
 

 
 

Index Terms— Sinusoid detection, signal sparsity, window 
adaptation 

Audio processing applications that use short-time signal 
analysis techniques typically utilize fixed window duration single- 
or multi-resolution analyses. However, different real-world signal 
conditions such as polyphony and non-stationarity, manifested as 
musical accompaniment and pitch-modulations respectively in the 
context of music content analysis, require varying data window 
lengths for reliable processing. In this paper, we investigate the 
use of signal sparsity for adapting analysis window lengths. 
Adaptive-window analysis driven by different measures of 
sparsity applied to the local spectrum, such as kurtosis and Gini 
index, is evaluated and shown to be superior to fixed-window 
analysis in terms of sinusoid detection and frequency estimation 
for simulated and real signals. A window main-lobe matching 
method for sinusoid detection is also shown to be more robust to 
signal conditions such as polyphony and frequency modulation 
relative to other methods. 
 

I. INTRODUCTION 
INUSOIDAL models have been widely used in music signal 
processing to effect accurate extraction of musical attributes such 

as melody [1] and separation of sources from polyphonic mixtures 
[2]. The accurate and reliable detection of sinusoids in the 
polyphonic mixture and their parameters (frequencies and 
amplitudes) can help reveal underlying harmonic relationships and 
hence the pitch of each harmonic source, and help in instrument 
identification and source separation. The challenges posed by the 
polyphonic music context are the closely spaced frequency 
components due to the presence of several instruments/voices and the 
often rapidly time-varying nature of the voice/instrument harmonics. 
A prominent example is a pitch-modulated singing voice in a 
polyphonic background. 

 A commonly used first step in sinusoidal modeling is the 
computation of the short-time spectrum (Fourier transform) of the 
input signal which typically provides the base representation for 
sinusoid detection and parameter estimation. The duration and shape 
of the short-time analysis window have an important influence on the 
achievable accuracy of the subsequent processing. For example, 
longer window durations serve to obtain enhanced resolution of 
individual harmonics of multiple, simultaneously present, pitched 
sources [1], [3]. On the other hand, when the lead instrument/voice is 
heavily ornamented e.g. by the use of extensive vibrato or culture-
specific musical ornamentation, manifested as large and rapid pitch 
modulations, the use of long windows usually results in a distortion 
of the voice harmonics, especially at higher frequencies. Motivated 
by the correspondingly larger frequency modulations seen in the 
higher harmonics, sometimes window durations are systematically 
reduced across frequency bands spanning the spectrum to obtain a 
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multi-resolution analysis [4]. However the analysis parameters are 
essentially fixed in time and not signal-adaptive. The primary aim of 
this work is to investigate the possibility of automatically varying the 
analysis window-length in order to maximize the accuracy of 
sinusoidal modeling in the polyphonic music context. We consider 
the specific task of sinusoid identification and frequency estimation 
for the singing voice in polyphonic music. We investigate the use of 
certain easily computable mathematical measures of signal sparsity 
for optimal window-length selection as determined by the measured 
accuracy of sinusoid detection. 

This paper is organized as follows. Section II briefly reviews some 
known methods of sinusoid identification and comparatively 
evaluates them using simulated signals suited to the polyphonic 
music processing context. Section III describes and evaluates 
different measures for driving window-length adaptation using the 
same simulated signals. Section IV presents experimental results of 
using the proposed signal driven window-length adaptation technique 
to sinusoid identification on real musical signals and compares the 
system performance with corresponding results from fixed-length 
windowing. Section V concludes the paper. 

II. EVALUATION OF SINUSOID IDENTIFICATION METHODS 
Several different approaches to sinusoid detection exist, the most 

popular of which are the Fourier analysis methods based on the 
common first step of computing the Fourier spectrum of the 
windowed signal. We consider Fourier based methods over alternate 
approaches such as subspace methods for parameter estimation [5], 
which require prior knowledge about the number of components, and 
non-linear least-squares based sinusoid detection, which has been 
shown to not work well for multi-pitch signals [6]. In order to apply 
Fourier analysis we assume signal stationarity within the analysis 
duration i.e. the audio signal within each analysis window is modeled 
by a set of stable sinusoidal components, which have constant 
amplitude and frequency, and noise. The underlying “sinusoids plus 
noise” model given by 
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where n is the time-index, Am, fm and  φ m represent the amplitude, 

frequency and initial phase of the mth sinusoid and M is the number 
of sinusoids (harmonics) present in the signal. i(n) represents noise or 
other interference signal. 

In the Fourier magnitude spectrum of the windowed signal, the 
local peaks are potential sinusoid candidates. The task is to 
distinguish the true sinusoidal candidates from noise and side-lobes 
arising due to windowing. Sinusoidal components in the Fourier 
spectrum can be detected based on either their magnitude or phase 
characteristics [7]. Situations such as closely spaced components due 
to polyphony and time-varying pitches, however, are expected to 
influence the reliability of sine identification. To address the non-
stationarity arising from time-varying pitches, some frame-level 
sinusoid parameter estimation methods proposed in the literature 
track the amplitude, frequency and modulation parameters under 
certain assumptions on the form of the modulation of the windowed 
sinusoidal signal [8]-[10]. Constant or first-order AM and linear FM 
are common assumptions. The influence of neighboring sinusoids in 
multi-component signals has typically been ignored by assuming that 
the window length is long enough to make it negligible.  

In this section we evaluate three distinct methods of sinusoid 
identification from the short-time spectrum via simulations that 
exemplify polyphony and the non-stationarity of the vocal pitch.  
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A.  Brief Review of Different Methods of Sinusoid Identification 
All of the three methods considered here first search the short-time 

magnitude spectrum for 3-point local maxima. A decision criterion 
(termed as a “sinusoidality” criterion), based on the spectral 
properties of the windowed ideal sinusoid, is then applied to the local 
maximum in order to decide whether it represents a sinusoid (as 
opposed to a window side-lobe or noise). The first two methods 
compute the sinusoidality measure from the magnitude spectrum and 
the third method utilizes the phase spectrum. 

 The first method employs an amplitude threshold relative to the 
detected amplitude envelope [2], [11]. The amplitude envelope in 
this case is obtained by smoothing the magnitude spectrum with a 
Hamming window shape. The second method, called window main-
lobe matching, utilizes a measure of closeness of a local spectral 
peak’s shape to that of the ideal sinusoidal peak. This measure can be 
computed as the mean square difference [12] or the cross-correlation 
[13] between the local magnitude spectrum and that of the analysis 
window main lobe. 

Phase-based sinusoidality criteria exploit the phase coherence of 
sinusoidal components by computing different instantaneous 
frequency (IF) estimates from phase spectra in the vicinity of the 
local maximum. Lagrange [14] has demonstrated the theoretical 
equivalence of different IF estimation methods, which earlier were 
experimentally shown to perform similarly [7]. We consider a version 
of the bin-offset method, in which the IF is computed from the 
derivative of the phase, further modified by Dressler to “weighted 
bin-offset” for the polyphonic context [4]. 

Implementation details and parameters used for each of the 
methods are provided in the Appendix. For the magnitude based 
methods [11], [12], the frequency estimate of the sinusoid is further 
refined using parabolic interpolation [7]. Refinement of the 
sinusoidal frequency is inherent in the weighted bin-offset method. 

B. Description of Simulated Signals 
We use three simulated signals across evaluations, all sampled at 

22.05 kHz. The first two signals, described next, follow the model 
described in Eq. (1). The first signal is a representation of a vocal 
utterance. The vocal signal is a vowel /a/ generated using a formant 
synthesizer [15] at a constant pitch of 325 Hz with harmonics up to 4 
kHz (M=12). The second signal represents the polyphonic case by 
adding a relatively strong harmonic interference to the previous 
voice-only signal. The interference signal i(n) is a complex tone (also 
a sum of sinusoids with constant frequency and amplitude) with 7 
equal-amplitude harmonics and a pitch of 400 Hz. The signals are 
added at a Signal-to-Interference Ratio (SIR) of 0 dB. The equal-
amplitude interference harmonics are, in general, stronger than the 
vowel harmonics that roll-off.  
 The third signal represents the time-varying nature of the voice 
pitch and does not fit the signal model of Eq. (1), especially for long 
analysis windows. This is a vocal utterance with no interference 
(same as the first signal), but the pitch of the vowel now contains 
vibrato leading to non-stationary harmonics. Vibrato for singing is 
described as a periodic, sinusoidal modulation of the phonation 
frequency [16]. The pitch of the vibrato signal is given as  
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where fbase is the base frequency (325 Hz), A is half the total vibrato 
extent, fr is vibrato rate and FS is the sampling frequency. The vibrato 
extent and rate we have used here are 100 cents and 6.5 Hz 
respectively; these are typical values [16]. The spectrograms of the 
simulated signals (each 3 sec long) are shown in Fig. 1. In all cases  
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Fig. 1. Spectrograms of (a) synthetic vowel /a/ at pitch 325 Hz, (b) mixture of 
previous synthetic vowel and harmonic interference at pitch 400 Hz (7 equal 
amplitude harmonics) added at 0 dB SIR, (c) synthetic vowel with base pitch 
325 Hz and vibrato (extent 1 semitone and rate 6.5 Hz). 
 
the magnitude and phase spectra are computed every 10 ms using a 
fixed 92.9 ms window (2048 point DFT) unless otherwise mentioned. 

C. Evaluation  
The evaluation criteria used for the sinusoid identification 

methods are recall, precision and standard deviation of the frequency 
error from expected (ground truth) harmonic frequency locations. 
Recall is defined as the ratio of the number of correctly detected 
sinusoids to the true number of sinusoids present. Precision is the 
ratio of the number of correctly detected sinusoids to the total 
number of detected sinusoids. For each frame of the test signal a set 
of detected sinusoids (frequencies and amplitudes) is computed as 
those local spectral maxima that have satisfied the particular 
sinusoidality criterion for that method. Then the nth harmonic of the 
target signal, with known pitch f0, with frequency fn=n.f0, is said to 
be correctly detected if at least one measured sinusoid, with estimated 
frequency '

nf  , satisfies 

( )' min 0.03 ,  50 Hzn n nf f f− <            (3) 

If more than one measured sinusoid satisfies the above validation 

criterion, only that sinusoid with the smallest value of '
n nf f− is 

labeled as correctly detected. All other detected sinusoids, including 
those that do not satisfy the validation criterion for any expected 
harmonic, are labeled as false alarms. So only a single measured 
sinusoid can be assigned to an expected harmonic. For the simulated 
polyphonic case, we specifically exclude the detected harmonics of 
the interference signal, representing musical accompaniment, from 
the list of false alarms. This is done by first computing the number of 
correct sinusoid detections for the interference signal, after applying 
the above validation criterion, and subsequently subtracting this 
number from the total number of false alarms for that frame. 

The frequency error for the nth expected harmonic with frequency 
fn is given as 

'   ; if a sinusoid is detected for 
        =      0         ; otherwise

n n n nFE f f f= −  

We then compute the standard deviation (σFE) of the FE for all 
correctly detected harmonics for all analysis time-instants. 



 

TABLE I Performance (RE – Recall (%), PR – Precision (%), σFE – 
Frequency error (Hz) of different sinusoid detection methods for different 
simulated signals. 

SIGNAL  AMPLITUDE 
ENVELOPE 

MAIN-LOBE 
MATCHING 

BIN 
OFFSET 

Clean vowel 
(92.9 ms) 

RE 100.0 100.0 93.3 

PR 100.0 100.0 93.9 

σFE 0.3 0.3 0.5 

Vowel + 
Interference 
(92.9 ms) 

RE 72.7 98.8 75.7 

PR 99.5 100.0 88.7 

σFE 15.7 15.3 14.4 

Vowel with 
vibrato 

 (23.2 ms) 

RE 73.7 89.3 62.0 
PR 67.2 97.2 75.8 

σFE 8.7 8.4 13.1 

D. Results 
The sinusoid detection performances of the different methods for 

the different simulated signals within a 0 to 4 kHz frequency band 
appear in Table I. For each case we have reported that performance 
(recall & precision) that maximized the F-measure given by  

2 precision recallF
precision recall
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Note that for the case of the vibrato vowel we have used a reduced 
window length (23.2 ms) rather than the 92.9 ms window used for the 
other simulated signals. The data window length is reduced to 
decrease the effect of signal non-stationarity within the window; all 
three methods showed very poor results with a 92.9 ms window for 
the vibrato case. In all cases, the DFT size is retained at 2048 points 
by zero-padding the windowed signal if required. 

It is observed from Table I that the main-lobe matching method is 
more robust to harmonic interference and pitch modulation than the 
other two methods. The superiority of main-lobe matching to other 
single-frame sinusoid identification methods has also been previously 
observed by Wells [9]. Here we note that the main-lobe matching 
method is also superior to the weighted bin-offset method, which 
relies on the phase computed from the present and previous analysis 
frame. The amplitude method suffers from distortions in the 
computation of the amplitude envelope itself for the polyphonic and 
non-stationary signals but performs well for the clean signal. The 
weighted bin-offset method is prone to lower recall and precision 
even for the clean signal due to increased distortion in the phase 
spectrum of the weaker amplitude harmonics [4]. The frequency error 
metrics for all methods are similar in the case of clean and 
polyphonic signals. For the vibrato signal however, this is higher for 
the weighted bin-offset method. Since the frequency error is only 
computed for detected harmonic sinusoids, this indicates that the 
phase-spectrum is more severely affected by frequency modulation 
relative to the magnitude spectrum. 

Table I provided results only for selected window lengths. As 
discussed in Section I the choice of window length is expected to 
influence the reliability and accuracy of sinusoid detection and 
frequency estimation for the different signal conditions. In the 
following section we investigate possible performance gains from 
window-length adaptation based on measures of signal sparsity. In 
the interest of space, only the results obtained with the window main-
lobe matching method are reported although the important trends 
hold across sinusoid identification methods.  

III. EVALUATION OF DIFFERENT MEASURES OF SPARSITY FOR 
WINDOW LENGTH ADAPTATION 

In order to obtain the most accurate sinusoid detection, it is 
necessary to choose the window length so as to minimize the biasing 
of the computed sinusoidality measure due to the presence of pitch 
modulations and interfering components. These two non-idealities 
impose opposing constraints on the window length.  

Signal-driven window-length adaptation has been previously used 
in audio coding algorithms, such as MPEG I and AAC, for 
discriminating between stationary and transient audio segments [17]. 
However, in the context of singing voice analyses, the only common 
signal-driven adaptive window-length analysis has been pitch-
adaptive windowing based on previous detected pitch [18]. This loses 
its relevance in polyphonic music where multiple pitched instruments 
co-occur. Jones [19] used a kurtosis measure to adapt the window 
used in the computation of time-frequency (t-f) representations of 
non-stationary signals. However the evaluation was restricted to 
visual comparison of t-f representations of complicated signals. 
Goodwin [20] used adaptive time segmentation in a signal modeling 
and synthesis application. The method has a very high computational 
cost since the window adaptation is based on minimizing the actual 
reconstruction error between the original and synthesized signals. 

In this section we investigate the use of some easily computable 
measures for automatically adapting window lengths to signal 
characteristics in the context of our application. Most of these 
measures have been previously proposed as indicators of signal 
sparsity [21]. Based on the hypothesis that a sparse short-time 
spectrum, with its more “concentrated” components, would facilitate 
the detection and estimation of the signal harmonics, we apply the 
different sparsity measures to the task of window adaptation. We 
review five different measures of signal sparsity tested in this work – 
L2 norm (L2), normalized kurtosis (KU), Gini Index (GI), spectral 
flatness (SF) and the Hoyer measure (HO). Of these SF has been 
widely used for driving window switching in audio coding 
algorithms. The performances of the different sparsity measures are 
evaluated in terms of the achieved accuracies of sinusoid detection 
and frequency estimation on the previously used set of simulated 
signals. Due to its superior performance as seen in Section II, only 
window main-lobe matching sinusoid detection is considered here. 

A. Description of Different Measures 
For the magnitude spectrum, X(k) for frequency bin “k” of N bins, the 
definitions of different sparsity measures are given below. 

1) 
2 norm [21] 

 
( )22

k
L X k= ∑                (5) 

2) Normalized Kurtosis [21] 
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where X is the mean spectral magnitude value.  

3) Gini Index [21] 
The magnitude spectral coefficients X(k)  are first sorted in 

ascending order to give the ordered set X(k). The Gini Index is then 
given as 
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where 1
X  is the 1  norm of X(k). 

4) Hoyer measure [21] 

The Hoyer measure is a normalized version of 
2

1



, and is defined as 

 

( )
( ) 1

2
1

( )
k

k

X k
HO N N

X k

−

 
 
 = − −
 
 
 

∑

∑
        (8)  

5) Spectral Flatness 
Spectral flatness has been used as a measure of tonality of a signal 

in perceptual audio coding [22]. Here we use it as an indicator of 
signal sparsity; the more peaky the spectrum of a signal, the more 
sparse it is. Spectral flatness is defined as the ratio of geometric mean 
of the power spectrum to the arithmetic mean of the power spectrum, 
and is given as 
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B. Window-length adaptation 
Each of the previously mentioned sparsity measures is individually 

used in a window-length adaptation scheme described next. For each 
frame of audio we would like to apply that window-length that 
maximizes signal sparsity, anticipating that this would improve 
sinusoid detection. For a particular analysis time instant this amounts 
to selecting that window length among the set {23.2, 46.4 and 92.9 
ms} that either maximizes KU, HO and GI or minimizes L2 and SF. 
As we expect increased signal non-stationarity at higher frequencies, 
we compute fixed and adapted window analyses separately across 
three frequency bands, viz. 0–1.5 kHz, 1–3 kHz and 2.5–4 kHz. 
 The implementation of the adaptive window representation in our 
evaluation involves the initial computation of the full-band spectral 
representation using each of the three window lengths. Note that the 
analysis time instants are fixed (at frame-centers) by the use of a 
fixed hop (10 ms). For all window lengths we use a fixed 2048 point 
DFT. For the 23.2 and 46.4 ms windows this involves zero-padding 
the windowed signal. Then for a given frequency band we compute a 
sparsity value from the frequency bins corresponding to the desired 
frequency range for each window-length representation. We select 
that window length that maximizes the sparsity measure for that 
frequency band and use it in the subsequent sinusoid detection step. 
The window main-lobe spectra for each of the three window lengths 
are pre-computed for use in the main-lobe matching method.  

C. Evaluation and Results 
We use the same evaluation metrics used in the previous section 

i.e. recall, precision and standard deviation of frequency error, and 
also the same simulated signals i.e. polyphony and vibrato cases. The 
evaluation metrics are computed for different fixed-window analyses 
(23.2, 46.4 and 92.9 ms), for a fixed multi-resolution (MR) analysis 
i.e. using progressively shorter windows for higher frequency bands, 
and for the different cases of sparsity-driven adaptive windowing.  

The results for the above evaluation for the polyphonic and vibrato 
simulated signals are shown in Table II and Table III respectively. 
From these tables it can be seen that, rather than the multi-resolution 
analysis, the 92.9 ms and 23.2 ms fixed frame analyses consistently 
give the best performance across all bands for the polyphonic and 
vibrato simulations respectively. For the vibrato signal the disparity 
in performance across the different windows is more significant in 

TABLE II Performance of window main-lobe matching method (RE – Recall 
(%), PR – Precision (%), σFE – Frequency error (Hz)) for different fixed 
windows (23.2, 46.4, 92.9 ms & MR – multi-resolution) and sparsity measure 
(L2 norm, KU – Kurtosis, GI – Gini Index, SF – Spectral flatness and HO - 
Hoyer) driven adapted windows for simulated polyphonic signal.  

Band 0-1.5 kHz 1-3 kHz 2.5-4 kHz 

 RE PR σFE RE PR σFE RE PR σFE 
Fixed and Multi-resolution analysis 

23.2 ms 50.0 100.0 2.1 36.8 80.0 27.2 40.9 98.0 13.1 

46.4 ms 100.0 100.0 0.4 78.1 100.0 23.7 62.7 99.1 3.4 

92.9 ms 100.0 100.0 0.1 98.6 100.0 18.1 96.6 100.0 0.3 

MR 100.0 100.0 0.1 78.1 100.0 23.7 40.9 98.0 13.1 

Signal sparsity-driven adaptive windowing 

L2 100.0 100.0 0.1 98.6 100.0 18.1 96.6 100.0 0.3 

KU 100.0 100.0 0.1 98.6 100.0 18.1 96.6 100.0 0.3 

GI 100.0 100.0 0.1 97.4 100.0 18.1 89.4 100.0 0.8 

SF 100.0 100.0 0.2 97.1 100.0 18.1 86.8 100.0 0.5 
HO 100.0 100.0 0.1 97.5 100.0 18.1 92.8 100.0 0.3 

 

TABLE III Performance of window main-lobe matching method (RE – Recall 
(%), PR – Precision (%), σFE – Frequency error (Hz)) for different fixed 
windows (23.2, 46.4, 92.9 ms & MR – multi-resolution) and sparsity measure 
(L2 norm, KU – Kurtosis, GI – Gini Index, SF – Spectral flatness and HO - 
Hoyer) driven adapted windows for simulated vibrato signal. 

Band 0-1.5 kHz 1-3 kHz 2.5-4 kHz 

 RE PR σFE RE PR σFE RE PR σFE 
Fixed and Multi-resolution analysis 

23.2 ms 97.1 100.0 1.4 90.0 97.9 6.4 82.7 98.0 8.1 

46.4 ms 97.4 100.0 2.3 56.2 96.3 9.4 46.9 81.7 15.1 

92.9 ms 64.8 100.0 6.2 54.0 86.7 17.8 48.8 52.9 18.9 

MR 64.8 100.0 6.2 56.2 96.3 9.4 82.7 98.0 8.1 

Signal sparsity-driven adaptive windowing 

L2 65.3 100.0 5.4 55.4 80.7 13.0 48.3 82.4 16.3 

KU 96.7 100.0 2.7 86.5 94.3 7.0 73.0 91.4 9.2 

GI  72.4 100.0 4.1 50.9 84.6 9.3 56.2 79.8 11.5 

SF 89.3 95.8 3.3 77.3 91.2 7.1 47.5 81.6 15.3 
HO 96.9 100.0 2.9 63.9 92.5 8.1 60.2 88.6 10.7 

 
the higher frequency band since the extent of non-stationarity in the 
signal is proportionately higher in this band. Of the different adaptive 
cases, the normalized kurtosis and Hoyer measure are observed to 
closely capture the longer-window superiority for the polyphonic 
signal and the shorter-window superiority for the vibrato signal 
across all frequency bands. A large difference in the performance of 
the sparsity measures is observed for the vibrato signal, especially in 
the highest frequency band. 

IV. EXPERIMENTS WITH REAL SIGNALS 
From the results of the previous section it seems that using a signal 

sparsity-driven adaptive window analysis should lead to better 
sinusoid identification across varying signal conditions of polyphony 
and non-stationarity (in terms of pitch modulation) as compared to a 
multi-resolution approach. Since the singing voice is the dominant 



 

source in vocal music, we expect that the above method should show 
good sinusoid identification performance for real music signals as 
well, which is investigated next. 

A. Dataset Description 
We use two datasets, sampled at 22.05 kHz, each of about 9.5 

minutes duration of which the singing voice is present about 70 % of 
the time. The first dataset contains excerpts of polyphonic recordings 
of 9 Western pop songs of singers such as Mariah Carey and Whitney 
Houston, who are known for using extensive vibrato in their singing. 
The second dataset contains 5 Indian classical vocal music 
recordings. Indian classical singing is known to be replete with pitch 
inflections and ornaments, and the instrumental accompaniment 
comprises pitched instruments as well as percussion. The ground-
truth vocal pitch is detected at 10 ms intervals throughout the singing 
segments using a semi-automatic melody extraction tool based on a 
state-of-the-art melody extraction algorithm [23], [24]. 

B. Evaluation and Results 
We evaluate the performance of the window main-lobe matching 

based sinusoid detection method for fixed multi-resolution and 
adaptive window-length analysis for the real signals. In the 
evaluation we only compute recall using the expected harmonic 
locations computed from the ground-truth voice-pitch. Although we 
could compute the precision as well from the number of false 
positives for the real signals, this would  not be indicative of sinusoid 
detection performance since there could be various simultaneously 
present accompanying musical instruments which also have harmonic 
spectra. Recall is only computed during active frames i.e. those for 
which the singing voice is present.  
 The results of the above evaluation for the Western pop and Indian 
classical datasets are presented in Fig. 2. Adaptive windowing 
improves upon the performance of the fixed multi-resolution analysis 
as seen from the increased recall. Overall it can be seen that the 
kurtosis-driven window adapted sinusoid detection gives better 
performance than any fixed or adaptive window analysis method 
across the datasets with the Hoyer measure closely following. 
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Fig.2. Performance of window main-lobe matching for multi-resolution (MR) 
and sparsity measures (L2 norm, KU – Kurtosis, GI – Gini Index, SF – 
Spectral flatness and HO – Hoyer measure) driven adapted windows for 
different frequency bands for (a) Western pop and (b) Indian classical data. 
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Fig. 3. Spectrogram of an excerpt of Whitney Houston’s “I will always love 
you”. White circles represent window choice (92.9, 46.4 or 23.2 ms) driven 
by maximization of kurtosis in the 2.5-4 kHz frequency band.  

An example of the window adaptation using kurtosis for the 
highest frequency band is shown for an excerpt from the Western pop 
dataset in Fig. 3. Here it can be seen that during the stable note 
(between 3 and 5 sec) the measure is maximized for the longest 
window but during the vibrato region (between 5 and 6 sec) the 
measure frequently favors lower window lengths. Further, during 
vibrato the longer windows are selected in frames corresponding to 
the peaks and valleys of the vibrato cycle, and shorter windows are 
chosen during the vibrato mean crossings where the rate of frequency 
variation is highest. 

V. DISCUSSION AND CONCLUSION 
 The observed performance improvements from sparsity driven 
window-length adaptation suggest that certain sparsity measures do 
indeed serve to usefully quantify spectrum shape deviation from that 
of an ideal sinusoid. A simple example, provided next, demonstrates 
the sensitivity of sparsity measures to signal non-stationarity. 
Consider linear chirp pure tones with fast and slow chirp rate. Let the 
slow rate equal to one-eighth the fast chirp rate, and both belong 
within the typical range of voice pitch modulations (e.g. vibrato). For 
each of the chirps we plot different sparsity measures (KU, GI and 
SF) versus window length, varying from 20 ms to 90 ms in steps of 
10 ms, in Fig. 4. We see that all three sparsity measures show the 
intuitively expected concave form, attaining a single maximum at a 
finite window length which itself decreases as the chirp rate 
increases. We observe that KU is most sensitive to chirp rate. We 
have not plotted the HO and L2 measures since the former shows 
similar trends as KU and the latter does not show any sensitivity to 
changing chirp rates but continues to increase in value with window 
length. A closer inspection of the dependence of computed sparsity 
on spectrum shape revealed that the GI is affected by the shape of the 
main-lobe as well as the side-lobe roll-off whereas the KU reflects 
main-lobe spread mainly with the low amplitude side-lobes scarcely 
affecting the 4th power average in Eq. (6). This explains, in part, the 
superiority of KU in the sinusoid detection context inspite of the 
general superiority of GI as a sparsity measure [21]. 

In summary, sparsity driven window-length adaptation 
consistently results in higher sinusoid detection rate and minimal 
frequency estimation error when compared with multi-resolution 
fixed-window analysis in the context of sinusoid detection of the 
singing voice in polyphonic music. Normalized kurtosis applied to 
the local magnitude spectrum is found to outperform alternate 
measures of signal sparsity such as the L2 norm, Gini Index, spectral 
flatness and Hoyer measure, for various signal conditions such as 
polyphony and non-stationarity (manifested as pitch vibrato) in 
simulated and real music signals. Another result of this work is that 
the window main-lobe matching sinusoid detection method 
outperforms an amplitude envelope and phase-based sinusoid 
detection method for the above signal conditions. Future work will 
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Fig. 4. Scaled sparsity values (KU, GI and SF) computed for different window 
lengths for a pure-tone chirp for (a) slow and (b) fast chirp rates. 

 
investigate the extension of adaptive windowing to non-stationary 
sinusoidal modeling methods [8], [10] and to end applications such 
as singing voice detection and melody extraction.  

APPENDIX 
The implementation details and parameters for each of the sinusoid 

identification methods are given here. Two of the methods utilize the 
magnitude spectrum only while the third one exploits the phase 
spectrum properties of sinusoids. The inputs to all the methods is the 
magnitude spectrum X(k) of the signal. All methods first search the 
short-time magnitude spectrum for 3-point local maxima to which 
they apply specific sinusoidality criteria. 

A. Amplitude Envelope Thresholding [11] 
This method involves finding a frequency dependent amplitude 

threshold. The amplitude envelope of the magnitude spectrum X(k) is 
first obtained by convolving it with a Hamming window H(k) in the 
frequency domain, as given below 

( ) ( ) ( )A k X k H k= ⊗                (10) 

where H(k) is a normalized Hamming window of length 1+N/64 
frequency bins. Here N is the number of points in the DFT. The 
length of the Hamming window used for computing the amplitude 
envelope is suitably reduced when using shorter windows because the 
amount of smoothing required for computation of an accurate 
envelope is lesser for shorter window durations. Next A(k) is 
flattened as follows  

( )( ) ( ) cE k A k=                 (11) 

where c is a compression factor. Smaller values of c lead to a flatter 
envelope.  The value c = 0.8 works well in our implementation. Then 
a threshold height is computed as  

(1 )c
K Xη

−
= ⋅                  (12) 

where X  is the mean spectral amplitude and K is a constant (0.7). 
The final threshold is given as Mη E(k), where M is chosen such that 
the threshold is L dB below η E(k). All local maxima in X(k) above 
this final threshold value are labeled as detected sinusoids. The 
sinusoidal frequency estimate is refined by parabolic interpolation 
[7]. The value of M is varied to obtain different points on the 
precision-recall curve.  

B. Window Main-lobe Matching [12] 
This method is based on matching the main-lobe of the window 

transform to the spectral region around local maxima. The deviation 
of the ideal window main-lobe magnitude-spectrum shape W(k), 
centered around the frequency-bin corresponding to a local maxima 
location in the magnitude spectrum X(k), to the spectral region 
around this local maxima is computed as an error function, given as  
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∑
∑

∑
   (13) 

Here A is a scaling factor that minimizes ε and [a, b] is the interval 
of the main-lobe width around the local maximum. This error is 
normalized with the signal energy as follows 

2 ( )
b

a
X k

εξ =

∑
                (14) 

The sinusoidality criterion, in this case a measure of the closeness of 
shape of the detected peak and the ideal main-lobe, is now defined as 
S = 1- ξ . Local maxima for which S lies above a predefined 
threshold are marked as sinusoids. Note that the shape of the ideal 
main lobe W(k) changes with change in window length. The sinusoid 
frequency estimate is refined by parabolic interpolation [7]. The 
threshold value on S is varied to obtain different points on the 
precision-recall curve. 

C. Weighted Bin Offset Method [4] 
This method applies thresholds to the bin offset κ, which is the 

deviation of the sinusoid’s instantaneous frequency (IF) from the bin 
frequency of the local maxima. The bin offset at bin k is given by  

 
1

2( ) arg ( ) ( )
2 l l

N Lk princ k k k
L N

πκ φ φ
π −

 = − −  
     (15) 

where ( )l kφ is the phase spectrum of the lth frame, N is the number of 
DFT points, L is the hop length and princarg maps the phase to the 
±π range. Local maxima are marked as detected sinusoids if  
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where Apeak is the instantaneous magnitude of the local maxima, 
which is computed by applying bin-offset correction to the window 
transform. The value of R is varied to obtain different points on the 
precision-recall curve. 

The bin-offset value is used to refine the sinusoidal frequency 
estimate f(k), for sampling frequency fS, using 

( ) ( ( )) sff k k k
N

κ= +                (17) 



 

REFERENCES 
[1] G. Poliner, D. Ellis, A. Ehmann, E. Gomez, S. Streich and B. Ong, 

“Melody transcription from music audio: Approaches and evaluation,” 
IEEE Trans. Audio, Speech, Lang., Process., vol. 15, no. 4, pp. 1247–
1256, May 2007. 

[2] Z. Duan, Y. Zhang and C. Zhang, “Unsupervised single-channel music 
source separation by average harmonic structure modeling,” IEEE 
Trans. Audio, Speech, Lang., Process., vol. 16, no. 4, pp. 766–778, 
May 2008. 

[3] A. Klapuri, “Multiple fundamental frequency estimation based on 
harmonicity and spectral smoothness,” IEEE Trans. Speech, Audio 
Process., vol. 11, no. 6, pp. 804–816, Nov. 2003. 

[4] K. Dressler, “Sinusoidal extraction using an efficient implementation of 
a multi-resolution FFT,” in Proc. 9th Intl. Conf. on Digital Audio 
Effects (DAFx-06), pp. 247–252, Montreal, 2006. 

[5] R. Badeau, G. Richard and B. David, “Fast and stable YAST algorithm 
for principal and minor subspace tracking,” IEEE Trans.  Sig. Process., 
vol. 56, no. 8, pp. 3437–3446, Aug. 2008. 

[6] M. Christensen, P. Stoica, A. Jakobsson and S. Jensen, “Multi-pitch 
estimation,” Sig. Process., vol. 88, no. 4, pp. 972–983, Apr. 2008. 

[7] F. Keiler and S. Marchand, “Survey on extraction of sinusoids in 
stationary sounds,” in Proc. 5th Intl. Conf. on Digital Audio Effects 
(DAFx-02), pp. 51–58, Hamburg, Germany, 2002. 

[8] M. Betser, P. Collen, G. Richard and B. David, “Estimation of 
frequency for AM/FM models using the phase vocoder framework,” 
IEEE Trans. Sig. Process., vol. 56, no. 2, pp. 505–517, Feb. 2008. 

[9] J. Wells and D. Murphy, “A comparative evaluation of techniques for 
single-frame discrimination of non-stationary sinusoids,” IEEE Trans. 
Audio, Speech, Lang. Process., vol. 18, no. 3, pp. 498–508, Mar. 2010. 

[10] S. Marchand and P. Depalle, “Generalization of the derivative analysis 
method to non-stationary sinusoidal modeling,” in Proc. 11th Intl. Conf. 
on Digital Audio Effects (DAFx-08), pp. 281–288, Espoo, Finland, 
Sept. 2008. 

[11] M.R. Every, “Separation of musical sources and structure from single-
channel polyphonic recordings," Ph. D. dissertation, Dept. Electron., 
Univ. York, York, U.K., 2006. 

[12] D. Griffin and J. Lim, “Multiband Excitation Vocoder,” IEEE Trans. 
Acoust., Speech and Sig. Process., vol. 36, no. 8, pp. 1223–1235, 1988. 

[13] M. Lagrange, S. Marchand and J-B Rault, “Sinusoidal parameter 
extraction and component selection in a non-stationary model,” in Proc. 
5th Intl. Conf. on Digital Audio Effects (DAFx-02), pp. 59–64, 
Hamburg, Germany, Sep. 2006. 

[14] M. Lagrange and S. Marchand, “Estimating the instantaneous frequency 
of sinusoidal components using phase-based methods, J. Audio Engg. 
Soc., vol. 55, no. 5, pp. 385–399, 2007. 

[15] M. Slaney, “The auditory toolbox,” Interval Research Corporation, 
Tech. Rep.  #1998-010, 1998. 

[16] J. Sundberg, “A rhapsody on perception,” The Science of the Singing 
Voice, Northern Illinois University Press, 1987. 

[17] T. Painter and A. Spanias, “Perceptual coding of digital audio,” Proc. of 
the IEEE, vol. 88, no. 4, pp. 451–513, Apr. 2000. 

[18] K. Kim and I. Hwang, “A multi-resolution sinusoidal model using 
adaptive analysis frame,” in Proc. EUSIPCO, 2004. 

[19] D. Jones and T. Parks, “A high-resolution data-adaptive time-frequency 
representation,” IEEE Trans. Acoust., Speech, Lang. Process., vol. 38, 
no. 12, pp. 2127–2135, Dec. 1990. 

[20] M. Goodwin, “Adaptive signal models: Theory, algorithms and audio 
applications,” Ph. D. dissertation, MIT, 1997. 

[21] N. Hurley and S. Rickard, “Comparing measures of sparsity,” IEEE 
Trans. Info. Theory, vol. 55, no. 10, pp. 4723–4741, Oct. 2009. 

[22] J. Johnston, “Transform coding of audio signals using perceptual noise 
criteria,” IEEE J. Selected Areas in Communications, vol. 6, no.  2, pp. 
314–323, Feb. 1988. 

[23] S. Pant, V. Rao and P. Rao, “A melody detection user interface for 
polyphonic music,” in Proc. Ntnl. Conf. Communications, Chennai, 
India, Jan. 2010. 

[24] V. Rao and P. Rao, “Vocal melody extraction in the presence of pitched 
accompaniment for polyphonic music,” IEEE Trans. Audio, Speech, 
Lang. Process., vol. 18, no. 8, pp. 2145–2154, Nov. 2010. 

 
 

 
 


	I. Introduction
	II. Evaluation of Sinusoid Identification Methods
	A.  Brief Review of Different Methods of Sinusoid Identification
	B. Description of Simulated Signals
	C. Evaluation 
	D. Results

	III. Evaluation of Different Measures of Sparsity for Window Length Adaptation
	A. Description of Different Measures
	1) norm [21]
	2) Normalized Kurtosis [21]
	3) Gini Index [21]
	4) Hoyer measure [21]
	5) Spectral Flatness

	B. Window-length adaptation
	C. Evaluation and Results

	IV. Experiments with real signals
	A. Dataset Description
	B. Evaluation and Results

	V. Discussion and conclusion
	A. Amplitude Envelope Thresholding [11]
	B. Window Main-lobe Matching [12]
	C. Weighted Bin Offset Method [4]

	Word Bookmarks
	PointTmp




