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Abstract. The effectiveness of audio content analysis for music retrieval
may be enhanced by the use of available metadata. In the present work,
observed differences in singing style and instrumentation across genres
are used to adapt acoustic features for the singing voice detection task.
Timbral descriptors traditionally used to discriminate singing voice from
accompanying instruments are complemented by new features represent-
ing the temporal dynamics of source pitch and timbre. A method to iso-
late the dominant source spectrum serves to increase the robustness of
the extracted features in the context of polyphonic audio. While demon-
strating the effectiveness of combining static and dynamic features, ex-
periments on a culturally diverse music database clearly indicate the
value of adapting feature sets to genre-specific acoustic characteristics.
Thus commonly available metadata, such as genre, can be useful in the
front-end of an MIR system.

1 Introduction

The automatic identification of audio segments within a song, that contain the
singing voice (vocal part) is important in several Music Information Retrieval
(MIR) applications such as artist identification [1], voice separation [2] and lyrics
alignment [3]. SVD is typically viewed as an audio classification problem where
features that distinguish vocal segments from purely instrumental segments in
music are fed to a machine-learning algorithm previously trained on manu-
ally labeled data. Until recently, singing voice detection algorithms employed
solely static features, typically comprising frame-level spectral measurements
such as combinations of mel-frequency cepstral coefficients (MFCCs) [1], [2],
[4]-[6], warped or perceptually derived linear predictive coefficients (LPCs) [1],
[7]-[9], log frequency power coefficients (LFPC) [10], harmonicity related features
[11]-[13] and other spectral features such as flux, centroid and roll-off [14], [15].

A consideration of acoustic attributes necessary for the detection of vocal
segments in music fragments by humans is interesting for its potential in guid-
ing the search for suitable features for the task. An experiment in which subjects
listened to short excerpts (less than 500 ms long) of music from across diverse
genres showed that human listeners can reliably detect the presence of vocal
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2 Context-aware features for singing voice detection in polyphonic music

content in such brief excerpts [16]. The presence of note transitions in the ex-
cerpt was found to be especially useful, indicating that both static features and
dynamic features (changes) provide important perceptual cues to the presence
of vocalization.

Dynamic features for singing voice detection have largely been confined to
feature derivatives, representing very short-time dynamics. A few studies have
explored the observed pitch instability of the voice relative to most accompanying
instruments in the form of features representing longer-term dynamics of pitch
and/or the harmonics such as arising from vibrato and tremolo in singing [10],
[17]. Clearly, there is scope for improvement in terms of capturing the essential
differences in the dynamics of the singing voice and musical instruments in a
compact and effective way.

While most research results in MIR are reported on collections drawn from
one or another culture (mostly Western), we are especially interested in features
that work cross-culturally. It would be expected that certain feature attributes
are more discriminative on particular music collections than on others, depending
on the musical content due to the inherent diversity of both singing styles and
instrumentation textures across cultures [18]. The work reported in this paper is
an attempt to study this. A similar approach underlies the work on collection-
specific features for image retrieval, also appearing in this volume [19].

We choose to focus on ’vocal’ music i.e. where the singing voice is the pre-
dominant melodic entity whenever present. Further, as far as possible, the in-
strumental sections of the song include a predominant melodic instrument. One
of the categories that was badly classified, and also negatively influenced the
training set effectiveness, in the study of [20] corresponded indeed to songs with
predominant melodic instruments or with singing co-occurring with such in-
struments. Paralleling this observation, are studies on predominant musical in-
strument identification in polyphony which state that pitched instruments are
particularly difficult to classify due to their sparse spectra [21]. Thus our choice
of evaluation datasets is guided by the known difficulty of the musical context
as well as the wide availability of such a category of music cross-culturally. We
consider the effective extraction and evaluation of static and dynamic features on
a dataset of vocal music drawn from Western popular, Greek and three distinct
Indian genres: North Indian (Hindustani) classical, South Indian (Carnatic) and
popular (Bollywood or film music).

2 Dominant Source Spectrum Isolation

Previous studies on SVD have extracted features by processing the short-time
Fourier transform (STFT) without attempting to isolate the spectra of individual
sound sources. Recently, a spectral processing technique called accompaniment
sound reduction, which uses the predominant-F0, for robust singing voice model-
ing in polyphony was presented by Fujihara et.al.[22]. In this section we describe
a method for dominant source spectrum isolation along the lines of their method
but with some important enhancements.
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Harmonic sinusoidal modeling is applied to detect and track F0-specific har-
monic components from the spectrum. We use a predominant F0 extraction
system designed for robustness in the difficult context of concurrent pitched ac-
companiment [23]. In order to study the comparative performance of features
unobscured by possible pitch detection errors, we carry out feature extraction in
both automatic and semi-automatic modes of pitch detection for the dominant
source spectrum isolation [24]. In the latter mode, pitch analysis parameters are
selected considering a priori information on the pitch range of the voice in the
given piece of music.

The audio signal is processed at a frame rate of 100 frames/sec with the STFT
computed from 40 ms long Hamming windowed analysis frames. Rather than
identify spectral local maxima in the vicinity of expected harmonic locations as
detected harmonics, as done in [22], we first extract reliable sinusoidal partials
using a main-lobe matching technique, which we have previously found to be
particularly robust to polyphony and signal non-stationarity [25]. We then search
the sinusoidal space in a 50-cent neighborhood (subject to a 50 Hz absolute limit)
of expected harmonic locations, based on known predominant F0, to identify
local harmonic components. This results in a harmonic line spectrum for each
analysis frame.

Next, partial tracking is applied to the harmonic line spectra over time for
better source spectral isolation during transients and note changes. Similar to
Serra [26], partial tracking is improved by biasing trajectory formation towards
expected harmonic locations based on the detected pitch. Tracks are formed and
ordered by their respective harmonic index. We apply a one semitone threshold
on track continuation i.e. a track will ’die’ if there does not exist any sinusoid
within 1 semitone of the last tracked frequency. In addition to frequency prox-
imity, we incorporate sinusoid amplitudes in the cost function, as given below,
to account for high amplitude partials that might lose out to spurious nearby
peaks.

J =
∣∣(ωk

n − ωm
n−1)× log(Ak

n/A
m
n−1)

∣∣ (1)

where ωm
n−1 and Am

n−1 are the frequency and amplitude resp. of the mth harmonic
track in frame n− 1 and ωk

n and ωm
n−1 are the frequency and amplitude resp. of

the kth local sinusoid in the frame n that is competing for joining the track.
Rather than extract features from the discrete frequency spectra obtained

after harmonic sinusoidal modeling, we use smooth spectra derived by the log-
linear interpolation of the harmonic spectral amplitudes as follows. Given a set
of estimated amplitudes S(ω1), S(ω2), , S(ωL) at L uniformly spaced harmonic
frequencies ω1, ω2,, ωL we generate spectral amplitudes Q(Θ) at fixed DFT bin
spacing as shown below:

Q(Θj) = 10
log|S(ωk)|+(

Θj−ωk
ωk+1−ωk

)(log|S(ωk+1)|−log|S(ωk)|)
(2)

where ωk < Θj < ωk+1. The interpolation serves to make any spectral enve-
lope features extracted subsequently less dependent on the F0 and thus more
representative of source timbre.
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3 Feature Extraction

In this section we describe the different static and dynamic features investigated,
motivated by the signal characteristics. Static features are computed locally over
short sliding analysis frames while dynamic features are computed over larger
non-overlapping time windows called texture windows. To avoid confusion, we
will use the term frame to refer to the analysis frame and window for the texture
windows. Silence frames, i.e. frames with energy lower than the song-level global
maximum energy by more than 30 dB, are not processed. The features for such
frames are interpolated from valid feature values in adjacent frames.

3.1 Static Timbral Features

In previous work on SVD the most commonly used features are static timbral
descriptors, which attempt to capture the timbral aspects of musical sounds and
do not utilize any specific long-term traits of the singing voice or instruments.
Rocomora and Herrera compared the performance of a comprehensive list of
static features in an SVD task and found that MFCCs resulted in the best
classification accuracies [27]. The tested features were however all extracted from
the overall polyphonic spectrum.

Recently Fujihara and Goto proposed that the feature set of F0 and harmonic
powers were found to be highly discriminatory for SVD when source spectral
isolation was possible [3]. The harmonic powers were normalized for each song.
The normalized power of the hth component at time t is given by

p
′t
h = log pth −

∑
t

∑
h log pth

T ×H
(3)

where p
′t
h represents the original power, T is the total number of frames in the

song, and H is the number of harmonic components considered per frame.
The interpolated spectrum of Eq. (2) provides a spectral envelope that is

potentially indicative of the underlying instrument’s resonances or formants.
Two more features: the sub-band spectral centroid (SC) and sub-band energy
(SE) [28] as given by

SC =

∑khigh
k=klow

f(k)|X(k)|∑khigh
k=klow

|X(k)|
SE =

∑khigh
k=klow

|X(k)|2 (4)

where f(k) and |X(k)| are frequency and magnitude spectral value of the kth

frequency bin, and klow and khigh are the nearest frequency bins to the lower
and upper frequency limits on the sub-band respectively. SE is normalized by
its maximum value for a song. The sub-band for SC ranges from 1.2-4.5 kHz
and that for SE is from 300 to 900 Hz.

3.2 Dynamic Timbral Features (C2)

The explicit modeling of temporal dynamics, as an important component of
perceived timbre, has found a place in recent research on musical instrument



Context-aware features for singing voice detection in polyphonic music 5

recognition [29], [30]. Based on similar considerations, features linked to the
temporal evolution of the spectral envelope can be designed to capture spe-
cific attributes of the instrument sound. For example, in view of the well-known
source-filter model of sound production applicable to human speech and to mu-
sical instruments, variations in spectral envelope with time represent variations
of the filter component independent of the source component (i.e. F0). Such a
dynamic feature could potentially discriminate between singing voice and (even
similarly pitch-modulated expressive) musical instruments due to the absence of
formant articulation dynamics in the latter. Another distinguishing aspect could
be the attack-decay envelope peculiar to a particular instrument as reflected in
the variation of spectral amplitudes over note durations.

One of the problems with the effective use of timbral dynamics for instrument
classification in polyphony was found to be the lack of ability to pay selective
attention to isolated instrumental spectra [31]. Here we describe the extraction
of the dynamics of the two static timbral features using our isolated dominant
source spectral representation. The first of these is the sub-band spectral cen-
troid (SC) as computed in the previous section. The specific sub-band chosen
[1.2-4.5 kHz] is expected to enhance the variations in the 2nd, 3rd and 4th for-
mants across phone transitions in the singing voice. This feature is expected
to remain relatively invariant over note transitions in the instrument. Although
the band-limits are restrictive, even very high pitched instruments will have at
least 3 harmonics present within this band so that their spectral envelope can
be relatively well represented. The second feature for dynamic analysis is the
sub-band energy (SE) as computed in the previous section. The band limits for
SE ([300-900 Hz]) are expected to enhance the fluctuations between voiced and
unvoiced utterances while remaining relatively invariant to small instrumental
note transitions. Fluctuations in this feature should be evident even if the sig-
nal representation captures some pitched accompanying instrument information
during unvoiced sung sounds.

To capture meaningful temporal variations in the dynamics of the above
timbral features, it is necessary to choose the duration of the observation interval
appropriately [29]. We choose three different time scales (texture windows) for
our feature set: 0.5 sec (long note duration), 1 and 2 sec intervals (to capture note
articulation changes in both fast and slow singing). We represent the dynamics
via the standard deviation (std. dev.) and specific modulation energies over the
different observation intervals. These modulation energies are represented by a
modulation energy ratio (MER). The MER is extracted by computing the DFT
of the feature trajectory over a texture window and then computing the ratio of
the energy in the 1-6 Hz region in this modulation spectrum to that in the 1-20
Hz region as shown below:

MER =

∑k6Hz

k=k1Hz
|Z(k)|2∑k20Hz

k=k1Hz
|Z(k)|2

(5)

where Z(k) is the DFT of the mean-subtracted feature trajectory z(n) and kfHz

is the frequency bin closest to fHz. We assume that the fastest syllabic rate
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possible, if we link each uttered phone to a different note in normal singing,
should not exceed 6 Hz. Steady note durations are not expected to cross 2
seconds. The std. dev. and MER of the above features are expected to be higher
for singing than instrumentation.

3.3 Dynamic F0-Harmonic Features (C3)

Singing differs from several musical instruments in its expressivity, which is phys-
ically manifested as the instability of its pitch contour. In western singing, espe-
cially operatic singing, voice pitch instability is marked by the widespread use
of vibrato, a periodic, sinusoidal modulation of phonation frequency during sus-
tained notes [32]. Within non-western forms of music, such as Greek Rembetiko
and Indian classical music, voice pitch inflections and ornamentation are exten-
sively used as they serve important aesthetic and musicological functions. On
the other hand, the pitch contours of several accompanying musical instruments,
especially keyed instruments, are usually very stable and incapable of producing
pitch modulation.

There has been limited previous work on utilizing voice-pitch instability to
SVD. Shenoy, Wu and Wang [33] exploit pitch instability in an indirect way by
applying a bank of inverse comb filters to suppress the spectral content (har-
monics) of stable-pitch instruments. Nwe and Li [10] made use of a bank of
band-pass filters to explicitly capture the extent of vibrato within individual
harmonics upto 16 kHz. Regnier and Peeters attempted a more direct use of
frequency and amplitude instability of voice harmonics (manifested as vibrato
and tremolo respectively in western music) [17]. Their method is based on the
observation that the extents of vibrato and tremolo in singing are different than
those for most instruments. The authors have also previously used pitch stabil-
ity cues to prune flat-pitched instruments tracks in a harmonic sinusoidal model
[34].

In this study we do not restrict ourselves to targeting particular types of
pitch modulation such as vibrato but extract some statistical descriptors (mean,
median, std. dev.) of general pitch instability-based features over texture win-
dows of expected minimum note duration (here 200 ms). These features are
the first-order differences of the predominant-F0 contour and the subsequently
formed harmonic frequency tracks. The track frequencies are first normalized
by harmonic index and then converted to the logarithmic cents scale so as to
maintain the same range of variation across harmonics and singers’ pitch ranges.
For the latter we group the tracks by harmonic index (harmonics 1-5, harmonics
6-10, harmonics 1-10) and also by low and high frequency bands ([0-2 kHz] and
[2-5 kHz]). This separation of lower and higher harmonics/frequency bands is
due to the observation that when the voice pitch is quite stable, the lower har-
monics do not display much instability but this is clearly visible in the higher
harmonics. However when the voice pitch exhibits large modulations the insta-
bility in the lower harmonic tracks is much more clearly observed but often the
higher harmonic tracks are distorted and broken because of the inability of the
sinusoidal model to reliably track their proportionately larger fluctuations. We
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Table 1. List of features in each category. Bold indicate finally selected feature

C1 C2 C3
Static timbral Dynamic timbral Dynamic F0-Harmonic

F0 ∆ 10 Harmonic powers Mean and median of ∆F0

10 Harmonic
powers

∆SC and ∆SE
Mean, median and Std.Dev. of

∆Harmonic ε[0 2 kHz]

Spectral
centroid (SE)

Std. Dev. of SC for 0.5,
1 and 2 sec

Mean, median and Std.Dev. of
∆Harmonic ε[2 5 kHz]

Sub-band
energy (SE)

MER of SC for 0.5, 1
and 2 sec

Mean, median and Std.Dev. of
∆Harmonics 1 to 5

Std. Dev. of SE for 0.5,
1 and 2 sec

Mean, median and Std.Dev. of
∆Harmonics 6 to 10

MER of SE for 0.5, 1 and
2 sec

Mean, median and Std.Dev. of
∆Harmonics 1 to10

Ratio of mean, median and
Std.dev. of ∆Harmonics 1 to 5 :

∆Harmonics 6 to 10

also compute the ratio of the statistics of the lower harmonic tracks to those of
the higher harmonic tracks since we expect these to be much less than 1 for the
voice but nearly equal to 1 for flat-note instruments.

A complete list of features appears in Table 1. All features are brought to the
time-scale of 200 ms long decision windows. The frame-level static timbral fea-
tures, generated every 10 ms, are averaged over this time-scale and the timbral
dynamic features,generated over larger windows: 0.5, 1 and 2 sec, are repeated
within 200 ms intervals. The F0-harmonic dynamic features were generated at
200 ms non-overlapping windows in the first place and do not need to be ad-
justed. Next, feature subset selection is applied to identify a small number of
highly predictive features and remove as much redundant information as possi-
ble. Reducing the dimensionality of the data allows machine learning algorithms
to operate more effectively from available training data. Feature selection is
achieved by measuring the information gain ratio of the feature with respect to
a class [35]. Each feature is assigned a score based on the information gain ratio
to obtain a ranked feature list.

4 Classification

Statistical classification methods are very effective in exploiting the overall in-
formation provided about the underlying class by the set of diverse features
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if suitable data is provided for the training of the statistical models. Previous
studies on SVD have employed a variety of classifiers. We use a standard GMM
classifier [36] for the evaluation of our features. Using 4 mixtures for each of the
two models (singing voice and instrumentation) with full covariance matrices
was found suitable in preliminary testing. The dimensionality of the GMM is
determined by that of the feature vector. We would like to study the effective-
ness of individual feature sets as well as that of the combination of individual
classifiers trained with individual feature sets, which can improve the effective-
ness of the system while offsetting difficulties arising from high dimensionality
[37]. Combining the likelihood scores of classifiers is particularly beneficial if
the corresponding individual feature sets represent complementary information
about the underlying signal. Weighted linear combination of likelihoods provides
a flexible method of combining multiple classifiers with the provision of varying
the weights to optimize performance [37].

5 Experiments

The singing voice detection task is carried out on a database comprising excerpts
from 5 distinct music genres. A feature set of the first 13 MFCCs extracted
from the frame-level magnitude spectrum applied to a GMM classifier with 4
mixtures per class is considered as a baseline system. As mentioned earlier,
Rocamora and Herrera had found the performance of the MFCC features among
the best performing for in the SVD task [27]. The newly proposed features of the
present work are applied to the same classifier framework in order to evaluate
the performance improvement with respect to the baseline feature set and to
derive a system based on possible feature combinations that performs best for a
specific genre and across genres.

5.1 Database Description

All the audio excerpts in our database contain polyphonic music with lead vocals
and dominant pitched melodic accompaniment, and are in 22 kHz 16-bit mono
format. Vocal and purely instrumental sections of songs categorized as above
from five different genres of music have been selected - Western popular, Greek
Rembetiko, Indian popular (Bollywood), North Indian classical (Hindustani)
and South Indian classical music (Carnatic). The Western and Greek clips have
been selected from the datasets used in [9] and [38] respectively. The total size
of the database is about 65 min. with roughly 13 min. per genre. Information
about the number of songs, and vocal and instrumental durations for each genre
appears in Table 2. In a given genre a particular artist is represented by only
one song.

The selected genres are marked by distinct singing styles and instrumenta-
tion. A noticeable difference between the singing styles of the Western and non-
Western genres is the extensive use of pitch-modulation (other than vibrato) in
the latter. Pitch modulations further show large variations across non-Western
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Table 2. Duration Information of Audio Database

Genre
Number

of
songs

Vocal duration
Instrumental

duration
Overall

duration

I. Western 11 7m 19s 7m 02s 14m 21s
II. Greek 10 6m 30s 6m 29s 12m 59s

III. Bollywood 13 6m 10s 6m 26s 12m 36s
IV. Hindustani 8 7m 10s 5m 24s 12m 54s

V. Carnatic 12 6m 15s 5m 58s 12m 13s

Total 45 33m 44s 31m 19s 65m 03s

genres in the nature, shape, extents, rates and frequency of use of specific pitch
ornaments. Further, whereas Western, Greek and Bollywood songs use syllabic
singing with meaningful lyrics, the Hindustani and Carnatic music data is domi-
nated by melismatic singing (several notes on a single syllable in the form of con-
tinuous pitch variation). The instruments in Indian popular and Carnatic genres
are typically pitch-continuous such as the violin, saxophone, flute, shehnai, and
been, whose expressiveness resembles that of the singing voice in terms of similar
large and continuous pitch movements. Although there are instances of pitch-
continuous instruments such as electric guitar and violin in the Western and
Greek genres as well, these, and the Hindustani genre, are largely dominated
by discrete-pitch instruments such as the piano and guitar, accordion and the
harmonium. A summary of genre-specific singing voice and instrumental char-
acteristics appears in Table 3.

5.2 Selected Features

Each of the feature sets (C1, C2 and C3) is fed to the feature selection system
to generate a ranked list for each genre. A feature vector comprising the top-N
features common across genres was tested for SVD in a cross-validation classifi-
cation experiment to select N best features. For C1 it was observed that using all
the features in this category consistently maximized the classification accuracies
across genres and so we did not discard any of these features. For C2 and C3
we observed that the top six selected features for each of the genres consistently
maximized their respective classification accuracies. The finally selected features
in each of the categories appear in bold in Table 1.

In the dynamic timbral feature set, the ∆ values of the static features are
ignored by the feature selection algorithm in favour of the std. dev. and MER
values of the SC and SE. The feature selection algorithm took into account
the expected high degree of correlation between the same dynamic features at
different time-scales and only selected at most one time-scale for each dynamic
feature. For the F0-harmonic dynamic feature set, the final selected features (C3)
are the medians of ∆F0 and ∆Harmonic-tracks rather than their means or std.
dev. The choice of medians was seen to be driven by the common occurrence of
intra-window flat-pitched instruments note-transitions where the F0/Harmonic
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Table 3. Genre-specific singing and instrumental characteristics

Genre Singing Dominant Instrument

I. Western
Syllabic. No large pitch

modulations. Voice often
softer than instrument.

Mainly flat-note (piano, guitar).
Pitch range overlapping with voice.

II. Greek
Syllabic. Replete with

fast, pitch modulations.

Equal occurrence of flat-note
plucked-string /accordion and of

pitch-modulated violin.

III. Bollywood
Syllabic. More pitch

modulations than Western
but less than other Indian.

Mainly pitch-modulated wood-wind
& bowed instruments. Pitches often

much higher than voice.

IV. Hindustani

Syllabic and melismatic.
Varies from long,

pitch-flat, vowel-only
notes to large & rapid

pitch modulations.

Mainly flat-note harmonium
(woodwind). Pitch range
overlapping with voice.

V. Carnatic
Syllabic and melismatic.
Replete with rapid pitch

modulations.

Mainly pitch-modulated violin. F0
range generally higher than voice

but has some overlap in pitch
range.

tracks make a discontinuous jump. In such cases, the means and standard de-
viations of the ∆s exhibit large values as opposed to the relatively unaffected
median values which remain low.

5.3 Evaluation

An N-fold cross-validation classification experiment is carried out within each
genre. Since the durations of different songs within a particular genre are un-
equal we consider each song to be a fold so as to avoid the presence of tokens of
the same song in the training and testing data to achieve a ’Leave 1 Song out’
cross-validation. This is done separately for the semi- and fully-automatic F0
extraction based source spectrum isolation methods. In each case, we first evalu-
ate the performance of the baseline features (MFCCs), before and after applying
dominant source spectrum isolation. We next evaluate the performance of the
different categories of feature sets individually (C1, C2 and C3). Further, we eval-
uate the performance of different feature set combinations: C1+C2, C1+C3 and
C1+C2+C3, using a linear combination (equal weights) of the log-likelihood out-
puts per class of separate classifiers for each feature set. Vocal/non-vocal decision
labels are generated for every 200 ms texture window. While the ground-truth
labels for the Western and Greek genres were available with the datasets, the
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Table 4. %Correct classification for different genres using semi-automatic predominant
F0 extraction;Bold indicates best achieved in each genre

Genre I II III IV V Total

Baseline 77.2 66.0 65.6 82.6 83.2 74.9

MFCCs(after
source isolation)

78.9 77.8 78.0 85.9 85.9 81.2

C1 79.6 77.4 79.3 82.3 87.1 81.0

C2 72.0 77.9 80.0 70.1 65.3 73.2

C3 64.3 77.0 68.3 83.7 70.2 72.6

C1+C2 82.3 83.6 85.4 83.3 86.8 84.2

C1+C3 80.2 83.4 81.7 89.7 88.2 84.5

C1+C2+C3 81.1 86.9 86.4 88.5 87.3 85.9

remaining datasets were manually labeled. In all cases classification performance
is given by the percentage of decision windows that are correctly classified [2].

5.4 Results and Discussion

The ’Leave 1 Song out’ cross-genre classification results for semi- and fully-
automatic predominant F0 extraction based source spectrum isolation methods
are given in Tables 4 and 5 respectively. From Table 4, we see that the best over-
all performance is achieved for the combination of all three feature sets and is
significantly (10-12%) higher than the baseline performance. For the static fea-
ture comparison it can be seen that the feature sets C1 and MFCCs after source
isolation show similar performance and are, in general, superior to the baseline
features(non-source-isolated MFCC). The clear superiority of the C1+C2+C3
feature combination over the static feature set C1 and over the MFCC feature
set after source isolation can also be observed by the across-genre average vocal
precision v/s recall curves in Fig. 1. A detailed analysis of the genre-specific
performance of each feature set follows. The feature set C2 shows relatively
high performance for the Western, Greek and Bollywood genres as compared to
the Hindustani and Carnatic genres. This can be attributed to the presence of
normal syllabic singing in the former and long duration vowel and melismatic
singing in the latter. The relatively high performance of this feature set in the
Bollywood genres where the instruments are mainly pitch-continuous corrobo-
rates with the static timbral characteristics of these instruments despite their
continuously changing pitch. Table 5 shows reduced results for different feature
sets and their combinations as compared to Table 4. This is due to the pitch
detection errors inherent in the fully-automatic F0 extraction system. However
the general trends across different feature sets hold for this case as well, with
the results of Table 4 providing an upper limit on performance achievable with
a better pitch detector.

The suitability of C2 and C3 for specific signal conditions can be understood
from Fig. 2a and 2b, which show spectrograms of 30-sec excerpts from the Bol-
lywood and Hindustani genres respectively. For both plots the left half contains
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Table 5. %Correct classification for different genres using fully automatic predominant
F0 extraction; Bold indicates best achieved in each genre

Genre I II III IV V Total

Baseline 77.2 66.0 65.6 82.6 83.2 74.9

MFCCs(after
source isolation)

76.9 72.3 70.0 78.9 83.0 76.2

C1 81.1 67.8 74.8 78.9 84.5 77.4

C2 72.0 75.9 77.1 67.5 65.8 71.7

C3 65.6 69.1 62.1 77.1 66.0 68.0

C1+C2 82.9 78.5 82.8 79.5 85.0 81.7

C1+C3 81.5 72.9 77.6 83.9 84.9 80.2

C1+C2+C3 82.1 81.1 83.5 83.0 84.7 82.8

Fig. 1. Avg. Vocal Recall v/s Precision curves for different feature sets - baseline, C1
and C1+C2+C3 (using semi-automatic F0 extraction) across genres in the Leave 1
song out classification experiment

a dominant melodic instrument and right half contains vocals. In the Bollywood
case the instrument is replete with large pitch modulations but the vocal part
has mainly flatter note-pitches. However the instrumental timbre is largely in-
variant while the vocal part contains several phonemic transitions. In this case
the timbral dynamic feature set (C2) is able to discriminate between the voice
and instrument but the F0-harmonic dynamics feature set fails. The situation is
reversed for the Hindustani excerpt since, although the instrumental part still
displays timbral invariance, this is also exhibited by the vocal part, which con-
sists of a long single utterance i.e. rapid pitch modulations on the held-out vowel
/a/. C2 is ineffective in this case due to the absence of phonetic transitions. How-
ever the relative flatness of the instrument harmonics as compared with the vocal
harmonics leads to good performance for C3.
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Fig. 2. Spectrograms of excerpts from (a) Bollywood and (b) Hindustani genres. For
both excerpts the left section contains a dominant melodic instrument (I) and the right
section contains vocals (V).

6 Conclusions

In this paper we have investigated the use of a combination of static and dy-
namic features for effective detection of lead vocal segments within polyphonic
music in a cross-cultural context. Several of the features are novel and have been
motivated by considering the distinctive characteristics of singing voice across
genres. The introduction of an isolated dominant source spectral representation
resulted in a significant increase in the performance of static timbral features in
the polyphonic setting over a popularly used baseline feature set. The features
representing timbral dynamics and F0-harmonic dynamics were found to provide
complementary information for different underlying signal conditions related to
singing styles and instrumentation specific to individual genres. While the over-
all combination of the static and dynamic features was found to result in the
highest overall classification performance, individual genre accuracies clearly in-
dicate the value of adapting feature sets to genre-specific acoustic characteristics.
Thus commonly available metadata, such as genre, may be effectively utilized in
the front-end of a MIR system.
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