Simulation for Home work 7 Problem 5a




Q5 (a) The channel is no longer as given by the cosine function. But, now let the channel be modeled by an FIR filter of length 10, and each FIR coefficient be of unit magnitude. This way we will be considering the perfomance of the equalizer under a narrow band channel.

Solution
Table for various combinations of F, LMS Order and Variance.
 S.No     F     LMS
Order 
 Variance    BER    MSE 
 Plot 
  Weight 
Plot 
 Weights 
1 3.2 11 0.01 0.2828 mse weight 0.2489 0.1156 0.0424 0.0124 -0.0255
-0.0987 -0.2585 -0.5784 -1.2335 1.4961 1.0925
2 3.2 11 0.1 0.2814 mse weight 0.3802 0.1314 -0.0703 -0.0052 -0.0286
-0.0454 -0.1180 -0.5105 -2.1234 2.2387 1.0892
3 3.2 9 0.01 0.2839 mse weight 0.2213 0.0886 0.0207 -0.1067 -0.2592
-0.5943 -1.2378 1.4793 1.0505
4 3.2 9 0.1 0.3771 mse weight 0.0406 0.0016 -0.0149 -0.0709 -0.1095
-0.1768 -0.2701 0.5317 0.4916
5 3.2 7 0.01 0.2840 mse weight 0.1502 -0.0185 -0.2217 -0.5815
-1.2246 1.4798 1.0248
6 3.2 7 0.1 0.3736 mse weight -0.0211 -0.0551 -0.1145 -0.1754
-0.2795 0.5520 0.4761
7 3 11 0.01 0.2817 mse weight 0.2447 0.1153 0.0449 0.0189 -0.0290
-0.0960 -0.2545 -0.5925 -1.2253 1.5042 1.0882
8 3 11 0.1 0.3775 mse weight 0.0619 0.0529 0.0223 -0.0141
-0.0392 -0.0521 -0.1123 -0.1836 -0.2929 0.5544 0.4876
9 3 9 0.01 0.2860 mse weight 0.2180 0.0914 0.0085 -0.0823
-0.2573 -0.5939 -1.2251 1.4806 1.0537
10 3 9 0.1 0.3761 mse weight 0.0210 0.0067 -0.0350 -0.0758 -0.0922
-0.1893 -0.2761 0.5299 0.4888
11 3 7 0.01 0.2856 mse weight 0.1354 -0.0168 -0.2221 -0.5786
-1.2452 1.4783 1.0207
12 3 7 0.1 0.3742 mse weight -0.0094 -0.0552 -0.1021 -0.1749
-0.3013 0.5441 0.4864