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Abstract—In this paper, we analyze the performance of maximum-
likelihood (ML) multiuser detection in space-time coded CDMA
systems. A K-user synchronous CDMA system which employs
orthogonal space-time block coding with M , 1 ≤ M ≤ 8 trans-
mit antennas and N receive antennas is considered. Using the
characteristic function of the decision variable, we derive an ex-
act expression, in closed-form, for the pairwise error probabil-
ity (PEP) of the joint data vector of bits from different users.
Using this exact PEP expression, we obtain an upper bound on
the average bit error rate (BER). The analytical BER bounds are
compared with the BER obtained through simulations. The BER
bounds are shown to be increasingly tight for large SNR values.
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error probability.

I. INTRODUCTION

Space-time coded transmission using multiple transmit anten-
nas can offer the benefits of transmit diversity and high data
rate transmission on fading channels [1],[2],[3]. Space-time
coding applied to code division multiple access (CDMA) sys-
tems has been of interest [4]. Multiuser detection schemes,
which can significantly enhance the receiver performance and
increase the capacity of CDMA systems, have been exten-
sively studied in the literature, mainly for single transmit an-
tenna systems [5]. Multiuser detection schemes and their per-
formances in space-time coded CDMA systems with multi-
ple transmit antennas has been a topic of recent investigations
[6],[7],[8],[9]. In [6], Huang et al studied a decorrelating de-
cision feedback multiuser detector for a space-time CDMA
system with multiple transmit antennas. In [7], Reynolds et
al developed blind adaptive multiuser detector implementa-
tions for synchronous/asynchronous CDMA systems with two
transmit/two receive antennas on Rayleigh fading channels.
In [8], the convergence behaviour and bit error performance
of various adaptive multiuser detectors under near-far condi-
tions in space-time coded CDMA systems using orthogonal
space time block codes were studied. The performance of the
systems considered in [6]-[8] were evaluated mainly through
simulations. In [9], Uysal and Georghiades derived an exact
analytical expression for the pairwise error probability (PEP)
and obtained approximate bit error probability for a space-
time coded CDMA system. However, the detector considered
in [9] is not a multiuser detector. In this paper, we are inter-
ested in the analytical evaluation of the error performance of
maximum-likelihood (ML) multiuser detection in space-time
coded CDMA.
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In [10],[11], Taricco and Biglieri obtained an expression for
the pairwise error probability (PEP) of space-time codes in a
single user system, assuming perfect channel estimation at the
receiver. Using this PEP, they obtained bounds on the prob-
ability of error for maximum-likelihood (ML) detection. In
[12], Garg et al extended the work in [10] by incorporating
imperfect channel estimation in the system model, again for
the single user system. In this paper, using a similar approach
as in [10],[12], we extend the analysis to a space-time coded
CDMA system which uses maximum-likelihood (ML) mul-
tiuser detection. Using a discrete-time vector model of the
received signal in a space-time coded CDMA system with M
transmit and N receive antennas, and the characteristic func-
tion of the decision variable, we derive an exact expression,
in closed-form, for the pairwise error probability (PEP) of the
joint data vector of bits from different users. Using this exact
PEP expression, we then obtain an upper bound on the average
bit error rate (BER). We compare the analytical BER bounds
with the BER obtained through simulations, and show that the
BER bounds are increasingly tight for large SNR values.

The rest of the paper is organized as follows. In Section II,
we present the system model. In Section III, we present the
performance analysis. Section IV presents the results and dis-
cussions. Conclusions are given in Section V.

II. SYSTEM MODEL

Consider a K-user synchronous CDMA system with M trans-
mit antennas per user. Users transmit data blocks with Q bits
per data block. Let biq, i ∈ {1, 2, ..., K}, q ∈ {1, 2, ..., Q},
be the qth bit of the ith user, transmitted in a time interval
of length T . The bits in a data block are mapped on to the
M transmit antennas using orthogonal space-time block codes
(STBC). We assume that the channel fading is quasi-static and
the quasi-static interval is QT time units, where Q = 2r, r be-
ing the smallest integer satisfying Q ≥ M [4]. For square real
orthogonal STBC with M = Q = 8, the transmission matrix
X is given by [3]

X =















x1 x2 x3 x4 x5 x6 x7 x8

x2 −x1 −x4 x3 −x6 x5 x8 −x7

x3 x4 −x1 −x2 −x7 −x8 x5 x6

x4 −x3 x2 −x1 −x8 x7 −x6 x5

x5 x6 x7 x8 −x1 −x2 −x3 −x4

x6 −x5 x8 −x7 x2 −x1 x4 −x3

x7 −x8 −x5 x6 x3 −x4 −x1 x2

x8 x7 −x6 −x5 x4 x3 −x2 −x1















. (1)

In the above transmission matrix, the columns represent the
transmit antenna index and the rows represent the bit interval
index. For BPSK modulation, xi’s can take +1 or −1. The



transmission matrix X for other real orthogonal designs for
M, Q < 8 can be obtained to be the upper leftmost subma-
trix of X of order Q × M . In the following, we illustrate
the received signal model for M = Q = 2 (extension of the
model for other values of M, Q ≤ 8 is straightforward). For
M = Q = 2, the received signal on a receive antenna can be
written using (1) as

y(t) = y1(t) + y2(t) + z(t), (2)

y1(t) =

K
∑

i=1

Ai1hi1 {bi1si1 + bi2si2} , (3)

y2(t) =

K
∑

i=1

Ai2hi2 {bi2si1 − bi1si2} . (4)

In the above, yp(t), p ∈ {1, 2} is the signal component due to
the pth transmit antenna, Aip is the transmit amplitude on the
pth transmit antenna of the ith user, hip is the complex chan-
nel gain from the pth transmit antenna of the ith user, and siq

represents the signature waveform of the ith user for the qth

bit in a data block, q ∈ {1, 2}, given by siq = si

(

t− q − 1T
)

,
where si(t) is a unit energy signature waveform time limited
in the interval [0, T ]. Also, z(t) is a zero mean complex Gaus-
sian noise process with variance 2σ2.

The demodulator on each receive antenna uses a bank of K
matched filters, each matched to a different user’s signature
waveform. The received signal at the output of the matched
filters can be written as

yjq =

∫ QT

0

y(t)sjq(t)dt, (5)

where j=1, 2, ..., K, and q ∈ {1, 2}. We define matrix, R, as

R =









1 ρ12 . . . ρ1K

ρ12 1 . . . ρ2K

...
...

...
...

ρ1K ρ2K . . . 1









, (6)

where ρjk =
∫ T

0
sj(t)sk(t)dt. Also, define the channel ma-

trix, H, as

H =

[

H1 H2

−H2 H1

]

, (7)

where Hq = diag
[

A1qh1q , . . . , AKqhKq

]

. Defining yq =
[

y1q, . . . , yKq

]T
and y =

[

yT
1 ,yT

2 , . . . ,yT
Q

]T
, and

bq =
[

b1q, . . . , bKq

]T
and b =

[

bT
1 , . . . ,bT

Q

]T
, the received

signal vector y can be written in the form

y = CHb + η, (8)

where the correlation matrix, C, is given by

C =











R 0 0 0 . . .
0 R 0 0 . . .
0 0 R 0 . . .
...

...
...

...
...

0 . . . 0 0 R











, (9)

and E
[

ηη
†] = 2σ2C, where η

† denotes the Hermitian of the
complex vector η. The vector model in (8) can be valid for

other values of M , provided the matrices, H (of order QK ×
QK) are defined appropriately. For example, if M = Q = 8,

H =









H1 H2 H3 H4 H5 H6 H7 H8
−H2 H1 H4 −H3 H6 −H5 −H8 H7
−H3 −H4 H1 H2 H7 H8 −H5 −H6
−H4 H3 −H2 H1 H8 −H7 H6 −H5
−H5 −H6 −H7 −H8 H1 H2 H3 H4
−H6 H5 −H8 H7 −H2 H1 −H4 H3
−H7 H8 H5 −H6 −H3 H4 H1 −H2
−H8 −H7 H6 H5 −H4 −H3 H2 H1









,

It is noted that the structure of the square matrix C (of or-
der QK) remains same. For values of M and Q other than 8
(M, Q < 8), H is given by the upper leftmost submatrix of
order QK × QK in (10). For the case of M /∈ {1, 2, 4, 8},
M < Q. Therefore, only the elements Hq , q = 1, 2, ..., M ,
are non-zero, i.e., Hq = 0 for M < q ≤ Q. The entries of the
channel matrix H are assumed to be i.i.d, zero-mean complex
circular Gaussian r.v’s (Rayleigh fading).

Assuming the correlation matrix C to be positive definite, we
do the Cholesky decomposition of C

C = FT F. (10)
Then

ŷ = (FT )−1 y = FHb + n (11)

where E[n] = 0QK×1, E[nn†] = 2σ2IQK , where (.)† repre-
sents the Hermitian operation and I is the identity matrix.

A. ML Criterion

Using the vector representation of the multiuser received sig-
nal in (11), the maximum-likelihood (ML) multiuser detection
criterion can be written as follows. Assume that perfect esti-
mates of the channel gains are available at the receiver. The
ML estimate of the transmitted bit vector, b, (comprising the
bits from all users) is given by

b̃ = arg







min
x

N
∑

j=1

‖ŷ(j) − FH(j)x‖2







, (12)

where the superscript (j) in y and H denote the receive an-
tenna index, and the minx is over all possible bit vectors of
length QK. Substituting (11) in (12)

b̃ = arg







min
x

N
∑

j=1

‖FH(j)(b − x) + n(j)‖2







(13)

III. PERFORMANCE ANALYSIS

In this section, we analyze the bit error performance of the
ML multiuser detection scheme in (13). We first derive an
expression for the pairwise error probability (PEP), P (b →
b̃), and then obtain a bound on the bit error probability. The
PEP is given by

P (b → b̃) = Pr

{

N
∑

j=1

‖FH
(j)

(b−b̃) + n
(j)

‖
2
− ‖n

(j)
‖
2

< 0

}

. (14)

Define the metric D as

D =
N
∑

j=1

‖m(j)‖2 − ‖n(j)‖2, (15)



where m(j) = FH(j)(b− b̃)+n(j). Eqn. (15) can be written
in the form

D = V†SV, (16)
where

V =



















m
(1)

...
m

(N)

n
(1)

...
n

(N)



















, (17)

S =

[

IQKN 0

0 −IQKN .

]

. (18)

The decision variable D in (16) is in Hermitian quadratic form
in the complex Gaussian random vector V. This form, from a
result in [13], allows us to write the characteristic function of
D, ΦD(jω), in closed-form. In order to do that, let

T = E[VV†]. (19)

To evaluate T in the above, we write H(j)b in an alternate
form [4]

H(j)b = Bh(j), (20)
where B is a QK × QK matrix, which for M = Q = 8 is
defined as

B =









B1 B2 B3 B4 B5 B6 B7 B8
B2 −B1 −B4 B3 −B6 B5 B8 −B7
B3 B4 −B1 −B2 −B7 −B8 B5 B6
B4 −B3 B2 −B1 −B8 B7 −B6 B5
B5 B6 B7 B8 −B1 −B2 −B3 −B4
B6 −B5 B8 −B7 B2 −B1 B4 −B3
B7 −B8 −B5 B6 B3 −B4 −B1 B2
B8 B7 −B6 −B5 B4 B3 −B2 −B1









. (21)

where Bq = Aqdiag{bq}, Aq = diag{A1q, A2q , · · · , AKq},
q = 1, 2, · · · , Q. For values of M and Q other than 8, (M, Q <
8) B is obtained as follows. For M = Q ∈ {1, 2, 4}, B is
given by the upper leftmost submatrix of order QK × QK in
(21). For M /∈ {1, 2, 4, 8}, M < Q. In this case, B is given
by the QK×QK upper leftmost submatrix in (21) with all the
entries in the qth column (M < q ≤ Q) as zeros. The vector
h = [hT

1 ,hT
2 , · · · ,hT

Q]T , and hq = [h1q , h2q, · · · , hKq]
T such

that E[h] = 0QK×1 and E[hh†] = ΩIQK . With the above
definitions, we obtain

E

[

m
(i)

m
(j)†
]

=

{

0 i 6= j

ΩF(B − B̃)(B − B̃)T
F

T

+2σ2
IQK i = j

(22)

E[m(i)
n

(j)†] = E[n(i)
m

(j)†] = E[n(i)
n

(j)†] =

{

0 i 6= j

2σ2
IQK i = j

(23)

from which T can be evaluated.

Now, the the characteristic function of D, ΦD(jω) can be
written as (Ref. [13], Eqn. (4.a))

ΦD(jω) =
1

|I2NQK − 2jωσ2G|
, (24)

where G = TS. From (18), (19), (22), (23), we can write G

as

G =

[

IN ⊗ ( Ω
2σ2 F(B − B̃)(B − B̃)T

F
T + IQK) IN ⊗ −IQK

IN ⊗ IQK IN ⊗ −IQK

]

.

(25)

Defining Ĝ as

Ĝ =

[

( Ω

2σ2 F(B − B̃)(B − B̃)T
F

T + IQK) −IQK

IQK −IQK

]

, (26)

(24) can be written as

ΦD(jω) =
1

|I2QK − 2jωσ2Ĝ|N
.

=

2QK
∏

i=1

1

|1 − 2jωσ2λ̂i|N
. (27)

where λ̂1, · · · , λ̂2QK are the eigenvalues of Ĝ.

For the case when the amplitudes of all bits from all the users
are the same, i.e., Aiq = Ajq = A, i, j = 1, 2, · · · , K, q =
1, 2, · · · , Q, and M = Q (27) can be written in the form

ΦD(jω) =
1

|I2K − 2jωσ2G̃|MN

=
2K
∏

i=1

1

|1 − 2jωσ2λi|MN
, (28)

where G̃ is given by

G̃ =

[

ΩA2

2σ2 PΛPT + IK −IK

IK −IK

]

, (29)

where P is the Cholesky decomposition of the R matrix (i.e.,
R = PT P), Λ is given by

Λ =
1

A2

Q
∑

i=1

(Bi − B̃i)
2, (30)

and λ1, · · · , λ2K are the eigenvalues G̃. Substituting z =
2jωσ2, we have

ΦD(z) =

2K
∏

i=1

1

(1 − zλi)MN
. (31)

From the above characteristic function of D, the PEP in (14)
can be obtained as [16], [12]

P (b → b̃) = −
∑

k

1

(pk − 1)!

dpk−1

dzpk−1

{

(z − λk)pk
ΦD(z)

z

}

, (32)

where λk are the negative eigenvalues of G̃, Re(λk) < 0, and
pk is the multiplicity of λk. We obtain (32) in closed-form as
follows. The characteristic equation of G̃ is given by

det|λI2K − G̃| = det

∣

∣

∣

∣

(λ − 1)IK − γJ IK

−IK (λ + 1)IK

∣

∣

∣

∣

= 0 (33)

where γ = ΩA2

2σ2 is the average SNR and J = PΛPT . Eqn.
(33) can be shown to reduce to the form [14]

det|λ2IK − γ(λ + 1)J| = 0. (34)



If µ1, · · · , µL are the L distinct eigenvalues of J, each with
multiplicity vi, i.e.

∑L
i=1 vi = 2K, then (34) reduces to

L
∏

i=1

(λ2 − γµiλ − γµi)
vi = 0. (35)

Denote the roots of λ2−γλµi−γµi = 0 as λi1 and λi2. From
Sylvester’s Law of Inertia [15], the eigenvalues of J are non-
negative (i.e., µi ≥ 0). Hence, λi1 and λi2 are real, and they
can both be either zero or otherwise. If they are not zero, then
one will be strictly positive and the other strictly negative. In
the following, we let λi1 to denote the non-negative roots (i.e.,
≥ 0) and λi2 to denote the negative roots (i.e, < 0). With this,
we can now follow the steps similar to the ones in [12], and
obtain the closed-form expression for the PEP as

P (b → b̃) =

∑

j

(−λj2)
MN(2K−vj )

∏

i
(λi1 − λj2)MNvi

∏

i6=j
(λi2 − λj2)MNvi

·

∑

(l1, · · · , lMNvj−1)

0 ≤ l1, · · · , lMNvj−1 ≤ MNvj − 1

l1 + 2l2 + · · · + (MNvj − 1)l(MNvj−1) = (MNvj − 1)

MNvj−1
∏

m=1

1

lm!

·

[

1

m
+

MN

m

(

∑

i

viλm
i1

(λi1 − λj2)m
+

∑

i6=j

viλm
i2

(λi2 − λj2)m

)]lm

, (36)

where K is the number of users, M is the number of trans-
mit antennas per user, and N is the number of antennas at the
receiver.

Bound on Probability of Bit Error

Using the expression for PEP in the above, we obtain an upper
bound on the bit error probability as follows. Let b(j), 1 ≤
j ≤ 2QK be the set of QK-bit vectors comprising of Q bits
from each of the K users. Suppose b(k) was the transmitted
vector. Define

Dm =

N
∑

j=1

‖ŷ(j) − FH(j)b(m)‖2, m = 1, 2, · · · , 2QK

(37)
where ŷ, F and H are as defined in (12). If b(l) is the received
vector, define

Pexact

(

b(k) → b(l)
)

= Pr







2QK

⋂

m=1
m6=l

(Dl < Dm)






. (38)

It is noted that the PEP in (36) is nothing but

P
(

b(k) → b(l)
)

= Pr (Dl < Dk) . (39)

It is clear that

Pexact

(

b(k) → b(l)
)

≤ P
(

b(k) → b(l)
)

. (40)

Let P (eiq) denote the probability of error for the qth bit of the
ith user, q = 1, 2, · · · , Q and i = 1, 2, · · · , K. P (eiq) is then
given by

P (eiq) =

2QK−1
∑

j=1

P (eiq|b
(j)

, b
(j)
iq = 1)P (b(j)

, b
(j)
iq = 1)

+

2QK−1
∑

k=1

P (eiq|b
(k)

, b
(k)
iq = −1)P (b(k)

, b
(k)
iq = −1). (41)

P (eiq |b
(j), b

(j)
iq = ±1) and P (b(j), b

(j)
iq = ±1) are then given

by

P

(

eiq |b
(j)

, b
(j)

iq
= 1

)

=

2QK−1
∑

k=1

Pexact

(

b
(j)

→ b
(k)

|b
(j)

iq
= 1, b

(k)

iq
= −1

)

, (42)

P

(

eiq |b
(k)

, b
(k)
iq

= −1

)

=

2QK−1
∑

j=1

Pexact

(

b
(k)

→ b
(j)

|b
(j)
iq

= 1, b
(k)
iq

= −1

)

, (43)

P (b
(j)

, b
(j)
iq

= 1) = P (b
(k)

, b
(k)
iq

= −1) =
1

2QK
. (44)

From (40) (41),(42),(43) and(44), an upper bound on the bit
error probability P (eiq) is obtained as

P (eiq ) ≤
1

2QK

[

2QK−1
∑

j=1

2QK−1
∑

k=1

P (b
(j)

→ b
(k)

|b
(j)
iq

= 1, b
(k)
iq

= −1)

+

2QK−1
∑

k=1

2QK−1
∑

j=1

P (b
(k)

→ b
(j)

|b
(k)
iq

= 1, b
(j)
iq

= −1)

]

.

=
1

2QK−1

[

2QK−1
∑

j=1

2QK−1
∑

k=1

P (b
(j)

→ b
(k)

|b
(j)
iq

= 1, b
(k)
iq

= −1)

]

.(45)

IV. RESULTS AND DISCUSSION

In this section, we present the numerical results of the error
performance of the ML multiuser detection scheme. Fig. 1
shows the PEP and the bit error probability plots for a two
user system (K = 2), with two transmit antennas (M = 2)
at each user, and one antenna at the receiver (N = 1). The
correlation coefficient between the two users’ signature wave-
forms, ρ = 0.2. The power imbalance between the two users
is characterized by the near-far ratio (NFR)1. In Fig. 1, the
NFR is taken to be 0 dB (i.e., equal power users). The average
PEP results obtained through analysis (Eqn. 36) and the bit
error probability results obtained through analysis (Eqns. 45)
as well as simulations are shown in Fig. 1. It is observed that
the BER bound is loose at low SNRs, but gets increasingly
tight for larger SNRs. Fig. 2 shows the bit error performance
as a function of the NFR at an average SNR of 10 dB, K = 2,
ρ = 0.2, M = 2, N = 1. It is seen that, as expected, the ML
multiuser detector is near-far resistant (whereas the conven-
tional matched filter detector is not near-far resistant as seen
in the Figure), and the analysis predicts the BER quite close to
the simulation results.

1We define near-far ratio as 10 log

∑

M

p=1
A2

2p
∑

M

p=1
A2

1p

assuming Ω = E|hiq|2 =

1.
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Fig. 1. Error performance as a function of average SNR for K = 2,M = 2,
N = 1, NFR = 0 dB.
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Fig. 2. Bit error performance as a function of NFR. K = 2,M = 2, N = 1,
SNR = 10 dB.

Fig. 3 shows the bit error probability performance predicted
by the analysis for different number of receive antennas, N =
1, 2, 3, 4 for M = 2, K = 2, NFR = 0 dB. It is seen that
the bit error performance improves as the receive diversity or-
der is increased. Similarly, Fig. 4 shows the bit error per-
formance when the number of transmit antennas is changed
(M = 1, 2, 4), which illustrates the bit error performance im-
provement due to transmit diversity.

V. CONCLUSION

We analyzed the bit error performance of maximum-likelihood
(ML) multiuser detection in space-time coded CDMA sys-
tems. We considered a K-user synchronous CDMA system
which employs orthogonal space-time block coding with M
transmit antennas and N receive antennas. We derived a closed-
form exact expression for the pairwise error probability, using
which we obtained an upper bound on the bit error probability.
We showed that the analytical BER bounds are increasingly
tight for large SNR values.
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