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Abstract— Previous available results for the probability of contour integral in [1] is described in Section Ill. In Secti
outage with multiple Nakagami interferers with non-integer |V, the modified approach to evaluate the outage probability
fading parameters have been derived using the characteristic for the special case of Nakagami interferers with similairig

function approach. This was done by converting an improper ¢ . ted. Conclusi ilable inoSect
real integral, whose integrand has a singularity at the origin, to parameters IS presented. Lonclusions are available mosec

a contour integral, which was then evaluated using the method V.
of residues. However, the method is mathematically valid only
when the real integral exists. In this paper, we show that the Il. SYSTEM MODEL

existence of the real integral has not been established and the e follow the notation in [1], withry(¢) being the am-

earllierl a[:')\lprck)ach is _then?fore inc_orzreqt. .lFor the special fczse of plitude of the desired signal received at the mobile unit and
multiple Nakagami interferers with similar non-integer fading - . i

parameters, using a slightly different but rigorous approach, we k(). K o 1,..., L are the ampllFL_ldes of thé co C_hannel
find an exact expression for the probability of outage. Nakagami interferers. The probability density functiof

— 2 iatribti s i
Index Terms—Nakagami fading, inversion formula, Cauchy Of & = ri(t) follows the Gamma distribution and is given by

principal value mi—1

fe.(y) = (Ak)””’“L) exp(=Ary), y >0, k=0,---,L
1)

F(mk
wherem,, is the fading parameter with values ranging from
A characteristic function approach has been suggested [by5, co) andmy is a positive integer. Also,
Zhang in [1] to compute the outage probability in a cellular my
network with multiple Nakagami interferers having arhijyra A = A @)
fading parameter_s. This method involve.s the transformatio whereQy, > 0 is the average power of,(t). The mean and
a real improper integral to a complex integral. The compl&yyriance of¢,, are
integral is then evaluated using the residue theorem, which
gives the Cauchy principal value (c.p.v) of the real intégra E[gk] =
[2]. When the integral exists, its value is equal to the c.Blv [ Varles] = &i 3)
However, the integrand in [1] has a singularity at the origin i
which means that the existence of the integral has to be groya the above scenario, outage occurs in the event of
before the contour integral approach can be used. qZéZl &r > &, whereg is the prescribed power protection
In this paper, we show how the c.p.v of the integral haatio. We define the random variable

been used to compute the probability of outage in [1], withou L
proving the existence of the integral. Then, for the case of v = ngk — &. 4)
multiple Nakagami interferers with similar non-integedifeg k=1
parameters, we propose a slightly different approach, evhedence, the probability of outag®,.; = P(y > 0). The
we express the integral as the sum of two complex integrajsaracteristic function of the random variableis given by
choosing different contours for integrating the two, estalp]
lishing the convergence of the integrals wherever necgssar o (t) = 4 1 4 ) (5)
Cauchy’s integral formula for analytic functions [2] is the K H£=1(1 - %)mk(l + i—z)mo
used to evaluap? these integrals to obtain an expressmhdorThem using the Gil-Pelaez theorem [4],
outage probability.

I. INTRODUCTION

The rest of the paper is organized as follows. In Section I, Pt = 1 + L ¢ (1) dt. (6)
we introduce the system model and present the formula for 2 21) ) o
calculating the outage probability in terms of a real ineégrWe define ~
involving the characteristic function. Then the flaw in the I, :/ Mdt. (7)
process of transforming the real integral to the corresjond —oo 1



Im(z) The integral itself is defined as

a—e B
| Cr / f(t)dt = lim f@)de+lim [ f(t)dt  (16)
a—n
C where bothe andn approach zero through positive values. It
r may so happen that neither of the two limits in (16) exist, i.e
/( \ that the integral itself has no meaning but the c.p.v defined
Re(2) by (15) exists. This leads to the following lemma [3].

Lemma 3.1: When a definite integral has a singularity in
the interval of integration and the c.p.v exists, then, & th
integral exists, the c.p.v is equal to the value of the irakgr

Using the definition of the c.p.vin (15), from (11), we obtain

c.p.v/oc %T(t)dt = lim 4% dt+/ 210}

r—0

Fig. 1. The contouC. -0 R—oo ¢
= jm+ / o a7
1. THE CONTOUR INTEGRAL Here, we note that (17) has been used to evalugtdn

H.] but the existence of the integral itself has not been
established. A special case when the integral actually does
not converge is given in the following example.

Following the method outlined in [1], we consider the close
path C in the complex plane in Fig. 1. Létg and C,. be
two semi-circular paths with radiR and r respectively. The

contour integral Example 1 let L = 1,mg = 1,m; = 1 and 3+ = ¢.

» . : , : :
/%(Z)dz:/ Wz’dH/ W”dH/ %(z)d”/ o, This choice ofg may not be practical, but since we are
c CRr -R Cr r

. s ¢ s . “ challenging the mathematical validity of the approach ip [1
@® we are justified in using it. Then
Since the denominator o‘?@ is at least two units greater 1
than the numerator, we obtain [3] Py(t) = T (18)
by
R—o Cr z ’
Also, it has been shown in [1] that I, = / Mdt (19)
lim/ Mdz = —jm. (20) /°° dt
—0Jc, % = N
From (8), (9) and (10), we get et (1 + 73)
° dt
—r R = . 20
oy [y [0 [ [ @
r—0 _ r z . . . .
R IR “ after appropriate substitutions. Since
Sincemy is an integerg., (z) has multiple poles of order, at 1 1 "
z = jAo, Which lies in the upper half plane inside the contour —_— (22)

2 27
C. Hence, using the residue theorem [2], tA+8) b 1+t

we obtain

b~(2) 2rj  d™ [¢,(2) < dt <t
= . 12 = = _ "t
/C z (mo — 1)1 dzmo—1 Z L ming (12) L /_oo t /_OO 1+ tht (22)
Definition: The Cauchy principal value (c.p.v) of a definité-rom elementary calculus, it is obvious that neither of the
integral integrals on the right hand side of (22) converge /saloes
B 13 not converge in this case. However, using (15), it is easy to
f (13) see that
whose integrand becomes infinite at a painin the interval cpv Iy =0, (23)
of integration, i.e. which can also be verified using (17).
}51(11 |f(t)] = 0 (14) Thus, the actual relation betweé?,; and ¢, (t) in [1] is
is defined ag2] Pot = 4 sepu I

2 2wy
a—e B o)
cpv/ f@®)dt = hm [/A fe)dt + /a_6 f(t)dt] . (15) = %4- % X C.p.v /_OO (bWT(t)dt, (24)



which is different from (6) whenl, does not exist, as in B. The integral J

Example 1.

IV. INTERFERERS WITH SIMILAR FADING PARAMETERS

For the special case when, = m and )\, = A, from (5),
we obtain

1

d)'y(t) - jqt \mL it \mg (25)
(1= ZymL(1+ ££)mo
With an appropriate substitution of variables,
e t
I’y — / ¢’Y( )dt
oo
b dt
= - - . (26)
[w (1 — w)mL(l + jt)mo
Since o
1 dt 1
e —_— 27
W1+ jm ¢ T (7)
substitutingo = 42, (26) becomes
oo mo oo
dt ) dt
" :/_ H=jonT ‘JZ/_ G
Now, let p
e t
J = _ 29
/—oo t(l - jat)mL ( )
and ~ it
In =17 _ —. 30
e ey

A. The integral/,

The integrand in (30) has multiple poles jain the upper
half plane and no singularities on the real line. Furtheg, th
degree of the denominator is more than a unit greater than

The integrand inJ has a singularity at the origin. Hence
we choose the contour C in Fig. 1, and since the degree of the
denominator of the integrand i is more than a unit greater
than that of the numerator, we obtain from (17)

o [
T Je 2= oy
Since the integrand id is analytic in the region enclosed by
the contourC, we have, from Cauchy’s integral formula [2]

/ dz
c 2(1—joz)mk

cpv J = jm.

cpv J = (35)

— 0. (36)

Thus,
(37)
By a change of variables (fromto —t) in (29), we obtain

> dt
J__/,OO t(1 4 jot)ymL’

Adding (29) and (38)

(38)

 dt 1 1
= [ e e @

From (39), we have

0y — /°° dt [(14jot)™" — (1 — jot)™"
B t (1 + o2t2)ml

} . (40)

— 00

In the above, substitutingan 0 = ot,

[ sec? 0 sin(mLb)
2J = 23/; tan@ secmL @ 40, (41)
which gives us
sz/2 751n(.mL9) cos™=19 dp. (42)
—z sin 0

that of the numerator. Thus, it can be converted to a contoline singularity at = 0 in (29), which is reflected & = 0 in

integral [3]

dz
Jn=17J - —,
]/s (1= jo2)™E(1+ j=)"

(31)

where S is a semi-circle of infinite radius. Applying the

residue theorem, we obtain

. mn—1
In = (n 7217):]]'”*1 jznfl [(1 —jirz)mLL:j = heomo (32)
The above expression admits a closed form
n—1

n =210 i)!(l(Ti)):Llwl ’ (33)

where thefactorial function(vy), is defined as
q
Mg =J[Or+7=1), 0 =17#0, (34)

r=1

q being a positive integer.

in{mL0)
sin 6

(42), vanishes due to the express
Thus, the integral

/5 7s1n(.mL9) cos™1o dp
0 sin 0

in the integrand.

(43)

has an integrand that is continuous in the interval of iratgn
and is non-singular at the origin. This is sufficient to cold
that the above integral exists [3]. Hence, the integralxists.
We note that this happens because the interferers haveasimil
fading parameters. From Lemma 3.1 and (37),

J = jm. (44)

From (6),(28), (33) and (44), after substituting fgrwe obtain
the outage probability for multiple Nakagami interfererghw
similar non-integer fading parameters

mnfl

3 (gAo)" (ML)
P =1 .
out — TL'()\ + qAO)mL+n

(45)



V. CONCLUSIONS

The real improper integral obtained using [4] to evaluate
the outage probability in [1] was assumed to converge in
general. We have shown that this is not true by providing
a counter example, thus concluding that the approach irs[1] i
not mathematically rigorous. We then provided an alteveati
method for evaluating the outage probability for the sgecia
case of Nakagami interferers having similar non-integdinfa
characteristics.
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