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Abstract— Previous available results for the probability of
outage with multiple Nakagami interferers with non-integer
fading parameters have been derived using the characteristic
function approach. This was done by converting an improper
real integral, whose integrand has a singularity at the origin, to
a contour integral, which was then evaluated using the method
of residues. However, the method is mathematically valid only
when the real integral exists. In this paper, we show that the
existence of the real integral has not been established and the
earlier approach is therefore incorrect. For the special case of
multiple Nakagami interferers with similar non-integer fading
parameters, using a slightly different but rigorous approach, we
find an exact expression for the probability of outage.

Index Terms— Nakagami fading, inversion formula, Cauchy
principal value

I. I NTRODUCTION

A characteristic function approach has been suggested by
Zhang in [1] to compute the outage probability in a cellular
network with multiple Nakagami interferers having arbitrary
fading parameters. This method involves the transformation of
a real improper integral to a complex integral. The complex
integral is then evaluated using the residue theorem, which
gives the Cauchy principal value (c.p.v) of the real integral
[2]. When the integral exists, its value is equal to the c.p.v [3].
However, the integrand in [1] has a singularity at the origin,
which means that the existence of the integral has to be proved
before the contour integral approach can be used.

In this paper, we show how the c.p.v of the integral has
been used to compute the probability of outage in [1], without
proving the existence of the integral. Then, for the case of
multiple Nakagami interferers with similar non-integer fading
parameters, we propose a slightly different approach, where
we express the integral as the sum of two complex integrals
choosing different contours for integrating the two, estab-
lishing the convergence of the integrals wherever necessary.
Cauchy’s integral formula for analytic functions [2] is then
used to evaluate these integrals to obtain an expression forthe
outage probability.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and present the formula for
calculating the outage probability in terms of a real integral
involving the characteristic function. Then the flaw in the
process of transforming the real integral to the corresponding

contour integral in [1] is described in Section III. In Section
IV, the modified approach to evaluate the outage probability
for the special case of Nakagami interferers with similar fading
parameters is presented. Conclusions are available in Section
V.

II. SYSTEM MODEL

We follow the notation in [1], withr0(t) being the am-
plitude of the desired signal received at the mobile unit and
rk(t), k = 1, . . . , L are the amplitudes of theL co-channel
Nakagami interferers. The probability density function (PDF)
of ξk = r2

k(t) follows the Gamma distribution and is given by

fξk
(y) = (λk)mk

ymk−1

Γ(mk)
exp(−λky), y ≥ 0, k = 0, · · · , L

(1)
wheremk is the fading parameter with values ranging from
[0.5,∞) andm0 is a positive integer. Also,

λk =
mk

Ωk

(2)

whereΩk > 0 is the average power ofrk(t). The mean and
variance ofξk are

E[ξk] = Ωk,

V ar[ξk] =
Ω2

k

mk

. (3)

In the above scenario, outage occurs in the event of
q
∑L

k=1 ξk > ξ0, whereq is the prescribed power protection
ratio. We define the random variable

γ = q

L
∑

k=1

ξk − ξ0. (4)

Hence, the probability of outagePout = P (γ > 0). The
characteristic function of the random variableγ is given by
[1]

φγ(t) =
1

∏L
k=1(1 − jqt

λk
)mk(1 + jt

λ0
)m0

. (5)

Then, using the Gil-Pelaez theorem [4],

Pout =
1

2
+

1

2πj

∫

∞

−∞

φγ(t)

t
dt. (6)

We define

Iγ =

∫

∞

−∞

φγ(t)

t
dt. (7)
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Fig. 1. The contourC.

III. T HE CONTOUR INTEGRAL

Following the method outlined in [1], we consider the closed
path C in the complex plane in Fig. 1. LetCR and Cr be
two semi-circular paths with radiiR and r respectively. The
contour integral
∫

C

φγ (z)

z
dz =

∫

CR

φγ (z)

z
dz +

∫

−r

−R

φγ (t)

t
dt +

∫

Cr

φγ (z)

z
dz +

∫

R

r

φγ (t)

t
dt.

(8)

Since the denominator ofφγ(z)
z

is at least two units greater
than the numerator, we obtain [3]

lim
R→∞

∫

CR

φγ(z)

z
dz = 0. (9)

Also, it has been shown in [1] that

lim
r→0

∫

Cr

φγ(z)

z
dz = −jπ. (10)

From (8), (9) and (10), we get

lim
r→0

R→∞

∫

−r

−R

φγ(t)

t
dt +

∫ R

r

φγ(t)

t
dt = jπ +

∫

C

φγ(z)

z
. (11)

Sincem0 is an integer,φγ(z) has multiple poles of orderm0 at
z = jλ0, which lies in the upper half plane inside the contour
C. Hence, using the residue theorem [2],

∫

C

φγ(z)

z
=

2πj

(m0 − 1)!

dm0−1

dzm0−1

[

φγ(z)

z

]

z=jλ0

. (12)

Definition: The Cauchy principal value (c.p.v) of a definite
integral

∫ B

A

f(t)dt (13)

whose integrand becomes infinite at a pointa in the interval
of integration, i.e.

lim
t→a

|f(t)| = ∞ (14)

is defined as[2]

c.p.v

∫ B

A

f(t)dt = lim
ǫ→0

[

∫ a−ǫ

A

f(t)dt +

∫ B

a−ǫ

f(t)dt

]

. (15)

The integral itself is defined as
∫ B

A

f(t)dt = lim
ǫ→0

∫ a−ǫ

A

f(t)dt + lim
η→0

∫ B

a−η

f(t)dt (16)

where bothǫ andη approach zero through positive values. It
may so happen that neither of the two limits in (16) exist, i.e.
that the integral itself has no meaning but the c.p.v defined
by (15) exists. This leads to the following lemma [3].

Lemma 3.1: When a definite integral has a singularity in
the interval of integration and the c.p.v exists, then, if the
integral exists, the c.p.v is equal to the value of the integral.

Using the definition of the c.p.v in (15), from (11), we obtain

c.p.v

∫

∞

−∞

φγ(t)

t
dt = lim

r→0
R→∞

∫

−r

−R

φγ(t)

t
dt +

∫ R

r

φγ(t)

t
dt

= jπ +

∫

C

φγ(z)

z
. (17)

Here, we note that (17) has been used to evaluateIγ in
[1], but the existence of the integral itself has not been
established. A special case when the integral actually does
not converge is given in the following example.

Example 1: Let L = 1,m0 = 1,m1 = 1 and λ1

λ0
= q.

This choice of q may not be practical, but since we are
challenging the mathematical validity of the approach in [1],
we are justified in using it. Then

φγ(t) =
1

1 + t2

λ2
0

. (18)

Hence,

Iγ =

∫

∞

−∞

φγ(t)

t
dt (19)

=

∫

∞

−∞

dt

t
(

1 + t2

λ2
0

)

=

∫

∞

−∞

dt

t (1 + t2)
(20)

after appropriate substitutions. Since

1

t (1 + t2)
=

1

t
−

t

1 + t2
, (21)

we obtain

Iγ =

∫

∞

−∞

dt

t
−

∫

∞

−∞

t

1 + t2
dt. (22)

From elementary calculus, it is obvious that neither of the
integrals on the right hand side of (22) converge, soIγ does
not converge in this case. However, using (15), it is easy to
see that

c.p.v Iγ = 0, (23)

which can also be verified using (17).
Thus, the actual relation betweenPout andφγ(t) in [1] is

Pout =
1

2
+

1

2πj
× c.p.v Iγ

=
1

2
+

1

2πj
× c.p.v

∫

∞

−∞

φγ(t)

t
dt, (24)



which is different from (6) whenIγ does not exist, as in
Example 1.

IV. I NTERFERERS WITH SIMILAR FADING PARAMETERS

For the special case whenmk = m andλk = λ, from (5),
we obtain

φγ(t) =
1

(1 − jqt
λ

)mL(1 + jt
λ0

)m0
. (25)

With an appropriate substitution of variables,

Iγ =

∫

∞

−∞

φγ(t)

t
dt

=

∫

∞

−∞

dt

t(1 − jqλ0t
λ

)mL(1 + jt)m0

. (26)

Since
1

t(1 + jt)m0
=

dt

t
− j

m0
∑

n=1

1

(1 + jt)n
, (27)

substitutingσ = qλ0

λ
, (26) becomes

Iγ =

∫

∞

−∞

dt

t(1 − jσt)mL
− j

m0
∑

n=1

∫

∞

−∞

dt

(1 − jσt)mL(1 + jt)n
, (28)

Now, let

J =

∫

∞

−∞

dt

t(1 − jσt)mL
(29)

and

Jn = j

∫

∞

−∞

dt

(1 − jσt)mL(1 + jt)n
. (30)

A. The integralJn

The integrand in (30) has multiple poles atj in the upper
half plane and no singularities on the real line. Further, the
degree of the denominator is more than a unit greater than
that of the numerator. Thus, it can be converted to a contour
integral [3]

Jn = j

∫

S

dz

(1 − jσz)mL(1 + jz)n
, (31)

where S is a semi-circle of infinite radius. Applying the
residue theorem, we obtain

Jn =
2πj

(n − 1)!jn−1

dn−1

dzn−1

[

1

(1 − jσz)mL

]

z=j

, n = 1, . . . , m0 (32)

The above expression admits a closed form

Jn = 2πj
σn−1(mL)n−1

(n − 1)!(1 + σ)mL+n−1
, (33)

where thefactorial function(γ)q is defined as

(γ)q =

q
∏

r=1

(γ + r − 1), (γ)0 = 1, γ 6= 0, (34)

q being a positive integer.

B. The integral J

The integrand inJ has a singularity at the origin. Hence
we choose the contour C in Fig. 1, and since the degree of the
denominator of the integrand inJ is more than a unit greater
than that of the numerator, we obtain from (17)

c.p.v J = jπ +

∫

C

dz

z(1 − jσz)mL
. (35)

Since the integrand inJ is analytic in the region enclosed by
the contourC, we have, from Cauchy’s integral formula [2]

∫

C

dz

z(1 − jσz)mL
= 0. (36)

Thus,

c.p.v J = jπ. (37)

By a change of variables (fromt to −t) in (29), we obtain

J = −

∫

∞

−∞

dt

t(1 + jσt)mL
. (38)

Adding (29) and (38)

2J =

∫

∞

−∞

dt

t

[

1

(1 − jσt)mL
−

1

(1 + jσt)mL

]

. (39)

From (39), we have

2J =

∫

∞

−∞

dt

t

[

(1 + jσt)mL − (1 − jσt)mL

(1 + σ2t2)mL

]

. (40)

In the above, substitutingtan θ = σt,

2J = 2j

∫ π
2

−
π
2

sec2 θ

tan θ

sin(mLθ)

secmL θ
dθ, (41)

which gives us

J = j

∫ π
2

−
π
2

sin(mLθ)

sin θ
cosmL−1 θ dθ. (42)

The singularity att = 0 in (29), which is reflected atθ = 0 in
(42), vanishes due to the expressionsin(mLθ)

sin θ
in the integrand.

Thus, the integral
∫ π

2

0

sin(mLθ)

sin θ
cosmL−1 θ dθ (43)

has an integrand that is continuous in the interval of integration
and is non-singular at the origin. This is sufficient to conclude
that the above integral exists [3]. Hence, the integralJ exists.
We note that this happens because the interferers have similar
fading parameters. From Lemma 3.1 and (37),

J = jπ. (44)

From (6),(28), (33) and (44), after substituting forσ, we obtain
the outage probability for multiple Nakagami interferers with
similar non-integer fading parameters

Pout = 1 −

m0−1
∑

n=0

(qλ0)
n(mL)n

n!(λ + qλ0)mL+n
. (45)



V. CONCLUSIONS

The real improper integral obtained using [4] to evaluate
the outage probability in [1] was assumed to converge in
general. We have shown that this is not true by providing
a counter example, thus concluding that the approach in [1] is
not mathematically rigorous. We then provided an alternative
method for evaluating the outage probability for the special
case of Nakagami interferers having similar non-integer fading
characteristics.
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