Simulation for Home work 7 Problem 5aQ5 (a) The channel is no longer as given by the cosine function. But, now let the channel be modeled by an FIR filter of length 10, and each FIR coefficient be of unit magnitude. This way we will be considering the perfomance of the equalizer under a narrow band channel.
Solution
| S.No | F | LMS Order |
Variance | BER | MSE Plot |
Weight Plot |
Weights |
|---|---|---|---|---|---|---|---|
| 1 | 3.2 | 11 | 0.01 | 0.2828 | mse | weight | 0.2489 0.1156 0.0424 0.0124 -0.0255 -0.0987 -0.2585 -0.5784 -1.2335 1.4961 1.0925 |
| 2 | 3.2 | 11 | 0.1 | 0.2814 | mse | weight | 0.3802 0.1314 -0.0703 -0.0052 -0.0286 -0.0454 -0.1180 -0.5105 -2.1234 2.2387 1.0892 |
| 3 | 3.2 | 9 | 0.01 | 0.2839 | mse | weight | 0.2213 0.0886 0.0207 -0.1067 -0.2592 -0.5943 -1.2378 1.4793 1.0505 |
| 4 | 3.2 | 9 | 0.1 | 0.3771 | mse | weight | 0.0406 0.0016 -0.0149 -0.0709 -0.1095 -0.1768 -0.2701 0.5317 0.4916 |
| 5 | 3.2 | 7 | 0.01 | 0.2840 | mse | weight | 0.1502 -0.0185 -0.2217 -0.5815 -1.2246 1.4798 1.0248 |
| 6 | 3.2 | 7 | 0.1 | 0.3736 | mse | weight | -0.0211 -0.0551 -0.1145 -0.1754 -0.2795 0.5520 0.4761 |
| 7 | 3 | 11 | 0.01 | 0.2817 | mse | weight | 0.2447 0.1153 0.0449 0.0189 -0.0290 -0.0960 -0.2545 -0.5925 -1.2253 1.5042 1.0882 |
| 8 | 3 | 11 | 0.1 | 0.3775 | mse | weight | 0.0619 0.0529 0.0223 -0.0141 -0.0392 -0.0521 -0.1123 -0.1836 -0.2929 0.5544 0.4876 |
| 9 | 3 | 9 | 0.01 | 0.2860 | mse | weight | 0.2180 0.0914 0.0085 -0.0823 -0.2573 -0.5939 -1.2251 1.4806 1.0537 |
| 10 | 3 | 9 | 0.1 | 0.3761 | mse | weight | 0.0210 0.0067 -0.0350 -0.0758 -0.0922 -0.1893 -0.2761 0.5299 0.4888 |
| 11 | 3 | 7 | 0.01 | 0.2856 | mse | weight | 0.1354 -0.0168 -0.2221 -0.5786 -1.2452 1.4783 1.0207 |
| 12 | 3 | 7 | 0.1 | 0.3742 | mse | weight | -0.0094 -0.0552 -0.1021 -0.1749 -0.3013 0.5441 0.4864 |