which can be
considered to combine additively with the target ACF to
form the corrupted ACF) modifies the values of the origi-
nal ACF at all lags, thus modifying amplitudes at all lags
to some extent. Unless the interference partial is very
strong, this is not sufficient to change the locations of the

prominent peaks (at pitch and pitch multiples) but affects
only their relative amplitudes. As a result, the “choose the
highest peak in the ACF” approach typically results in
either a fine error due to a misshapen pitch peak or a gross
error in the form of a pitch octave error. Fig. 10(a) shows
the ACF of a periodic signal of fundamental frequency
600 Hz with the first four harmonics of amplitudes 10, 18,
14, and 12. At the sampling rate of 44.1 kHz, the signal
pitch period is 73.5 samples. A single interference partial
of fundamental frequency 3300 Hz and amplitude 16 (cor-
responding to signal-to-interference power ratio [SIR] 3.0)
is added to the signal, resulting in the ACF of the noisy
signal shown in Fig. 10(b). We see that the likelihood of
an octave error in the ACF of the noisy signal is highest
when, as depicted in Fig. 10, a valley of the ACF of the

Fig. 7. Error performance of AC2 PDA for various target instruments and pitch ranges with percussion instrument in background. (a)
Kick drum. (b) Hi hat. (c) Low agogo.
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noise partial coincides with the signal pitch peak and the
peak of the noise ACF coincides with a target pitch mul-
tiple. This is true whenever an interference partial occurs
at or near an odd multiple of half the target fundamental
frequency. Likewise, we expect no pitch errors when the
interference partial is near a multiple of the target funda-
mental frequency. It is easy to see from Fig. 10 that the
likelihood of pitch octave error would increase as the am-
plitude of the noise partial increases relative to the target
signal strength. This explains why the introduction of a
linear filter such as the OEM filter affecting the relative
amplitudes of the signal and noise partials leads to a
change in the error profiles, as seen in Fig. 7. The intro-
duction of outer ear–middle ear filtering reduces the errors
in the case of the kick drum, but has the contrary effect in

the case of the hi hat and, to some extent, on the low
agogo. This can be explained by the low-frequency nature
of the spectrum of the kick drum, which consequently is
heavily attenuated by the OEM filter. The hi hat and low
agogo on the other hand have brighter spectra with much
middle frequency content that remains after the OEM fil-
ter. The target spectrum, because of its preponderant lower
harmonics, suffers greater overall attenuation than the bright
spectra percussions. The unusually sharp rise in pitch errors
in the high-pitch target range with hi-hat interference was
found to be due to the chance occurrence of an interference
partial at an odd multiple of half the fundamental frequency
of a note of recurring pitch throughout the song. This partial
fell near the resonance frequency (3 kHz) of the OEM filter
and was a prominent spectral component in the filtered sig-

Fig. 8. Error performance of AC3 PDA for various target instruments and pitch ranges with percussion instrument in background. (a)
Kick drum. (b) Hi hat. (c) Low agogo.
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nal. It resulted in an octave error in the ACF pitch estimate
almost throughout the duration of the note in question.

Introducing the hair-cell model prior to ACF computa-
tion is equivalent to a nonlinear processing of the signal
that, among other effects, gives rise to new frequency
components located at sum and difference frequencies of
the original components. In the case of a weak or missing
fundamental, the creation of distortion components con-
tributes to the enhancement of the fundamental frequency
component [1]. In addition the hair-cell model introduces
a dc bias and a low-pass frequency selectivity [9]. The
presence of interference partials at nonharmonic locations
gives rise to nonharmonic distortion components, whose
magnitudes depend on the magnitudes and phases of the
interacting components (both signal and interference). Due
to this the distortion components affect the peak at pitch
lag in the ACF in different ways. One consistent effect is
the dc level introduced by the hair-cell processing that

leads to a bias favoring lower pitch lags, as seen in Fig.
10(c), where we also observe the attenuation of the high-
frequency partial. Such effects contribute to the overall
improvement in the performance demonstrated by the
AC3 PDA in Fig. 8. In particular, a more robust pitch
estimator is obtained in the case of the interference partial
at a high odd multiple of half the target fundamental fre-
quency. The Meddis–Hewitt PDA is an enhancement of
the AC3 algorithm in that a cochlear filter bank is in-
cluded. The ACF is computed separately in each fre-
quency channel, and summed across channels to obtain the
pitch estimate as the largest peak lag in the search range.
The frequency decomposition affected by the filter bank
limits the number of interacting partials through the hair-
cell model nonlinearity applied separately to each channel.
Fig. 11, obtained for the same signal and interference as
Fig. 10, illustrates the effect of this on the SACF. Shown,
for two different channel configurations (of four channels

Fig. 9. Error performance of the MH1 PDA for various target instruments and pitch ranges with percussion instrument in background.
(a) Kick drum. (b) Hi hat. (c) Low agogo.
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simulated by ideal bandpass filters), are the signal and
interference frequency components at the output of the
channel nonlinearities as well as the corresponding SACF.
In Fig. 11(a) the interference partial is in a separate chan-
nel by itself. This eliminates any distortion components
created due to an interaction of target harmonics and in-
terference. On the other hand, the co-occurrence of several
higher harmonics of the target in a single channel strength-
ens the fundamental frequency component in the SACF.
These two effects lead to an improved ACF peak at the
signal pitch period of 73 samples. This explains the im-
proved performance of the Meddis–Hewitt PDA for the
low agogo samples for the low- and middle-pitch ranges.
In the high-pitch range, however, it was observed that due
to the higher interharmonic spacing, several of the chan-
nels contained only a single harmonic of the target instru-
ment accompanied by interference components. This con-
dition is depicted and simulated by the configuration of
Fig. 11(b), where the signal partials occupy different chan-
nels and the noise partial shares a channel with a target
harmonic. The last channel gives rise to inharmonic dis-
tortion components, one of which is visible in the figure.
Together with the reduced contribution to the fundamental
frequency due to the absence of unresolved harmonics,
this leads to a degradation of the pitch estimate.

Finally we return to the AC1 PDA and explain the low-
frequency errors due to the kick drum in Fig. 6. The au-
tocorrelation method of AC1 leads to a significant number

of gross errors for all three percussions, depending on the
frequency relation between target and interference partials.
The low-pitch-range errors are the most pronounced in the
case of the kick drum due to a strong low-frequency partial
from this percussion. Fig. 12 illustrates this effect on ACF
peak-based pitch estimation by simulating the kick drum by
a strong interference tone at 68 Hz. Shown in Fig. 12 are
ACFs for signals of fundamental frequency 600 Hz and 200
Hz with the same harmonic amplitudes as the signal of Fig.
10. Both clean signals yield accurate pitch peaks in the SACF
(at lags of 73 samples and 220 samples, respectively). How-
ever, the addition of the 68-Hz low-frequency interference
tone (with amplitude 26, corresponding to SIR 1.1) intro-
duces a low-lag bias in the overall ACF in both cases. This
leads to a gross pitch error (pitch submultiple selected) in
the case of the lower fundamental frequency signal since
its pitch period is comparable to that of the interference.

5 CONCLUSIONS

In this engineering report an experimental investigation
is presented of the performance of pitch-detection algo-
rithms based on temporal autocorrelation for the pitch
tracking of a melodic signal with percussive accompani-
ment characterized by inharmonic partials. The perfor-
mance of the autocorrelation pitch detector as well as its
enhancements based on the Meddis–Hewitt auditory
model are studied experimentally on synthetic musical sig-
nals. The ACF peak-based pitch detector incurs pitch es-

Fig. 10. ACF plotted as a function of lag. (a) Signal of fundamental frequency 600 Hz (——) and noise tone of frequency 3300 Hz
(- - -). (b) Noisy signal. (c) Nonlinearly processed noisy signal.
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Fig. 11. SACF and spectral components of noisy signal after channel filtering and nonlinear processing corresponding to different
four-channel groupings of signal harmonics and noise. (a) SACF for /h1/h2/h3+h4/n/ and corresponding power spectrum. (b) SACF
for /h1/h2/h3/h4+n/ and corresponding power spectrum.

Fig. 12. ACF plotted as a function of lag for signal and interference tone of 68 Hz. - � - � - ACF of signal; - - - ACF of interference;
—— ACF of noisy signal. (a) Signal fundamental frequency 600 Hz. (b) Signal fundamental frequency 200 Hz.
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timation errors when interference partials cooccur with
signal harmonics. The following enhancements to the ba-
sic ACF PDA improve the robustness of pitch extraction
in the presence of percussive interference in the form of
inharmonic tones. Outer-ear-middle-ear prefiltering, co-
chlear bandpass filtering, and hair-cell nonlinear process-
ing represent a combination of linear and nonlinear pre-
processing of the signal before computing the ACF to
estimate pitch periodicity. The sum of channel autocorre-
lations (SACF) would simply be proportional to the auto-
correlation of the input signal to the cochlear filter bank if
it was not for the hair-cell nonlinearity [12]. Of signifi-
cance then is the combined role of channel separation and
hair-cell nonlinearity. The experimental results provide
important insights into the nature of the pitch errors and
their dependence on the relative frequencies of the signal
and interference. The noise sensitivity of ACF peak-based
pitch detection is highest when interfering partials fall ex-
actly between signal harmonics. The hair-cell nonlinearity
serves to increase the accuracy of pitch detection primarily
via an increased bias of lower lag peaks in the ACF and
the attenuation of high-frequency partials. The separate
processing of frequency channels by the introduction of
the cochlear filter bank is crucial in reducing the distortion
components from the interaction of signal harmonics and
interference partials while reinforcing the contribution to
the fundamental frequency component from unresolved
higher harmonics of the signal.

It would be interesting to explore the perceptual impli-
cations of the preceding observations. That is, since the
observations on the accuracy of the Meddis–Hewitt PDA
in the current context are explained by the signal-
processing algorithms used, it is relevant to wonder wheth-
er these specific predictions of the model hold for subjec-
tive pitch perception. From a practical viewpoint, the
results of this study may be applied to construct pitch
detectors for musical signals that are robust to the presence
of nonpitched percussion. It is interesting to consider tun-
ing the several available parameters of the hair-cell model
nonlinearity to increase its effectiveness for known signal
and interference characteristics, including possibly the
presence of broad-band noise. Alternative means of ob-
taining the SACF, such as summing with channel weight-
ing, provide further promising directions for future work.
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