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Abstract

Distributed systems are becoming increasingly important due to the ubiquitous deploy-

ment of wireless devices and sensor networks. This trend is expected to continue with future

Internet of Things (IoT) applications and 5G networks. The participating terminals in such

networks have varying demands on throughput and data security. In an uplink cellular sys-

tem, the throughput under distributed multiple access is an important Quality of Service

(QoS) metric. On the other hand, a downlink system provides its users an opportunity

to wiretap unintended information flows. Preserving the secrecy of each data link is of

paramount importance in this case.

In this thesis, we investigate the communication rates and schemes for some wireless net-

work models. Multiple access channels (MAC), broadcast channels (BC), and relay channels

are very fundamental models for wireless systems.

We first consider a block fading multiple access channel with the receiver having com-

plete channel state information (CSI), whereas the transmitters have the CSI only of their

respective links. The distributed nature of encoder CSI may lead to outage, unless appropri-

ate communication schemes are devised. The long term average sum-rate while ensuring no

outage in each block is known as the adaptive sum-capacity; characterizing this is an open

problem in literature. The thesis characterizes the adaptive sum-capacity of several prac-

tical fading models, under the assumption of identical fading distributions. Furthermore,

the effect of additional quantized CSI on other links is also analyzed, and the sum-capacity

identified for some important models.

Data security is the second prominent aspect discussed in this thesis. A downlink wireless

channel provides an opportunity for eavesdropping by unintended users. While data can be

secured using crypto systems, we can demand the more stringent information theoretic secu-

rity. To analyze communication rates under secrecy requirements, the thesis first considers

a two user discrete memoryless broadcast channel where each receiver shares separate secret

keys with the transmitter. We propose an achievable scheme and outer bound, under the

availability of different secret key rates on each data link. The rest of the thesis considers

secure communication in the absence of secret keys.

We consider a relay channel with an eavesdropper. We give an achievable rate that

is the same as that achieved in an earlier work using backward decoding. Our achievable

scheme uses block Markov encoding over a super-block consisting of many smaller blocks,

and sliding window decoding. Unlike backward decoding, sliding window decoding incurs a

smaller decoding delay of two blocks rather than the full super-block. Though this scheme

is generalized in the next model we consider, both the current simple model and the simple

compact rate expression for this special case are of independent interest.

We finally consider a generalization of the above model to a relay broadcast channel

(RBC) with two receivers. Each receiver needs to be sent an independent message, and each

message is to be kept secret from the unintended receiver. The relay is used as a broadcast

channel in its own right. For the first time, we give an achievable rate region. The encoding



is an extension of the encoding scheme for the earlier relay system with an eavesdropper,

and uses a block Markov encoding over a super-block and sliding window decoding.
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Chapter 1

Introduction

1.1 Background and Overview

Sixty-eight years have passed since the publication of Claude Shannon’s seminal paper

“A Mathematical Theory of Communication” Shannon [1], which was motivated by the

engineering problem of transmitting a message (i.e. information) reliably over a telephone

wire connecting users – referred to as transmitter (aka sender) and receiver – at two different

locations. Physical phenomena associated with the wire itself were usually – and often –

not under the control of either the transmitter or the receiver. As a consequence, wires

tended to randomly distort messages – a phenomenon referred to as “noise”. Engineering

intuition indicated that the “noisier” the connecting link (i.e. wire), the lower the maximum

rate of reliable information transmission. Shannon’s mathematical formulation enabled a

tractable treatment of these intuitions, and provided communications engineers, especially

coding theorists,1 with guidelines aka “the Shannon limit”2 on what targets (in terms of

rate, probability of error etc.) were and were not possible in a given scenario.

Technological advances in the meantime have (largely) replaced wires as the physical

medium with the surrounding air/ atmosphere itself3 as the physical medium. Nowadays,

wireless telecommunications networks have become ubiquitous. With the advent of the

Internet of Things (IoT), they are likely to become even more so. Noise in wireless networks

1Analogously, the development of the theoretical principles of thermodynamics in the nineteenth century

provided engineers involved in the construction of heat engines with the notions of energy and (thermo-

dynamic) entropy. Both these (then novel) concepts set absolute constraints on what was theoretically

achievable. By enabling serious practitioners to recognize that perpetuum mobile aficionados were chasing a

chimera, the development of thermodynamics freed the field of cranks and charlatans, and more positively,

gave engineers meaningful targets to aspire to.
2The history of the “Shannon limit” is a fascinating subject. In the early days of the subject, many coding

theorists believed that there existed a practical limit that was different from – and lower than – the Shannon

limit. See Aftab, Kim, Cheung, Thakkar, Yeddanapudi [2].
3In poetic contexts, the (upper) atmosphere itself is sometimes referred to more evocatively as “the ether”.

But I have not seen the phrase used in engineering contexts (such as the present). Methinks, perhaps we

should.
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CHAPTER 1. INTRODUCTION 2

is no less an issue in comparison with wired networks. But because of its broadcast nature,

in wireless networks, other issues such as secrecy and (unintended) interference from other

users have also taken centre-stage, sometimes in solo acts, sometimes in unison. Deliberately

causing interference i.e. jamming is also an issue, especially in military applications. In a

network consisting of multiple (i.e. ≥ 3) users, as opposed to a single transmitter-receiver

scenario, network issues such as partial and/or distributed availability of information at the

nodes also come to the fore.

From the day of its birth, Shannon’s information theory provided a rich mathematical

framework for addressing questions related to the transmission (and also, as it turned out,

the storage) of information. Information-theoretic inequalities have turned out to be of

mathematical interest in their own right. See the introductory textbooks by Cover and

Thomas [3, Chapter 17] and by Yeung [4, Chapter 12], [5, Chapters 12 through 14], and also

the paper Dembo, Cover, Thomas [6]. Indeed, information theory has been found to have

profound connections to a variety of other mathematical disciplines such as:

• Probability:

– Concentration of Measure [7, 8],

– Proof of the Central Limit Theorem [9],

– Relating Conditional Expectation and Conditional Mutual Information [10],

• Group Theory [4, Chapter 16],

• Combinatorics [11] and Graph Theory [12],

• Combinatorial Optimization [13],

Information theory has found applications to many fields other than telecommunications

engineering, for example:

• Estimation Theory [14, 15, 16],

• Quantum Information Theory [17] and Quantum Computation [18],4

• Computational Neuroscience [19],5 [20, Chapter 4],

• Statistics [21], [3, Chapter 11],

• Machine Learning (ML): The delightful textbook by David MacKay [22] describes

connections between information theory and ML. The field of computer vision and

4The cognoscenti colloquially refer to [18] as “Ike and Mike”.
5[19] sparked the author’s interest in information theory.

2



CHAPTER 1. INTRODUCTION 3

pattern recognition6 (CVPR) has also benefited from information-theoretic ideas, as

evidenced by Escolano, Suau, Bonev [23]. In the field of ML, the “Information Bot-

tleneck Method”, a generalization of rate-distortion theory, was developed by Tishby,

Pereira, and Bialek [24]7 to study large data sets, and shows promise in the (ML sub-)

field of deep learning Tishby and Zaslavsky [25]. See also the PhD thesis by Slonim

[26].

Shannon’s original formulation can be seen as a theory of information flow between two

points connected by a telephone wire. Network Information Theory can be seen as a natu-

ral generalization and successor to Shannon’s formulation, and provides the mathematical

underpinnings of the theory of information flow over wireless telecommunication networks.

The bible of the subject is the textbook by Gamal and Kim [27].

Information transmission over a wire provided the motivation for many problems in in-

formation theory in its early days. Likewise, wireless networks nowadays provide motivation

for and are a rich source of problems that can be studied using the tools of network infor-

mation theory.This thesis studies network information theory problems motivated by wireless

networks. We believe that our results will be of interest to two communities:8

• Wireless communications engineers interested in information-theoretic aspects of their

subject.

• (Network) Information theorists looking to collaborate with and/or convey their insights

to wireless communications engineers.

A number of works have been published in this area. We refer to a small but signifi-

cant subset of examples. The seminal paper by Xie and Kumar [28], which (re-)introduced9

sliding window decoding (see subsection 1.3.2) has the phrases ‘wireless communication’

and ‘network information theory’ in its title! Avestimehr, Diggavi, Tse [30], which pro-

posed a deterministic approach to the problem of maximum rate of information flow over a

wireless network with an arbitrary number of relay nodes and a single source and destina-

tion, has the term ‘wireless’ and the phrase ‘network information flow’ in its title. Vaze’s

6Pattern Recognition is traditionally considered a sub-field of ML.
7William Bialek is a theoretical physicist whose motivation was the analysis of multi-electrode spike train

data. “Spikes” are sudden changes in the voltage of a brain cell (aka neuron) with respect to its surroundings.

A “spike train” is a temporal sequence of spikes. Spike (trains) constitute the brain’s (primary) signaling

mechanism. The afore-mentioned recordings obtain data from the order of dozens of neurons. Making sense

of the data is a central problem in neuroscience, and the problem of how exactly information is encoded in a

spike train is referred to as “the neural code”. See [19].
8The intersection set is non-empty – the same person may, and often does, wear two hats!
9To the best of our knowledge, Carleial [29], in his 1982 paper on the multiple access channel with

generalized feedback, was the first to introduce sliding window decoding.

3



CHAPTER 1. INTRODUCTION 4

recent textbook [31] has the phrases ‘wireless networks’ and ‘information-theoretic’ in its

title. Kannan, Raja, Viswanath [32] and Raja and Viswanath [33] have recently proposed

approaches for (broadcast-)relay and relay networks that are inspired by issues arising in

wireless networks/communication.

First, we give a two paragraph telegraphic10 summary of the thesis contents and motiva-

tion.

• Distributed Information Processing in Wireless Networks: Chapter 2 is the sole chap-

ter dedicated to a problem of distributed information processing, when decisions re-

garding transmission rates to a destination node have to be made at two spatially sep-

arate source nodes when the relevant information about channel conditions is present

only partially at each source node. This is a natural problem to consider in any net-

work, and we have considered it in the context of a multiple access channel (henceforth

shortened to MAC).

• Mutual Secrecy in Wireless Networks: Chapters 3–5 are motivated by an issue arising

due to the broadcast nature of wireless telecommunications networks. Air as the

physical medium over which information is sent has many technological and economic11

advantages. But air does have the drawback that it enables eavesdropping, which

thus forms a major security headache. When multiple users, each with legitimate

message requirements, attempt to eavesdrop on messages not intended for them, the

problem complexity and richness increases and so do the complexity and richness of

the solutions proposed i.e. achievable schemes. These chapters study different aspects

of the problem of mutual secrecy requirements in increasingly more complex scenarios.

Chapter 3 studies the problem of mutual secrecy over a broadcast channel with each

destination possessing a secure dedicated link to the transmitter which can be used to

share a secret key. Chapters 4 and 5 replace the secret key by a relay.

Before describing the chapter contents in more detail (for which, see section 1.2 below),

we briefly digress. The next two items are almost – but not quite – identical to the items

above. But note the subtle change of emphasis between the corresponding items – indicated

by the crossed out phrases.

10The telegraph was an early communications device that was used to transmit messages without the

physical exchange of an object bearing the message. The adjective formed by adding the suffix ‘-ic’ seems

apt, given the thesis contents.
11Air is free, but bandwidth is not!

4



CHAPTER 1. INTRODUCTION 5

• Distributed Information Processing: in Wireless Networks:

Nodes being required to make decisions in the presence of partial information is a

standard trope in networks.12 Anantharam and Borkar [34] is a short, highly readable

classic that uses information theory to formulate a distributed zero-sum game over a

network, and develops a useful insight regarding the use of common randomness in

distributed network control.

A recent PhD thesis awarded in the area of distributed information processing over

networks – with possible applications to network control – is Cuff [35]. Cuff was par-

tially motivated by [34]. To solve these and related problems, Cuff and co-workers

[35, 36] introduced the information-theoretic concepts of empirical coordination and

strong coordination.13 Chou, Bloch, Kliewer [37], Obead, Vellambi, Kliewer [38], and

Cervia, Luzzi, Treust, Bloch [39] contain more recent work on strong coordination.

[40] discusses an application of strong coordination in the context of a two-way com-

munication via a relay using the (see below) OSRB techniques developed by Yassaee,

Aref, Gohari [41].

The classic textbook by Nancy Lynch [42] discusses distributed algorithms, a (sub-)field

of Computer Science that studies algorithmic approaches to distributed information

processing.

• Mutual Secrecy in Wireless Networks: Liang, Poor, and Shamai’s monograph [43] dis-

cusses information theoretic security at the physical layer, as does Bloch and Barros’s

book [44]. See also the special issue Debbah, Gamal, Poor, Shamai [45]. [46], by the

authors of [43], confines its scope more narrowly to physical layer security in broadcast

channels. Both Bassily, Ekrem, He, Tekin, Xie, Bloch Ulukus, Yener [47] and Mukher-

jee, Fakoorian, Huang, Swindlehurst [48] contain summaries of recent (≤ 5 years ago)

advances in the area of physical layer security in (multiuser) wireless networks. The

monograph by Narayan and Tyagi [49] discusses secrecy key generation, randomness

extraction, and secure function computation – among other topics – in multiterminal

networks via public discussion in the presence of an eavesdropper.

Expectedly, many PhD theses have studied information-theoretic security in wireless

networks, such as: Bassily [50], Gabry [51], He [52], Hou [53], Nagananda [54] and

12Not just telecommunication networks, computer networks and queueing networks also face similar issues.
13Empirical coordination is obtained if the empirical joint distribution (aka joint type) of the network

actions is “close” to the desired joint distribution. It can be seen as a restatement of rate distortion theory

in the context of source coding over a graphical network [27, Chapter 20]. Strong coordination is a strictly

stronger requirement, and is obtained when the joint distribution of the sequence of actions is “close” to

the target distribution that is itself obtained as the product of i.i.d copies of a desired distribution. Strong

coordination has applications in cooperative game theory.

5



CHAPTER 1. INTRODUCTION 6

Perron [55]. With the exception of Gabry [51], the aforementioned theses are largely

concerned with standard information-theoretic questions such as achievable schemes

and outer bounds. Gabry [51] explores the rich interplay between game-theory, coop-

eration and secrecy in wireless communications. (The definition of secrecy used in [51]

is weak secrecy, an information-theoretic notion. This is the notion of secrecy used in

this thesis).

The author has also benefited from the work and the insights contained in the following

PhD theses (and related papers) by Chia [56], Hou [53], Luo [57], Wu [58] and Zhong’s MS

thesis [59]. Hou [53] considers noisy network based (NNW) coding schemes (which can be

considered to belong to CF family of schemes). These incur large delay and it is not quite

clear that they give a rate improvement, as the work of Wu and co-workers’ [58, 60] shows.

One recent work that promises to revolutionise the study of secrecy in network information

theory14 is the recently developed framework “output statistics of random binning” (short-

ened to OSRB) of Yassaee, Aref, and Gohari [41]. Their techniques directly give strong

secrecy15 and what is more, secrecy arises almost trivially from their techniques.

Luo [57], Wu [58], Zhong [59] discuss CF based schemes for relay channels, which we

have not considered in this thesis. But see the concluding chapter 6.

To summarise, this thesis studies constrained information transmission over wireless

telecommunication networks. We now describe the chapter contents in more detail in the

next section.

1.2 Chapter Contents

• Chapter 2 studies information flow over a two-user multiple access channel (MAC).16

The channel conditions are variable. In the problem’s simplest formulation, each trans-

mitter is only aware of her own channel, while the receiver is aware of the entire channel.

The information relevant to making decisions at the transmitters about transmission

rates is distributed, and hence we refer to this as a distributed multiple access channel

with individual CSI (at the transmitters).

The main ideas on which our achievable scheme is based are the ‘alpha-midpoint’

strategy which is a distributed rate-allocation strategy. In this context, the adjective

‘distributed’ indicates that no central coordination is required, and the transmitters use

14Not just secrecy, their work is also applicable to problems of strong coordination.
15See Bloch and Barros [44, Chapter 4] for a definition. Strong secrecy, as the name indicates, is a strictly

stronger requirement and implies weak secrecy. The achievable schemes we develop only guarantee weak

secrecy.
16‘Uplink’ in wireless networks.

6



CHAPTER 1. INTRODUCTION 7

only local (and partial) information about channel conditions to make decisions about

transmission rates. The implementation of the strategy is by means of a low-complexity

rate-splitting scheme and an associated novel successive single-user decoding procedure.

In many systems of interest, the introduced techniques improve over the performance

of conventional centralised scheduling schemes.

Portions of this work were presented at ISITA 2012 Iyer, Pillai, Dey [61]. See also the

journal paper Iyer, Pillai, Dey [62]. Our work has been extended in Sreekumar, Dey,

Pillai [63], and Deshpande, Dey, Pillai [64].

• Chapter 3 studies the dual of the MAC, namely the broadcast channel (BC).17 Wire-

less networks face the problem of securing the messages of their intended receivers

from eavesdroppers. It is often the case that two users, each with legitimate message

requirements, attempt to eavesdrop on messages not intended for them. The problem

was first studied by Liu, Maric, Spasojevic, Yates [65].

As Perron, Diggavi, Telatar [66] point out, even a small amount of shared key between a

source-destination pair, if it can be kept unconditionally secret from the eavesdropper,

can enhance the secrecy of the system. With this as motivation, we generalize [65] and

study an extension arising from the use of secret keys, inspired by Kang and Liu [67].

We also present a (partial) converse.

The achievability scheme for this model was presented at NCC 2016 Iyer [68].

• The next two chapters 4 and 5, study the same problem of (mutual) secrecy but we

dispense with the secret keys and introduce a relay trusted by all18 parties. The

introduction of even a single relay leads to a four-node network,19 from which a very

rich set of scenarios arise. We call our model the relay broadcast channel with mutual

secrecy requirements.

Dai, Yu, and Ma [70] have studied the same model, but we believe that our achievable

scheme constitutes an improvement. They do not use the relay as a broadcast channel

in its own right. They employ backward decoding. Lastly, a close analysis of their

scheme reveals that the secret messages are being transmitted via the direct source-

to-destination links. In the DF based schemes they consider, this is problematic, as

DF based schemes are used precisely because the source-to-destination links are weak

17‘Downlink’ in wireless networks.
18Dispensing with this assumption leads to another set of models. See subsection 1.3.3.
19Ekrem and Ulukus [69] have studied the rate-equivocation region for a three-node network – what they

have also called a relay broadcast channel – with mutual secrecy requirements between the destination nodes.

See subsection 1.3.1.
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CHAPTER 1. INTRODUCTION 8

compared to the source-to-relay links, which is why the relay is called upon to decode

and then forward the message.

• Chapters 4 and 5. Chapter 5 addresses the same problem that Chapter 3 does, but

with the secret keys replaced by a (trusted) relay.

In both these chapters, we assume a “strong” relay scenario i.e. the source-to-relay

link is stronger than (both) source-to-destination link(s). Consequently, the relay

can decode the legitimate user’s message (in chapter 4) and both users’ messages (in

chapter 5). In these situations, decode-forward (DF) is the preferred option Behboodi

and Piantanida [71].

• From an expository point of view, we have found it convenient – in chapter 4 – to

describe a scenario with a single legitimate receiver and an external eavesdropper, a

problem that was studied by Lai and Gamal [72, Theorem 2] and also by Yuksel and

Erkip [73]. The primary contributions of this chapter are as follows:

– The same pure secrecy rate as obtained by [72] is obtainable via the use of sliding

window decoding (SlideWin henceforth). This drastically reduces decoding delay

and makes it uniform.

– By varying a parameter, we can obtain both regular (the codebook sizes at the

transmitter and relay are identical) (as in [72]) as well as irregular (the codebook

sizes at the transmitter and relay are different) encoding schemes.20

– The requirement of pure secrecy imposes a constraint on the packing of the relay

codebook bins – what we have termed the randomization requirement.

– The multi-block equivocation calculation will also provide clues for a similar cal-

culation in the next chapter 5.

• Chapter 5 builds on the insights gained to consider a four-node relay broadcast channel

with a trusted relay and a mutual secrecy scenario where both receivers have legitimate

message requirements but each also attempts to snoop on the other.

But for DF to be effective, we also require that the relay-receiver link be stronger than

the relay-eavesdropper link [75, Chapter 7: Ekrem and Ulukus] . This may mislead one

into assuming that a trusted relay cannot be used to simultaneously assist in creating

20This was discovered by us independently, but was first noticed by Razaghi and Yu [74]. The application

to secrecy is novel, to the best of our knowledge. As [74] point out, unlike in irregular encoding, the relay

message rate can be flexible and this can enable higher DF rates in multiple relay networks. Studying

the impact of multiple relays would constitute a natural generalization of our model, and would be worth

exploring. See the concluding chapter 6.
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CHAPTER 1. INTRODUCTION 9

mutual secrecy between two receivers, both with legitimate message requirements. In

chapter 5, we present an achievable scheme that – by using insights from (see below)

Liu, Maric, Spasojevic, Yates [65] and Zhao and Chung [76] – shows that this naive

intuition is incorrect.

The achievable scheme we present uses elements from three distinct models, and our

model can be seen as a generalization of all of these:

– Lai and Gamal [72, Theorem 2] employ block Markov coding, regular encoding,

backward decoding and coherent transmission between the transmitter and re-

lay. We use block Markov coding and coherent transmission but use irregular

SlideWin.

– Liu, Marić, Spasojević, Yates [65] considered a broadcast channel with mutual

secrecy requirements. The primary idea is the notion of double random binning

which enables simultaneous non-zero secrecy rates to the receivers in a general

broadcast channel. Both chapter 3 and chapter 5 can be seen as generalizations

of [65]’s model.

– Zhao and Chung [76] studied the same topology that we have. Both receivers

have independent message requirements but there is no secrecy requirement, ei-

ther individual or mutual. Kramer, Gastpar, Gupta [77] had also developed an

achievable scheme for the (four-node) relay broadcast channel but [76] pointed

out that their work does not use the relay as a broadcast channel in its own right.

Their choice is likely to lead to suboptimal performance in wireless scenarios.

Zhao and Chung [76]’s achievable scheme enables coherent transmission between

the transmitter and the relay, with both being used as broadcast channels in their

own right.

– Note that the achievable region for the broadcast channel with mutual secrecy

requirements [65] uses double random binning and is not a simple generalization

of the achievable region for the broadcast channel, which uses Marton coding

[27, Chapter 8], [78]. In like manner, our achievable rate region is not a simple

generalization of that of Zhao and Chung [76].

• Chapter 6: Conclusion and Future Work. In the chapters 4 and 5, we have considered

DF based schemes, indicated in the “strong” relay scenario, where the source-to-relay

link is stronger than the source-to-destination link, as a consequence of which the relay

can completely decode the destinations’ intended messages. We have some preliminary

results on the “weak” relay scenario – the source-to-relay link is weaker than one or both

of the source-to-destination(s) link(s) – and so the relay cannot completely decode the

9



CHAPTER 1. INTRODUCTION 10

destinations’ intended messages. In these scenarios, CF based schemes are indicated

[27, Chapter 16, Section 16.7].

1.3 Recurring Themes and Literature Survey

1.3.1 The phrase “relay broadcast chanel” (RBC henceforth)

Kramer, Gastpar, Gupta [77, Theorem 2] used the phrase “broadcast relay channel” for

the four-node network topology considered in chapter 5. No secrecy requirements, either

individual or mutual, were imposed. The relay was a dedicated relay. Rate splitting was

used to increase the achievable rate region – as was also done by Behboodi and Piantanida

(see below). The relay was used only to increase the common message rate and thus in effect

was used as a point-to-point channel. Zhao and Chung [76] pointed out that the relay was

not used as a broadcast channel in its own right in [77], and this formed the starting point

for our work in chapter 5.

Liang and Veeravalli [79] introduced and presented inner bounds21 for two three-node

networks that they termed:

• the “partially cooperative RBC” [79, Theorem 1] where one user (the “better” user)

helps the other user by sending relay signals. Regular encoding/DF/sliding window

decoding was used.

• the “fully cooperative RBC” [79, Theorem 9, 10], where both destinations also have

relay links. The first inner bound (Theorem 9) is obtained via DF at one node while the

other node facilitates22 and switching between the roles of the two destination users,

while the second inner bound (Theorem 10) employs DF at one destination node and

CF at the other destination node.

No secrecy requirements (mutual or individual) were imposed in either of the above models.23

Liang and Kramer [82] studied both of the above three-node channels [82, Fig. 1(a, b)]

as well as a four-node [82, Fig. 1(c)] channel, all of which were termed as “relay broadcast

channels”. Our relay broadcast channel is the third of these, referred to in their paper as

dedicated-relay broadcast channel. No secrecy requirements were imposed in [82], and the

achievable schemes considered were pure DF based schemes, and no CF based schemes were

explored.

21They also presented outer bounds, but we are not concerned with that here.
22That is, it chooses the codeword that achieves the best rate region.
23The CF decoding techniques used in their paper use Cover and Gamal [80]’s schemes, and improvements

may be possible by applying techniques due to [81].
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CHAPTER 1. INTRODUCTION 11

To the best of our knowledge, the earliest paper considering mutual secrecy in a three-

node network other than [65] was by Ekrem and Ulukus [69]. Ekrem and Ulukus’s work was

alluded to in a footnote in section 1.2. Despite the conflicting requirement of mutual secrecy,

a counterintuitive result of the paper was to show that cooperation between the destination

nodes was possible by means of a one-sided cooperative link [69, Theorem 1 which is a special

case of Theorem 4] or a two-sided cooperative link [69, Theorem 5]. Ekrem and Ulukus [69]

also discuss the important notions of jamming and “peeling off”, first described in Tannious

and Nosratinia [83] in the context of a relay channel with private messages. Note that if

neither of the cooperating links are present, the model simplifies to a broadcast channel with

mutual secrecy, first studied by Liu, Maric, Spasojevic, Yates [65]. However, the achievable

schemes in [69] employ CF24 and use decoding techniques that have been superseded by

the recent work by Luo, Gohary, and Yanikomeroglu [81]. See the concluding chapter 6 on

future work.

The phrase “broadcast relay channel” has been used by Behboodi and Piantanida to

describe five-node networks with two relays and two destination nodes [85], [86], [87], [71].

No secrecy requirements, either individual or mutual were imposed. Both DF as well as CF

based schemes were considered. The destinations employ backward decoding. However, the

authors’ view that backward decoding provides “better performance” than sliding window

– presumably in terms of rates/rate regions – seems to be not the case.

1.3.2 Sliding Window Decoding

A recurring theme in all the chapters involving a relay is the need to use sliding window

decoding, henceforth referred to as SlideWin (decoding). The decoding delay of SlideWin

is much less compared to backward decoding. Wireless communication engineers – unlike

ivory tower information theorists – live in the real world, and reducing decoding delay is

always welcome.

Carleial [29] studied a multiple access channel with generalized feedback and was the

first, to the best of our knowledge, to introduce sliding window decoding.

Sliding window decoding (SlideWin) was (re-)introduced by Xie and Kumar [28] in the

context of wireless networks and elaborated by them in [88]. This was an excellent example

of a wireless communication engineering problem suggesting a fundamental improvement to

techniques in network information theory. As [28] pointed out, SlideWin necessitates the use

of independently generated codebooks in distinct blocks.

Work by Chong, Motani, Garg [89, 90, 91] and by Hou and Kramer [92, Sec IV ] has

24Bloch and Thangaraj [84] consider a three-node network where the relay has a secret message, and

forwards a common message to the destination by means of DF.
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CHAPTER 1. INTRODUCTION 12

shown that SlideWin occurs no rate penalty in comparison with backward decoding, calling

into question Behboodi and Pintanida’s choice of backward decoding in the sequence of

papers above. Note that [92] discuss SlideWin in the context of pure CF, whereas Chong,

Motani, Garg in their aforementioned sequence of papers consider a mixed DF-CF scheme

for the canonical relay channel. Behboodi and Piantanida [85, 86, 87] consider a two receiver

two relay setup.

Note that the phrase “sliding window decoding” has been used in the literature to refer

to CF based schemes in ways that are not in keeping with the spirit of the phrase as used

in DF based contexts. In SlideWin as used in DF contexts, see [27, Chapter 18] a list of

possible relay codewords is intersected with a possible list of transmitter codewords in the

previous block, and exactly one message index must belong to both lists. This means that

the relay codeword is decoded uniquely and simultaneously with the previous block transmitter

codeword in these DF based schemes.

Now consider the CF based scheme discussed in Lai and Gamal [72, Theorem 4, Com-

ment 2]. They refer to their decoding scheme for CF as sliding window decoding. In their

scheme, the relay channel codeword is decoded first (this gives rise to a bottleneck25). This

in turn determines the WZ bin used in the previous block. The compression sequence in the

previous block must belong to this bin. The compression sequence is either uniquely and

sequentially decoded (as in [72, Theorem 3, 4], and also in the original CF formulation [80])

or jointly and nonuniquely decoded (as in [27, p. 400], Dabora and Servetto [93], El-Gamal,

Mohseni, and Zahedi [94]).

If the spirit of the SlideWin definition for DF is to be maintained, then of the CF based

schemes, the one presented by [53] and [95] both of which do not involve WZ binning, and

the scheme presented by Luo in the thesis [57] make the cut.

A recent beautiful26 paper that uses sliding window decoding in the context of a relay

network (with multiple relays) is work by Yassaee and Aref [96], ideas from which are utilised

by [57] in developing their scheme.

Tang’s MS thesis [97], and [98] contain a discussion of SlideWin in the context of partial

DF in a relay network consisting of a single source and single destination with multiple

relays.

1.3.3 Relay Assumption(s)

The simplest scenario is a single and dedicated relay trusted by all parties. We have

considered this in chapter 5.

25This bottleneck disappears in the work of Luo and co-workers [81].
26And recondite!
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1. By ‘dedicated’ is meant that the relay has no private/secret messages to transmit

and/or receive. Another possibility is that the relay has private messages it would like

to transmit to a third party, or if the relay is itself the intended recipient of a private

message, as in Tannious and Nosratinia [83],27 or a secret message, as in Ekrem and

Ulukus [69] and Bloch and Thangaraj [84].

2. Another complication arises if the relay is not trusted by one or more receiving nodes.

An untrusted relay cannot assist in DF based schemes.

To the best of our knowledge, Oohama [99] and Oohama and Watanabe [100] were the

first to consider a relay channel with an untrusted relay acting as a wiretapper (aka

eavesdropper).

In an insightful sequence of papers, He and Yener [101], [102], [103], [104], [105] showed

that an untrusted relay – or a collection of untrusted relays – could nonetheless be used

to increase secrecy rates via CF based schemes. Ekrem and Ulukus [69] used these

insights and showed in the three-node network (see subsection 1.3.1), where, despite

the mutual secrecy requirement, cooperation can increase achievable secrecy rates.

More recent work, such as Zewail, Nafea, Yener [106] considers multi-terminal networks

with an untrusted relay.

A natural extension of the model studied in chapter 5 would be if one of the two des-

tination nodes distrusts the relay. In that case, we would be forced to use CF based

techniques for that destination.

3. An opportunistic relay was studied in Nagananda [107] in the context of physical layer

security. Luo, Gohary, Yanikomeroglu [81] studied an opportunistic relay channel with

no secrecy requirements. [107], who dubs the relay as a ‘cognitive’ relay, uses DF based

techniques. [81] use CF based techniques.

A running theme through Chapter 5 (pure DF) is the need to treat the relay as a broadcast

channel in its own right, an insight developed in the work of Zhao and Chung [76]. Note that

Pillai [108] had earlier considered – in the context of a Gaussian relay broadcast channel –

the use of the relay as a broadcast channel.

1.3.4 Canonical Relay Channel: CF based schemes

The canonical relay channel has still not been fully understood, as the inner and outer

bounds do not match in general [27, Chapter 16].

27This paper introduced the important notion of “peeling off”.
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Thesis chapters 4 and 5 both employ DF based achievable schemes28 to achieve secrecy.29

These DF based schemes were first described by Cover and Gamal in their classic paper [80,

Theorem 1]. In the same paper, Cover and Gamal [80, Theorem 6] also developed achievable

schemes based on compress-forward (CF).

We do not discuss CF based schemes that achieve secrecy for the relay channel in this

thesis. See concluding chapter 6 on future work. But we briefly review the fascinating history

of the increasingly more sophisticated CF based achievable schemes of the past thirty-eight

years.

• Cover and Thomas [80, Theorem 6]’s CF scheme – the first such – involved Wyner-Ziv

binning of the compression codewords at the relay. The relay codeword in a block

encoded the WZ bin index of the previous block. To decode a block’s message, the

receiver followed a three-step process of successively decoding the relay codeword in

the next block, which gave the WZ bin index of the current block. Using the received

sequence as side information, the receiver successively decoded the compression code-

word in the current block. Next, the message was decoded. The first two steps of this

process gave rise to bottlenecks that subsequent work has shown to be unnecessary.

• Dabora and Servetto [93] (see also Gamal and Kim [27, Chapter 16]), as before, decoded

the relay codeword to obtain the WZ bin. But they replaced the remaining two steps

with joint decoding of the message and (nonuniquely) the compression index within the

WZ bin. Because the compression codeword is not required to be decoded uniquely,

the corresponding bottleneck could be dispensed with. However, the achievable rates

remained unchanged [27, Appendix 16C].

• El-Gamal, Mohseni, and Zahedi [94] performed essentially the same decoding as above

in the context of a Gaussian relay channel.

• Kramer and Hou [109] and Zhong, Haija, Vu [95] and Zhong MS thesis [59, Theo-

rems 6, 7 and remarks immediately following] showed that one could dispense with

WZ binning and encode the compression index directly as the relay codeword index,

and employ sliding window (joint) decoding. For the canonical relay channel, in the

CF case, this would incur no rate penalty.30

28DF based schemes are preferred in the “strong” relay scenario [71].
29Perfect Weak Secrecy.
30This is a slightly surprising result, in view of Kim, Skoglund, and Caire [110], who showed that sequential

decoding of the compression index followed by the message incurs rate loss if WZ binning is not performed.

The conclusion is that joint decoding is crucial for CF to achieve optimal performance if WZ binning is not

employed. See also [59, Chapter 4, Remark 3].
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• Luo, Gohary, Yanikomeroglu [81], and also Luo (PhD thesis) [57] re-introduced WZ

binning, and demonstrated the superiority of a decoding scheme developed by them

in the context of multi-relay networks. Their decoding scheme for the canonical relay

channel – as described in [81] – consisted of forming possible lists of compression se-

quences both before and after the message in the block was decoded. (The compression

sequence was not decoded uniquely). As described in their 2012 paper [81], the second

list was used to reduce the search space of the relay codewords in the next block – this

enabled the constraint on the size of the relay channel codebook to be replaced by a

constraint on the size of the compression codebook that acted as a proxy to determine

the relay codeword uniquely. However, for the canonical relay channel, the achievable

rates remained unchanged.31

• Note that noisy network coding (NNW coding) can be considered to be a kind of CF

based scheme, with nonunique decoding of the compression indices. There are two main

kinds of NNW schemes:

– short message NNW coding [92]

– long message NNW coding [27, Chapter 18]

The work of Wu and co-workers’ [58], [111], [112] indicates that NNW based schemes

do not give any advantage – in terms of rate at least – over other CF based schemes.

Further, compared to standard CF, long message NNW entails a large coding delay.

• Note that other variants of CF have also been proposed. For example, Cover and Kim

(for the deterministic relay channel) [113], for primitive32 relay channels [116], Razaghi

and Yu (generalized hash-forward strategy) [117]. We will not review these here, as

this thesis is mainly concerned with DF based strategies.

1.3.5 Relay-Eavesdropper Channel

Note that we have looked at DF schemes for the relay-eavesdropper channel. But for the

sake of completeness, we briefly review the following three achievable schemes proposed for

the relay-eavesdropper channel, which use CF based and mixed schemes:

31In the PhD thesis, Luo [57] showed that the compression sequence could also be decoded uniquely in

regimes of interest.
32Mondelli, Hassani, Urbanke [114] call relay channels with orthogonal receiver components as primitive

relay channels. Thus the channel is described by PYrec,1,Yrel|XtrPYrec,2|Xrel
. Kim [115] uses the term primitive

relay channel to refer to a special case of the foregoing, namely, channels with a separate and noiseless relay

to receiver link. The PYrec,2|Xrel
link is replaced by a noiseless bit-pipe. What is the common to both is that

the transmitter connects to the relay and the receiver via a broadcast channel, namely PYrec,1,Yrel|Xtr .
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• Xu, Ding, Dai [118] have applied noisy network coding (NNW)33 to the relay-eavesdropper

channel. The work of [58] indicates that NNW does not give any advantages over CF

based schemes for the canonical relay channel (or for single-source single-destination

channels with multiple relays). It seems unlikely that it could give improvements in

achievable rates compared to CF based schemes for the relay eavesdropper channel.

• Sonee, Salimee, Salmasizadeh [119] have considered a mixed DF + CF based scheme

for the relay-eavesdropper channel.

• Xu, Ding, Dai [120] have considered a different hybrid scheme for the relay-eavesdropper,

one which also uses backward decoding.

1.3.6 Miscellaneous Remarks

Chen [121] considered a wireless broadcast network with multiple relays which also act

as destinations. The security clearances of the relay-cum-destination nodes form a hierarchy.

Under the crucial assumption that the security clearance directly reflects the strength of the

link to the source, they describe an achievable scheme (for the DF case) that uses regular

encoding, SlideWin and superposition encoding. Regular encoding and SlideWin together is

likely not an optimal choice, as Razaghi and Yu [122] indicate. Furthermore, superposition

coding seems an odd choice for a (general) broadcast network, given that Marton coding has

been known since the time of, well, Marton [123], [27, Chapter 8]. While, for the specific

network they consider, their conclusions may be valid, their more general conclusion that

DF is limited in guaranteeing physical layer security seems premature.

We have not considered outer bounds for the relay broadcast channel with mutual secrecy

in the model considered in chapter 5. Outer bounds for the four-node relay broadcast channel

– no secrecy constraints imposed, and the paper refers to it as “broadcast relay channel” –

were presented in Salehkalaibar, Ghabeli, Aref [124]. Outer bounds have also been presented

by Dai, Yu, Ma [70].

33NNW can be considered to belong to the CF family of achievable schemes
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Chapter 2

Sum-Capacity of Distributed

MACs under Individual CSI

2.1 Overview

In wireless communications, a fading multiple access channel (MAC) is typically used to

model the uplink communication. Conventional MACs assume a centralized system, where

the transmission rate and power are chosen centrally for every fading vector realization.

On the other hand, there is considerable interest in the performance of distributed multiple

access systems, where the lack of global channel state information (CSI) demands novel

communication strategies. We consider a block-fading MAC where each transmitter is aware

only of its own link CSI, which we term as the individual CSI MAC. The receiver has access

to the full CSI of all links. This model was recently introduced in the information theory

literature, and naturally leads to a distributed access system with several applications. An

important utility of interest for this model is known as the power controlled adaptive sum-

capacity, whose evaluation is an open problem. This is the main subject of the current

chapter.

We present the power-controlled adaptive sum-capacity of a wide class of popular fad-

ing MAC models. In particular, we characterize the sum-capacity when the statistics of

the channel are identical across users. The proposed schemes also allow a low complexity

successive cancellation decoding using rate-splitting. Furthermore, the optimal schemes are

extended to situations in which each transmitter has additional finite-rate partial CSI on

the link quality of others.

2.2 Introduction

In a multiple access channel (MAC) many transmitters communicate to a single receiver

using a shared medium. With its natural applications in wireless communications, the so
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called fading MAC with additive white Gaussian noise (AWGN) is one of the popular MAC

models. In here, the channel from each user to the receiver is modeled by a multiplicative

fading channel. For most parts of this chapter, we consider fading MACs with AWGN.

In order to find the rate-tuples at which reliable communication is possible over the fading

MAC model, it is important to make assumptions about the amount of channel knowledge

available at the transmitters and the receiver. It is natural to assume that the receiver has

access to the fading coefficients, by means of pilot-aided channel estimation. In other words,

the receiver has full CSI. On the other hand, the same is not true about the transmitter. We

consider a MAC model where each transmitter is fully aware of its own fading coefficient,

but that of no other. We call this the individual CSI MAC. The model was introduced

in Gamal and Kim [27], Hwang, Malkin, Gamal, Cioffi [125] for its practical utility. See

[27, Chapter 23] for more details. Towards the latter sections of this chapter, we relax this

assumption and equip the transmitter with finite-rate partial CSI of other links.

We consider a slow fading model as in [27], which is modeled by block fading: the fading

coefficients remain constant for a block of channel uses over which the codewords last. This

models the practical assumption of coding within the coherence time of a channel. The

transmitters, thus, are not allowed to take advantage of the ergodic nature of the fading

process during coding, but may employ adaptive power and rate allocations over blocks

of channel uses. This particular situation is motivated by systems involving occasional

(opportunistic) access to a shared medium, such as in a cognitive radio or a sensor network

with a star topology. Here, multiple users wish to communicate their data to the receiver

over the awarded time slot in a fair but distributed fashion. These systems may even

lack the global user coordination information to schedule users. However, some limited

coordination information can be made available or gleaned from the network. For example,

the total number of active users participating in a given slot can be assumed as the common

knowledge.

It is natural to look for within-block coding in these systems and demand that communi-

cation in each block be outage-free, while allowing for adaptively controlling the power and

transmission-rates based on the available channel knowledge [27]. The word outage-free sig-

nifies that the chosen rate-vector across users is inside the instantiated MAC capacity region

for that block. This notion will be made more precise later. The employed power-adaptation

strategy should also respect the corresponding average transmit power constraint at each of

the users.

There is considerable literature on multiaccess fading channels with instantaneous CSI.

The Shannon capacity of a fading Gaussian MAC (GMAC) with CSI available only at

the receiver is evaluated rigorously in Shamai and Wyner [126]. The optimal power control
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strategies to achieve capacity for the case of complete channel state information at the trans-

mitters (CSIT) are given in Knopp and Humblet [127] and Tse and Hanly [128]. Coming

to partial side information at the transmitters, Das and Narayan [129] gives the ergodic ca-

pacity region of a fading MAC under very general notions of CSI at the transmitters. These

notions can be specialized to nearly all practical scenarios including individual transmitter

CSI. Our work differs from Das and Narayan [129] in two ways. First, achieving the ergodic

Shannon capacity region in [129] requires codewords which span a large number of fading

realizations, whereas our system demands within block coding. These are fundamentally

different problems. Secondly, the characterization of the capacity region in [129] is given as

a complex optimization over power allocation functions, even numerical solutions are hard

to compute. On the other hand, in the setup that we consider, the optimal power allocation

and the sum-capacity can be explicitly determined in many interesting cases. Alternate

notions of capacity motivated by different practical scenarios have also been investigated:

delay-limited capacity for the fading MAC is dealt in Tse and Hanly [128], while Effros,

Goldsmith, Liang [130] defines the notions of expected capacity and capacity with outage

for information unstable single-user channels. Other related works which consider partial

CSI in a fading MAC setup are Cemal and Steinberg [131], where non-causal CSI is consid-

ered, and its generalization and unification with causal CSI in Jafar [132]. The partial CSI

models also have interesting connections to random access models, see Minero, Franceschetti,

Tse [133] for a recent account. In another related work, Niesen, Erez, Shah, Wornell [134]

considers rateless coding in a distributed MAC set-up. In the rateless coding setup, com-

munication takes place in rounds of variable lengths. Each round goes on till the receiver

figures out all the transmitted messages, and the end of a round is signaled by a feedback

beacon signal. In contrast, our model has fixed slot-durations, and there is no feedback

signal. However, drawing motivation from [134], we construct a rate-splitting strategy with

successive cancellation decoder for our MAC setup too.

The model that we consider here, i.e. block fading MAC with individual CSI is applicable

in several situations Gamal and Kim [27], Qin and Berry [135], Adireddy and Tong [136],

Hwang, Seong, Cioffi [137]. In particular, a GMAC with binary fade values can model

random access systems, where the non-zero fade value indicates the presence of a packet.

The binary fading model was generalized in Hwang, Malkin, Gamal, Cioffi [125] to discrete

memoryless MACs, with the state information of each link available only at the respective

encoder, and at the decoder. An additional requirement that the probability of error remains

small for every state realization (block) was also enforced. Clearly, the underlying assumption

of a sufficiently large block-length allows the construction of near-capacity achieving coding

strategies, with error-probabilities exponentially small in the blocklength. Averaging the

19



CHAPTER 2. SUM-CAPACITY OF DISTRIBUTED MACS UNDER INDIVIDUAL CSI 20

possible communication rates over different state realizations will result in the adaptive

capacity region (a term coined in [27]) in the presence of individual CSI. The major challenge

here is in choosing the rate-vectors in a distributed fashion, without having access to the

global CSI. [125] obtained a single letter characterization for the adaptive capacity region

and specialized this to the GMAC setting. These results formulate the adaptive capacity

region as an optimization over distributed outage-free rate allocation functions. However,

the explicit evaluation of the optimal allocation is left as an open problem, while numerical

techniques are used to demonstrate the results for two state channels.

In a GMAC, the users can also adapt their power in addition to the rates [27]. The

maximal sum-throughput in this case is called the power controlled adaptive sum-capacity

(see [27, Section 23.5.2]), which is the maximal empirical average of the sum-rates achieved

in each block. In [125] and [27], finding the general power-controlled adaptive capacity region

is posed as a convex problem, and the sum-capacity is numerically determined for two-state

fading MACs using convex programming techniques. To emphasize the difficulty, evaluating

the adaptive sum-capacity of the popular Rayleigh fading MAC model is mentioned as an

open problem in [125]. We present an explicit solution to this problem in the current chapter

(see also the conference versions [64], [61]), in terms of a closed-form water-filling formula,

along with several other interesting results and extensions. Our main contributions are

summarized as follows:

• We introduce a simple, distributed rate allocation policy called the ‘alpha-midpoint’

strategy for the Gaussian multiple-access block-fading channel with individual CSI

(Section 2.4).

• The alpha-midpoint strategy achieves the power controlled adaptive sum-capacity un-

der a water-filling power allocation when the channel statistics are identical across

users (Theorem 5).

• We propose a low-complexity rate-splitting scheme that allows the alpha-midpoint

strategy to be implemented through a novel successive single user decoding. This is

surprising, given the lack of centralized CSI and coordination. The highlight here is a

unconventional decoder which peels off layers of data (called virtual users) in a greedy

fashion (Theorem 11).

• When the users are identical, i.e. they have the same channel statistics and average

powers, we study the impact of additional finite-rate partial CSI of the other links.

The power controlled adaptive sum-capacity is computed when the additional finite

rate CSI of each link is generated using identical quantizers (Theorem 12).
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• Our schemes do not need any coordination overhead in scheduling users, but can

still achieve better performance than conventional centralized scheduling schemes like

TDMA in many systems of interest. We present an example model with two senders

and three receivers where a natural adaptation of our mid-point scheme shows superior

sum-rates when compared to TDMA (Section 2.7).

The organization of the chapter is as follows. Section 2.3 introduces the system model and

some notations, and also defines the notion of power-controlled adaptive sum-capacity,

which is our utility of interest. In Section 2.4 we present an intuitive communication strategy

utilizing the available individual CSI, called the midpoint strategy and then generalize it

to the alpha-midpoint strategy. This scheme, under a water-filling power allocation, is

shown to achieve the power controlled adaptive sum-capacity of a wide class of fading MACs.

Section 2.5 proposes a rate-splitting scheme with low complexity successive cancellation

decoding, which can achieve near optimal rates for the individual CSI MAC. Extensions of

the sum-capacity results to the case where additional partial finite-rate side information on

the other links is available at the transmitters is given in 2.6. We illustrate the superiority of

the proposed schemes over conventional schemes by an example in Section 2.7. Section 2.8

concludes the chapter with a discussion of the results and possible extensions.

2.3 System Model and Definitions

Consider L users communicating with a single receiver. These users transmit real-valued

signals Xi, encountering real-valued fades Hi. If Y is the value of the received signal at a

(discrete) time instant we have

Y =
L∑
i=1

HiXi + Z, (2.1)

where Z is an independent Gaussian noise process of unit variance. The fading space Hi of

the i-th user is the set of values taken by Hi, and the joint fading space H is the set of values

taken by the joint fading state H̄ = (H1, H2, · · · , HL). We will adhere to this convention

of representing vector quantities of user-wise parameters, like rate, power, channel state

realization etc with an overbar symbol. The notation E[X] represents the expectation of

random variable X. Small case letters are used for the realizations of a random variable.

Consider a slow-fading model, where each channel coefficient stays constant within a

block and varies across blocks in an i.i.d fashion. While we demand reliable communication

within each block, the utility of interest here is the average sum-throughput, or average

sum-capacity, where the average is over different fading realizations or blocks. A more

precise definition of our utility is given later in this section. In Gaussian channels, the rate-
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expressions usually take a logarithmic form, and all logarithms in this chapter are expressed

to the base of 2.

We assume that the (stationary and ergodic) fading processes Hi are independent, and

their distributions are known to all the transmitters and the receiver. In addition, we have

individual CSIT, i.e. each transmitter knows its own channel fading coefficient Hi but that

of no other. The receiver knows all the fading coefficients. The transmitters have individual

average power constraints. i.e.

E [Pi(H)] =

∫
h
Pi(h)dΨi(h) ≤ P avgi , 1 ≤ i ≤ L, (2.2)

where Ψi(·) is the cumulative channel law (cdf) of user i. The users can adapt the rate (and

power) according to their own channel conditions. Apart from the notation changes, our

model and objectives are similar in spirit to the those presented in [27] (see Section 23.5). In

fact, the terminology power-controlled adaptive sum-capacity is borrowed from [27], which

we explicitly compute in the present chapter.

The adaptive nature of communication naturally leads to the following notion of a power-

rate strategy.

Definition 1. A power-rate strategy is a collection of mappings (Pi, Ri) : Hi 7−→ R+ ×R+;

i = 1, 2, · · · , L. Thus, in the fading state Hi, the ith user expends power Pi(Hi) and employs

a codebook of rate Ri(Hi).

The component functions Pi and Ri in the above definition will be referred to power

allocation and rate allocation strategies respectively.

Let CMAC(h̄, P̄ (h̄)) denote the capacity region of a Gaussian multiple-access channel

with fixed channel gains of h̄ = h1, · · · , hL and respective power allocations

P̄ (h̄) = (P1(h1), · · · , PL(hL)). We know that,

CMAC(h̄, P̄ (h̄)) =

{
R̄ ∈ {R+}L : ∀S ⊆ {1, 2, · · · , L},

∑
i∈S

Ri ≤
1

2
log

(
1 +

∑
i∈S
|hi|2Pi(hi)

)}
(2.3)

Definition 2. We call a power-rate strategy as feasible if it satisfies the average power

constraints for each user i.e. ∀i ∈ {1, 2, · · · , L}, EHiPi(Hi) ≤ P avgi .

Definition 3. A power-rate strategy is termed as outage-free if it never results in outage

i.e. ∀h̄ ∈ H, (R1(h1), · · · , RL(hL)) ∈ CMAC(h̄, P̄ (h̄)).

In a practical system, an outage-free strategy will ensure a small error probability for

large block lengths. A large block length for which fading remains constant will require

a large channel coherence time in turn. However, such an outage-free requirement is not
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only common in works on block-fading partial CSI models [27], [125], but also used in

many practical wireless systems. Let ΘMAC denote the collection of all feasible power-rate

strategies which are outage-free. Let us now specialize the definitions to the case of identical

channel statistics, i.e. the cdf of each user is Ψ(h). For any strategy θ ∈ ΘMAC , the

throughput is

Tθ =
L∑
i=1

ERθi (Hi) =
L∑
i=1

∫
h
Rθi (h) dΨ(h)

=

∫
h
dΨ(h)

(
L∑
i=1

Rθi (h)

)
, (2.4)

where the superscript θ is used to identify the feasible power-rate strategy employed. i.e.

Rθi (h) is the rate allocated to user i while observing fading coefficient h. The corresponding

transmit power is denoted as P θi (h).

Definition 4. The power controlled adaptive sum-capacity is the maximum (average)

throughput achievable, i.e. Csum(Ψ) = maxθ∈ΘMAC
Tθ.

One of the main results of the chapter is the computation of the power-controlled adaptive

sum-capacity for several popular fading models. In the special case of a single user channel

(L = 1), the adaptive sum-capacity is well known, as it becomes a full CSI model. We denote

the single user-capacity with an average power constraint of P a as C1(Ψ, P a), which can be

evaluated using a water-filling formula (see Tse and Viswanath [138] for a recent account),

C1(Ψ, P a) =
1

2

∫
dΨ(h) log(1 + |h|2P ∗(h)), (2.5)

where

P ∗(h) =

(
1

λ
− 1

|h|2

)+

and

∫
dΨ(h)P ∗(h) = P a. (2.6)

The single user water-filling formula is considered to be in closed form for all practical

purposes. Our results for the MAC with distributed CSI also take the form of similar water-

filling formulas. Thus, we will re-use the notation C1(Ψ, P a) several times in this chapter.

Let us now focus on computing the quantity Csum(Ψ) for L > 1.

2.4 Power Controlled Adaptive Sum-capacity (Csum(Ψ))

Consider a L−user distributed MAC with individual CSI, and identical link statistics

across users. The main result of this section is to compute the power-controlled adaptive

sum-capacity Csum(Ψ) for arbitrary Ψ(·). We first state the result and then explain its

structure and implications, before providing the proof.
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Theorem 5. Given independent and identically distributed channels according to the c.d.f

Ψ(h),

Csum(Ψ) = C1

(
Ψ,

L∑
i=1

P avgi

)
. (2.7)

Before presenting the proof, which is done in Section 2.4.2, it is instructive to study the

structure of the result. The result states that Csum(Ψ) is same as the capacity of a single

user channel with cdf Ψ(·) and average power
∑L

i=1 P
avg
i . It has an element of surprise in

the first look, as if there is some degeneracy in the problem statement. While this is not

the case, the single user result essentially comes from the fact that communication has to be

outage-free in every block. The result is re-stating that the worst joint distribution of the

MAC fading-states is a highly correlated one, in which the same fading value is observed

across users.

In order to achieve Csum(Ψ), we propose a distributed strategy called the alpha-midpoint

strategy. The ideas behind this scheme can be clearly motivated by considering a special

case of the GMAC model, one with identical users.

2.4.1 Identical Users and Mid-point Strategy

Assume that the users are identical, i.e. users have identical channel statistics and the

same average powers. We will deal with unequal average powers in the next subsection.

Under the individual CSI model, consider a scheme where user i, on observing channel state

hi in a block, imagines that every other channel state is also hi. Under this symmetric

MAC assumption, user i can choose an operational rate in a distributed fashion. A natural

question now is whether such a distributed choice at each user will lead to a valid rate-tuple

within the actual MAC capacity region for that block. It turns out that a careful choice of

rates can achieve this objective, which we call the mid-point strategy. The mid-point rate

allocation is explained now.

Consider a block in which the fading vector is h1, · · · , hL, and let the respective powers

be P1(h1), · · · , PL(hL). We will optimize over the power choice later. Now, the mid-point

rate allocation for user i is,

Rmidi (hi) =
1

2L
log
(
1 + L|hi|2Pi(hi)

)
. (2.8)

Lemma 6. The midpoint rate strategy is outage-free, i.e. ∀h̄ R̄midi ∈ CMAC(h̄, P̄ ).

Proof. The lemma follows directly from the concavity of the logarithm function, i.e. ∀S ⊂
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R1

R2

A

Figure 2.1: The users 1 and 2 construct the innermost and outermost MAC capacity regions

respectively. The intermediate pentagon is the instantiated (actual) MAC region and A

denotes the operating point.

{1, 2, · · · , L},

∑
i∈S

Rmidi (hi) =
1

2L

∑
i∈S

log
(
1 + L|hi|2Pi(hi)

)
≤ 1

2|S|
∑
i∈S

log
(
1 + |S||hi|2Pi(hi)

)
≤ 1

2
log

(
1 +

∑
i∈S
|hi|2Pi(hi)

)
.

Suppose we choose a power allocation scheme where each user water-fills over its own

channel gain, i.e.

Pi(hi) =

(
1

λi
− 1

|hi|2

)+

, (2.9)

where λi is chosen such that EHiPi(Hi) = P avgi . While the motivation behind this choice

may not be immediately clear, this is indeed an optimal choice for identical users, a special

case of the result proved in the next subsection. The optimal sum-rate for a two user MAC

with individual CSI and identical users is shown in Figure 2.2. For comparison, we also show

the sum-capacity in the presence of full CSIT. It is well known that the optimal scheme in

the presence of complete CSIT is opportunistic TDMA (O-TDMA) where only the better

user transmits [127]. The throughputs of the two models are plotted for identical normalized

Rayleigh fading links, and observations corrupted with AWGN of unit gain. The users are

also assumed to have the same average powers.
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Figure 2.2: Midpoint strategy vs the full CSI rate

2.4.2 Unequal Average Powers (Proof of Theorem 5)

We now prove Theorem 5 in two steps. First, we construct an upperbound to the

power controlled adaptive sum capacity Csum(Ψ). The second step generalizes the mid-

point strategy to construct an achievable scheme which meets the proposed upper-bound.

An Upperbound: We will convert our MAC with individual CSI to an equivalent single

user channel for evaluating an upper-bound. To this end, consider a single link with cdf

Ψ(h). For a non-negative variable P̃ , let Θs(P̃ ) be the collection of all single-user power

allocations Ps(h), ∀h over this link such that∫
Ps(h)dΨ(h) = P̃ . (2.10)

Let Psum =
∑L

i=1 P
avg
i , and also recall the definition of throughput in (2.4).

Lemma 7. The throughput Tθ obeys,

Tθ ≤ C1(Ψ, Psum),∀θ ∈ ΘMAC .

Proof.

Tθ
(a)

≤ 1

2

∫
h
dΨ(h) log

(
1 + |h|2

L∑
i=1

P θi (h)

)
(2.11)

≤ max
Θs(Psum)

1

2

∫
dΨ(h) log

(
1 + |h|2Ps(h)

)
. (2.12)

Here (a) follows from (2.4), by applying the sum-rate upper bound on a MAC with received

signal power
∑

i |h|2P θi (h). The second inequality results from relaxing the individual power

constraints to a single average sum-power constraint.
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It is clear that water-filling of the inverse fading gains is the optimal strategy in a point

to point fading channel under an average power constraint. Thus the last expression above

is indeed C1(Ψ, Psum).

Alpha-midpoint strategy: Our achievable scheme is named as alpha-midpoint strat-

egy. As the name implies, this is a generalization of the midpoint scheme that we introduced

in the previous sub-section. Let ᾱ be a vector of non-negative values with
∑

i αi = 1. In

alpha-midpoint strategy, the rate chosen by user i while encountering a fading coefficient of

hi is,

Rᾱi (hi) = αi
1

2
log

(
1 + |hi|2

Pi(hi)

αi

)
, (2.13)

where Pi(hi) is the transmitted power, chosen such that∫
Pi(h)dΨ(h) = P avgi .

Lemma 8. The alpha-midpoint strategy is outage-free.

Proof. For any S ⊆ {1, 2, · · · , L},∑
i∈S

Rᾱi (hi) =
∑
i∈S

αi
1

2
log

(
1 + |hi|2

Pi(hi)

αi

)
(2.14)

≤ 1

2
log

(
1 +

∑
i∈S
|hi|2Pi(hi)

)
, (2.15)

by concavity of the logarithm. Clearly the chosen rate-tuple across users is within

CMAC(h̄, P̄ (h̄)) for every block, ensuring that there is no outage.

We now show the optimality of alpha-midpoint schemes.

Lemma 9.

max
θ∈ΘMAC

Tθ = C1(Ψ, Psum).

Proof. We will specialize our alpha-midpoint strategy to achieve C1(Ψ, Psum). To this end,

choose for 1 ≤ i ≤ L,

αi =
P avgi∑L
i=1 P

avg
i

and Pi(h) = αiP
∗(h), (2.16)

where P ∗(h) is given in (2.6), with Pa replaced by Psum. Notice that,∫
Pi(h)dΨ(h) = αi

∫
P ∗(h)dΨ(h)

= αiPsum

= P avgi .
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Furthermore, by (2.13)

L∑
i=1

∫
Rᾱi (hi)dΨ(hi) =

L∑
i=1

αi
2

∫
log

(
1 + |h|2Pi(hi)

αi

)
dΨ(h)

=
L∑
i=1

αi
2

∫
log(1 + |h|2P ∗(h))dΨ(h)

=
1

2

∫
log(1 + |h|2P ∗(h))dΨ(h)

(
L∑
i=1

αi

)
= C1(Ψ, Psum).

This proves Lemma 9, thus also completing the proof of Theorem 5.

We have shown that the alpha mid-point schemes achieve the power controlled sum-

capacity when the channel statistics are identical across users. Notice that the proposed

scheme needs little coordination information to schedule users other than a modest frame-

synchronization.

2.5 Rate Splitting and Successive Decoding

The alpha-midpoint strategy proposed in this chapter has a fairly simple structure. How-

ever, notice that the previous section employed a joint decoder to recover the input data. In

this section, we show that these strategies can be implemented by low complexity successive

decoding architectures. To this end, we present an asymptotically optimal rate-splitting

strategy that replaces the joint decoder with LNv successive single-user decoders, where Nv

is a parameter, signifying the number of layers per user.

Our approach is motivated by the work of [134], where the goal is to demonstrate low-

complexity schemes closely approximating the achievable rates. There are some crucial

differences between the current setup and [134]. The latter considers a rateless scheme,

where a communication round lasts till every participating user gets decoded at the receiver.

Thus, the round duration is determined by the number of active participants, with variable

length codes required in different rounds of communication. Each round is terminated by a

feedback link from the receiver, which announces the next round via a beacon. In contrast,

our scenario requires that the communication occur within a fixed block or time slot, and

there is no assumption of any feedback link or beacon. Furthermore, though we employ

a rate-splitting encoder which converts each user to a set of virtual users as in [134], our

decoding strategy is highly unconventional. More specifically, the decoder peels off virtual

users in a greedy fashion without any pre-defined order, and surprisingly, manages to decode

all users when the distributed rate allocations are based on the alpha-midpoint strategy. To
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the author’s knowledge, such a novel rate-splitting decoder does not appear elsewhere in

literature.

We will first construct rate-splitting schemes for identical users, i.e. the users have the

same average power and identical channel statistics. Extensions to arbitrary average powers

is done in a separate subsection. We will write the received signal power for user i, i.e. Pi|hi|2

as simply γi, throughout this section. Assume that the users have different (received) powers

γ1, γ2, · · · , γL. For simplicity, we will assume that the additive noise is of unit variance. The

values of γi may change with each block of communication depending on the individual

fading conditions. Each user is unaware of the fade values as well as the transmit powers of

the rest of the users and, consequently, the interference they may cause.

The encoding and decoding are done as: each user splits itself into Nv virtual users and

apportions its power, perhaps unequally, among these users. Each user can be visualized as

a ‘stack’ of virtual users. More specifically, user i, having received power γi, splits its data

stream by allotting a power/rate pair (γli, r
l
i) to the lth virtual user, such that

∑Nv
l=1 γ

l
i = γi.

We will index the virtual users as (i, l), where 1 ≤ i ≤ L and 1 ≤ l ≤ Nv. For decoding,

a successive cancellation based single-user decoder which decodes one of the virtual users,

treating all other virtual users which are yet to be decoded as Gaussian noise is employed,

see [139] for more details of rate-splitting and multiple access.

To determine the transmission-rate, transmitter i assumes that all other users are also

at (received) power γi and imagines identical power/rate splitting strategies across all users.

It then chooses the rates rli by considering all the other virtual users in the same and lower

layers as interference, i.e.,

rli =
1

2
log

(
1 +

γli

1 + (L− 1)γli + L
∑l−1

j=1 γ
j
i

)
. (2.17)

Let us denote (1 + (L− 1)γli + L
∑l−1

j=1 γ
j
i ) as EI li , i.e. the estimated interference for virtual

user (i, l). However, in reality, the interference encountered from the undecoded virtual users

while decoding (i, l) is substantially different from EI li . We call the perceived interference as

the actual interference, and represent it by AI li . The pre-requisite for decoding the virtual

user (i, l) is that

AI li ≤ EI li .

A layer by layer decoding in the order of index (i, l) cannot always guarantee the above

condition, as the virtual users are not chosen according to the global channel conditions.

Surprisingly, it turns out that this lack of knowledge can be compensated by not strictly

adhering to an ordered layer by layer decoding. In particular, the receiver retains the freedom

to decode the topmost hitherto undecoded layer of any transmitter, irrespective of the
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number of layers which were already decoded. It is, in fact, this freedom that allows the

transmitters to choose the virtual rates without knowledge of interference from the other

users. For the simplicity of exposition, let us assume that the blocklengths are arbitrarily

large.

Lemma 10. Assuming layer-wise rate allocation as per (2.17), it is always possible to find

a virtual user with the actual interference lower than the estimated interference.

Proof. We prove this by induction. Assume that layers (virtual users) above lk have been

decoded for the kth transmitter. Choose:

κ = arg max
k

lk∑
j=1

γjk.

For user κ, the remaining interference for decoding layer lκ is

1 +

lκ−1∑
j=1

γjκ +
∑
k 6=κ

lk∑
j=1

γjk

= 1 +

L∑
k=1

lk∑
j=1

γjk − γ
lκ
κ

≤ 1 + L

lκ∑
j=1

γjκ − γlκκ

= 1 +

lκ−1∑
j=1

γjκ + (L− 1)

lκ∑
j=1

γjκ.

The inequality follows directly from the choice of κ. Thus the actual interference is less than

the expected interference, and this virtual user can be correctly decoded. In other words,

the user with the ‘best’ received SNR can always be chosen for decoding.

Theorem 11. As Nv → ∞ and γlk → 0, ∀k, l , the rate achieved by each user approaches

the respective midpoint rate given in (2.8).

Proof. Using (2.17), we have

Ri =

Nv∑
j=1

1

2
log

(
1 +

γli

1 + (L− 1)γli + L
∑l−1

j=1 γ
j
i

)
.

Under the given conditions, we can use the same method as in Lemma 1 of [134] to show

that:

lim
Nv→∞

Ri =
1

2
lim

Nv→∞

Nv∑
l=1

γli

1 + (L− 1)γli + L
∑l−1

j=1 γ
j
i

=
1

2

∫ γi

0

dy

1 + Ly
=

1

2L
log (1 + Lγi) .
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Computational results in [134] show that only a moderate number of virtual users Nv

are sufficient to yield good performance. For completeness, the increase in achievable-rate

with respect to the number of virtual layers is shown in Figure 2.3.
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Figure 2.3: The fractional sum-capacity achieved Vs Nv for L users

2.5.1 Unequal Average Powers

We will construct two levels of splitting in the presence of unequal average powers. In

particular, we first split user k into Nk pseudo users, in such a way that each pseudo user

has an identical1 average transmit power constraint of Pv, irrespective of the user index k.

Thus,

NkPv = P avgk , 1 ≤ k ≤ L.

Evaluating the maximal average rate for the L′ =
∑L

k=1Nk virtual users under the midpoint

strategy of (2.8) will also yield C1(Ψ, Psum). To see this, notice that the total-rate obtained

by the Nk layers of user k is

Nk
1

L′

∫
1

2
log(1 + |h|2P ∗(h))dΨ(h),

where P ∗(h) is the single-user water-filling allocation with an average power of L′Pv =∑L
k=1 P

avg
i = Psum. Notice that Nk/L

′ is nothing but the αk in (2.16), proving that the

above strategy can achieve the same rates as the alpha-midpoint scheme. Furthermore, since

1sometimes the transmit-power of users may not be commensurate, however we can choose a slightly lower

power level for some of the users, with negligible loss of performance.
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the midpoint rates are achievable by single user decoding techniques [64], [61] alpha-midpoint

rates can also be achieved by low complexity successive cancellation based decoding schemes.

2.6 Finite-rate CSI on Other Links

Up to this point, we have assumed only individual CSI. Let us now study the effect of

additional partial information about the other links. To keep things simple, we consider

identical users, i.e. each user has fading cdf Ψ(h) and an average power constraint of P avg.

The first case that we consider is 1 bit of additional partial CSI, i.e. each transmitter

gets one bit of information from every other link, in addition to its own individual CSI.

As usual, the individual fading components are assumed to be independently chosen across

users. The additional CSI made available to others is only a function of the individual fading

coefficients. Thus, the model captures situations where the extra bit is obtained through

transmitter cooperation or cribbing. It is crucial that the receiver has no say on the partial

CSI. If the receiver decides the conveyed bit, then the throughput is same as that of full

CSI, as in Knopp and Humblet [127].

The partial CSI contains link quality information: let us assume it to be chosen from the

set {G,B}, where G stands for good, and B for bad. A natural separation between G and

B is a link gain threshold. In particular, the partial CSI bit ĥk of transmitter k is

ĥk =

{
G if |hk| ≥ hT
B otherwise,

(2.18)

for some fixed positive threshold hT . Thus, ĥk = G1{|hk|≥hT } + B1{|hk|<hT }, where 1{·} is

the indicator function. By slight abuse of notation, we will say that link j is in state G (and

call it good user), and denote the probability of that event by µ(G). Using the same token,

1 − µ(G) = µ(B). Let CPSI be the maximum attainable throughput with 1 bit additional

CSI on each of the other links, along with individual CSI.

Theorem 12. For L identical users,

CPSI = C1 (Φ, LP avg) , (2.19)

where the cdf Φ(·) is such that,

dΦ(h) = dΨ(h)
(
[µ(B)]L−11{h∈B} + (1 + ζ)1{h∈G}

)
,

and the parameter

ζ =

L−1∑
m=1

(
L− 1

m

)
[µ(B)]m[µ(G)]L−1−m m

L−m
. (2.20)
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Proof. Recall the definition of C1(·, ·) given in (2.5)–(2.6). We explain the proof for L = 2,

which contains all the essential features. The proof is relegated to appendix .2.

It is instructive to compare the advantages of 1 bit of extra CSI, which we demonstrate

for a two user identical Rayleigh fading links of unit second moment, see Figure 2.4. The

threshold value hT for 1−bit CSI was taken as unity.
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Figure 2.4: Sum-rate improvement by additional CSI

One immediate question is the sensitivity of the results with respect to the fading thresh-

old. Numerical observations suggest that it is not that crucial and the results are robust.

In fact, taking the median of the fading distribution seems to be natural choice for many

models. Even for moderate power-levels (a few 10s of dB) the performance difference of the

median from the the best choice of the threshold is not noticeable in Figure 2.4.

2.6.1 Multiple bits of CSI

We can extend the above 1−bit result to multiple bits of CSI, under the assumption that

each user employs an identical quantization scheme to generate partial CSI. More precisely,

n−1 threshold values T1, T2, · · · , Tn−1 for the fading gains can be used define the log2 n bits

of partial CSI about each link. For 0 ≤ m ≤ n− 1, define

Um+1 = {i : |hi| ∈ [Tm, Tm+1)}

as the set of users belonging to the same fading partition, i.e. they generate identical partial

CSI bits. Here we assumed T0 = 0 and Tn = ∞. In other words, all users experiencing a

absolute fading-value in the threshold bracket [Tm, Tm+1), 0 ≤ m ≤ n − 1 will form group

Um+1.
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The result for one bit partial CSI can now be extended to this setup. In particular,

an optimal strategy achieving the maximum average sum-rate schedules the group m∗ =

max{m : |Um| > 0} for transmission in each block2. All other users remain silent. Now,

each user in the group U∗m transmits at its midpoint rate, by taking |Um∗ | users into account,

employing the rate allocation in (2.8). It is also clear that we can extend the low complexity

rate-splitting technique introduced earlier to the partial CSI setting of this section.

2.7 Fading W−Channel

The purpose of this section is to demonstrate that the proposed distributed technique like

the alpha-midpoint strategy can perform even better than centralized schemes like TDMA.

To exemplify this clearly, we construct a model where significant advantages over TDMA can

be demonstrated. The model that we introduce is termed as the fading W− channel, it is an

adaptation of the AWGN RAC network in [133] which has two senders and three receivers.

Each of the senders has an independent data stream. One of the three receivers, we call it the

central receiver, is interested in the messages from both the senders, while each remaining

receiver has a point-to-point link to its corresponding transmitter. The dependencies are

pictorially shown in Figure 2.5.

X1(W1)
h11

Y1 → Ŵ1
h1c

Yc → Ŵ1, Ŵ2

X2(W2)
h22

Y2 → Ŵ2

h2c

Figure 2.5: Fading W−channel with 2 senders and 3-receivers, Wi, i = 1, 2 are the messages

The received values are

Yi = HiiXi + Zi, i = 1, 2

and

Yc = H1cX1 +H2cX2 + Zc,

where Z1, Z2 and Zc are normalized independent Gaussian random variables. The links Hii

and Hic are considered to be block-fading, with full CSIR at each of the receivers. The

2| · | denotes cardinality here
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coefficients H1c and H2c are independent and identical, the same applies to links H11 and

H22. We further assume an individual CSIT model, where each transmitter knows the fading

coefficients of the links which originate from it. The main differences between our model

and the 2−Sender AWGN RAC in Minero, Franceschetti, Tse [133] are listed below.

• In an AWGN RAC there are two additional private data streams, one between each

transmitter-receiver pair (Xi, Yi); i = 1, 2.

• The AWGN RAC model only considers static links whereas we consider fading links

with individual CSIT.

For simplicity, we do not consider power-control, and the average transmit power is

limited to P in each block of transmissions. A similar MAC model without power control

is considered in the context of adaptive capacity region in [27]. The objective now is to

maximize the sum-rate from the transmitters, ensuring that there is no outage at any of

the receivers. We term the optimal sum-rate as the adaptive sum-capacity of the fading

W−channel and denote it by CWsum.

Let us first consider TDMA. By the symmetry of the observed channel characteristics, it

is sufficient to consider a time-sharing factor of 1
2 . The data-communication problem then

decouples into two separate links, where the rate allocation of user i is,

RTDMA
i (hii, hic) =

1

4
log
(
1 + min{h2

ii, h
2
ic} 2P

)
. (2.21)

In (2.21), we have used the fact that an active user in TDMA can employ a power of 2P ,

while transmitting for half the frame. It turns out that the TDMA sum-rate is inferior to

strategies which adapt the mid-point scheme. In particular, let transmitter i choose the

mid-point rate to the central receiver, whenever this chosen rate is below the link capacity

of hii. The rate allocation is

RMP
i (hii, hic) = min{1

4
log
(
1 + h2

ic2P
)
,
1

2
log(1 + h2

iiP )}. (2.22)

Clearly, the central receiver will succeed in decoding the data under the mid-point scheme.

The point-to-point links will also not face any outage since the respective transmission rates

are below their capacity. It turns out that the average sum-rate of this scheme can be strictly

better than TDMA. We will state this precisely in the following lemma.

Lemma 13.

E
[
RTDMA
i (Hii, Hic)

]
≤ E

[
RMP
i (Hii, Hic)

]
.
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Proof. Rewriting (2.21) as,

RTDMA
i (hii, hic) = min{1

4
log
(
1 + h2

ic2P
)
,
1

4
log(1 + h2

ii2P )} (2.23)

≤ min{1

4
log
(
1 + h2

ic2P
)
,
1

2
log(1 + h2

iiP )} (2.24)

= RMP
i (hii, hic), (2.25)

where the inequality uses the concavity of logarithm.

By examining (2.24), the mid-point scheme is strictly superior to TDMA whenever the

maximum possible value of h2
ic is above the minimum possible value of h2

ii. This is a very

modest requirement, and our schemes will beat TDMA in most systems of interest. It

also turns out that the allocation in (2.22) is in fact optimal, i.e. it achieves the adaptive

sum-capacity CWsum of the fading W−channel without powercontrol.

Theorem 14.

CWsum = 2E
[
RMP

1 (H11, H1c)
]

Proof. The proof employs arguments similar to that of Theorem 5. This is outlined in

Appendix .1 for completeness.

Let us numerically compare the performance of the two schemes. To clearly illustrate the

benefits of the scheme, let us assume that the point-to-point links are fixed at H11 = H12 = β

almost surely. The MAC fading coefficients H1c and H2c are considered to be normalized

Rayleigh distributed. Figure 2.6 compares the sum-rate of TDMA and mid-point schemes for

P = 10 and P = 30, while β is varied. It is seen that the sum-rate saturates for the mid-point

scheme for even moderate values of β. The results of this section can be extended to the case
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Figure 2.6: Comparing the sum-rates of TDMA and Mid-point for the W−Channel
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where there is power-control. While this is numerically straightforward, it has less analytical

appeal, and we do not pursue it here. More than just the sum-capacity, the W−channel

result indicates that the proposed mid-point coding schemes will find applications in several

contexts, including relaying, interference channels and more complex networks.

2.8 Conclusion

We have presented throughput optimal outage-free communication schemes for a block-

fading MAC with identical channel statistics, and distributed (individual) CSI. While the

assumption of symmetric channel statistics is very relevant in several situations, we are

currently extending our work to asymmetric channel statistics. In the identical channels case,

the proposed schemes can be extended to MIMO channels, and also to multi-path channels.

The results can further be adapted to the case of limited CSI of each link available at

the receivers, and the individual part of these made available at the respective transmitters.

Whereas the current chapter focused on the adaptive sum-capacity, this should be considered

as a step towards computing the full capacity region, a possible future work. We believe

that the proposed strategies have several ingredients which make them suitable for many

circumstances. In particular, the results for the fading W−channel in 2.7 clearly show the

versatility. Extensions of the coding schemes for the individual CSI models to relay channels,

interference channels etc are of considerable interest.

In the case of additional partial finite-rate CSI, we computed the sum-capacity under

identical users and symmetric CSI. It will be interesting to relax this assumption and compare

the performance, in terms of non-identical users or asymmetric CSI. While we limited our

treatment here to the block-wise encoding case while ensuring no outage, it will also be

interesting to see whether these results can be bridged to the ergodic capacity-achieving

schemes.

.1 Proof of Theorem 14

Since user i is only aware of hii and hic, its rate allocation Ri(hii, hic) only depends on

these two realizations and the statistics of the other two links. The expected sum-rate is

now

E [R1(H11, H1c) +R2(H22, H2c)] = ER1(H11, H1c) + ER2(H11, H1c) (26)

= ER1(H11, H1c) +R2(H11, H1c) (27)

≤ Emin{1

2
log(1 + 2H2

1cP ), log(1 +H2
11P )} (28)

= 2ERMP (R1(H11, H1c)) (29)
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In above, the first equality used the identical distribution of Hii, i = 1, 2, and similarly

Hic, i = 1, 2. The inequality has two components. The first term in the minimum is the

sum-rate bound for a MAC with both links H1c. The second term bounds the total rate of

two independent point-to-point links, each having a fading value of H11. The last equality

is immediate from the mid-point rate allocation of (2.22).

.2 Proof of Theorem 12

We will show the proof for a 2 user system for simplicity. Let ĥi denote the CSI commu-

nicated from user i to all others. User 1 employs a power of P1(h1, ĥ2) and user 2 spends

P2(ĥ1, h2). Let R1(h1, ĥ2) and R2(ĥ1, h2) be the respective rates chosen. We can express

the average sum-rate as,

R1+R2 =

∫
G×G

(
R1(h1, ĥ2) +R2(ĥ1, h2)

)
dΨ(h1, h2)

+

∫
B×B

(
R1(h1, ĥ2) +R2(ĥ1, h2)

)
dΨ(h1, h2)

+

∫
B×G

(
R1(h1, ĥ2) +R2(ĥ1, h2)

)
dΨ(h1, h2)

+

∫
G×B

(
R1(h1, ĥ2) +R2(ĥ1, h2)

)
dΨ(h1, h2). (30)

Consider the first term in the summation of the right hand side. By suitably integrating, it

can be written as a single integral,

µ(G)

∫
G

(R1(h,G) +R2(G, h))dΨ(h) ≤ µ(G)

2

∫
G

log
(
1 + h2(P1(h,G) + P2(G, h))

)
dΨ(h),

(31)

which is the sum-rate bound of the corresponding MAC. Similarly, for the second term,

µ(B)

∫
B

(R1(h,B) +R2(B, h))dΨ(h) ≤ µ(B)

2

∫
B

log
(
1 + h2(P1(h,B) + P2(B, h))

)
dΨ(h).

(32)

As for the third and fourth terms, the information on who has the better channel is readily

available to both parties here. Let us now consider only those channel states (h1, h2) ∈
{(G × B)

⋃
(B × G)}. Let the average power expenditure on these channel states be PGB.

Suppose we relax our assumption, and give full CSI to each transmitter whenever one of the

links is in state G and the other in B. Furthermore, let us enforce only a average sum-power

constraint of PGB in these states. In such a system, only the better user transmits with an

appropriate power [127]. This fact can be utilized along with (31) and (32) to equivalently
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write the maximum throughput as

J∗ = max
µ(B)

2

∫
B

log
(
1 + h2(P1(h,B) + P2(B, h))

)
dΨ(h)

+
µ(G)

2

∫
G

log
(
1 + h2(P1(h,G) + P2(G, h))

)
dΨ(h)

+
µ(B)

2

∫
G

(log(1 + h2P1(h,B)) + log(1 + h2P2(B, h)))dΨ(h), (33)

where the maximization is over P1(·, ·) and P2(·, ·). Furthermore, the original individual

power constraint is relaxed to an average sum-power constraint of the form,

µ(B)

∫
B

(P1(h,B) + P2(B, h))dΨ(h)+

µ(G)

∫
G

(P1(h,G) + P2(G, h))dΨ(h) + µ(B)

∫
G

(P1(h,B) + P2(B, h))dΨ(h) ≤ 2P avg.

Notice that our integration now is over just one variable. Let us denote,

PB(h) =
P1(h,B) + P2(B, h)

2
and PG(h) =

P1(h,G) + P2(G, h)

2
.

By the concavity of logarithm, the maximization can be bounded in terms of the new variable

as

J∗ ≤ max
µ(B)

2

∫
B

log
(
1 + h22PB(h)

)
dΨ(h) +

µ(G)

2

∫
G

log
(
1 + h22PG(h)

)
dΨ(h)

+
µ(B)

2

∫
G

2 log(1 + h2PB(h))dΨ(h). (34)

The power constraint, in the new notation, is

µ(B)

∫
B

2PB(h)dΨ(h) + µ(G)

∫
G

2PG(h)dΨ(h) + µ(B)

∫
G

2PB(h)dΨ(h) ≤ 2P avg. (35)

Let the RHS of (34) be denoted as J∗∗. Further simplification is possible by treating the

variable h as one corresponding to a single-user channel with appropriate distribution and

an average power of 2P avg.

Lemma 15. For 2 identical users with individual cdf Ψ(·), the maximal throughput with

partial CSI is C1(Φ, 2P avg), where

dΦ(h) =

{
dΨ(h)µ(B) if h ∈ B
dΨ(h)(1 + µ(B)) if h ∈ G

(36)

Proof. First we show that

C1(Φ, 2P avg) ≥ J∗∗.
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For the single user channel Φ(h), consider two power allocation schemes P̂ and P̃ such that

P̂ (h) =

{
2PB(h), h ∈ B
2PG(h), h ∈ G

(37)

and

P̃ (h) =

{
2PB(h), h ∈ B
PB(h), h ∈ G

. (38)

If we use P̂ for a fraction µ(G)
1+µ(B) of the times over Φ(h), and P̃ for the remaining fraction,

the throughput is

µ(B)

2

∫
B

log(1 + h2PB(h))dΨ(h) +
1 + µ(B)

2

µ(G)

1 + µ(B)

∫
G

log(1 + h22PG(h))dΨ(h)

+
1 + µ(B)

2

2µ(B)

1 + µ(B)

∫
G

log(1 + h2PB(h))dΨ(h), (39)

which is indeed J∗∗. Notice that an average power constraint of 2P avg is maintained under

this allocation. Let us now show that C1(Φ, 2P avg) is in fact achievable for our MAC with

partial CSI model. Let P ′(h) be the optimal single-user power allocation for the channel

Φ(h). Consider the following power allocation in (33).

P1(h,G) = P2(h,G) = 0 , ∀h ∈ B ; P1(h,B) = P2(B, h) = P ′(h) , ∀h ∈ G

P1(h,G) = P2(h,G) =
P ′(h)

2
, ∀h ∈ G ; P1(h,B) = P2(B, h) =

P ′(h)

2
, ∀h ∈ B.

The users will choose the midpoint rates whenever both users are either in B or in G. In

other cases, only the better user is active. Clearly the power constraints are met and the

throughput is indeed C1(Φ, 2P avg).

For L > 2 users, if there are K ≥ 1 links in G, only those links with hk ∈ G will transmit

at their respective K− user midpoint rates. On the other hand, if no links are in G, all

L users transmit at their respective L−user midpoint rates. The power allocation can be

effectively determined by single user water-filling using the cdf Φ(h) given in Theorem 12.
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Chapter 3

Two-Receiver Broadcast Channel

with Confidential Messages and

Secret Keys

3.1 Motivation

We consider the problem of transmitting confidential messages over a two receiver broad-

cast channel. Two private messages are to be communicated, one to each of the two receivers.

Each message is to be kept secret from the unintended receiver. Secret keys are available at

fixed rates between each receiver and the transmitter. Various regimes of the key rates are

described and achievable schemes are presented for each. Our schemes involve double random

binning, key-dependent codebooks, and a technique called sectioning. Interestingly, double

encryption on time-sharing sequences enhances the achievable region in certain regimes. The

model subsumes several other models in the literature.

3.2 Introduction

We study a discrete-memoryless broadcast channel (DM-BC) with two receivers. The

transmitter needs to send separate messages to each receiver, and the message intended for

each receiver is to be kept secret from the other. In addition, each transmitter-receiver pair

has a (private) secret key available at a fixed rate. These can assist in achieving secrecy.

We present an inner bound to the capacity region for this problem, and also provide an

outer bound. Security of the transmitted message is of prime importance in broadcast

networks. Even if no external eavesdropper is present, it is sometimes necessary to secure

the messages of the receivers against each other. One example of this is the model studied

by Liu, Maric, Spasojevic, Yates [65], where secrecy-rate regions were obtained using double-

random binning. Xu, Cao, Chen [140] extended this model by requiring the transmission
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of a common message, and obtained an achievable rate-equivocation region. To the best

of our knowledge, Yamamoto [141] was the first to develop a coherent scheme that unified

channel coding techniques and the use of secret keys to increase secrecy/equivocation rates

for a (degraded/less-noisy) DM-BC. More recently, Kang and Liu [67] extended the result of

[141] to a general BC – they introduced the crucial notion of key-dependent codebooks. In

both [141] and [67], the legitimate information flow is point-to-point, and the eavesdropper

is external. The scheme in [67] also employed, in some regimes, encoding encrypted data

inside a sequence decoded by both the eavesdropper as well as the legitimate user. In [65],

two legitimate information flows are present, and both receivers also eavesdrop on the others’

message. The broadcast model in this chapter is similar to [65], however, the presence of

secret keys introduces a degree of freedom that changes the dynamics significantly. In order

to achieve (weak) secrecy, the achievable scheme of [65] incurs two separate rate penalties on

each individual data stream due to double random binning. We show that the availability

of secret keys can be used to progressively dispense with this double penalty. We develop a

unified scheme naturally integrating double-random binning [65], key-dependent codebooks

[67], and sectioning Ardestanizadeh, Franceschetti, Javidi, Kim [142]. In the extreme cases

where there are no secret keys or there is only one legitimate receiver, the region respectively

simplifies to the regions of [65] and [67], which can be seen as special cases of our model.

As already noted in [67], surprisingly, it is often beneficial to encrypt information into a

common sequence, which is decoded by both the receivers. Though the sequence is commonly

received, encryption ensures secrecy. Our method of encrypting to a common sequence

differs significantly from the scheme of [67, Section IV, Case 2]. We show that a simple,

but appropriate, one-time pad (OTP) idea is enough to encrypt the data contained in the

common sequence, thereby also simplifying the coding scheme of [67]. In other relevant

work, Yin, Pang, Xue, Zhou [143] and Dai, Vinck, Luo, Zhuang [144] considered BCs with

common and confidential messages with feedback used to generate secret keys. Schaefer,

Khisti, Boche [145] and Schaefer and Khisti [146] respectively study two models with two

legitimate receivers and an external eavesdropper, and a secret key shared between each

transmitter and legitimate receiver pair. However, there is no confidentiality requirement

between the legitimate receivers. The chapter is organized as follows. In Section 3.3, the

model is described. In Section 3.4, the main theorem and various cases are enumerated.

Section 3.5 details the achievable schemes. In Section 3.6, we present an outer bound.

3.3 The Model

We assume a two-receiver discrete memoryless BC with two confidential messages and

two secret keys. The finite sets X , Y1, Y2 represent the channel’s input and the two output
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Figure 3.1: Two Receiver Broadcast Channel with Two Confidential Messages and Two

Secret Keys

alphabets respectively. The channel is described by the conditional probability distribu-

tion PY1,Y2|X(y1, y2|x), where RVs X ∈ X , Y1 ∈ Y1, Y2 ∈ Y2. In addition, we assume the

availability of secret keys, denoted by RVs K1 ∈ K1 and K2 ∈ K2, between each respective

transmitter-receiver pair 1 and 2 unknown to the other receiver, at rates Rk1 and Rk2 respec-

tively. The transmitter intends to send an independent message Wt ∈ {1, 2 . . . , 2nRt} , Wt

to the respective receiver t ∈ {1, 2} in n channel uses while ensuring information theoretic

secrecy, defined below. The channel is memoryless and without feedback i.e. ∀x ∈ X n, yt ∈
Ynt , t = 1, 2

P (y1,y2|x) =
n∏
i=1

PY1,Y2|X(y1i, y2i|xi)

A stochastic encoder is specified by a matrix of conditional probabilities f(x|w1, k1, w2, k2), ∀wt ∈
Wt, kt ∈ Kt, and ∑

x∈Xn
f(x|w1, k1, w2, k2) = 1

f(x|w1, k1, w2, k2) is the probability that the quadruple of messages and keys (w1, k1, w2, k2)

are encoded as the channel input x. The decoding function at the receiver t = 1, 2 is a map-

ping φt : Kt×Ynt →Wt. A (2nR1 , 2nR2 , 2nRk1 , 2nRk2 , n, P
(n)
e ) code for the broadcast channel

consists of the encoding function f , decoding functions φ1, φ2, and the error probability

defined as

P (n)
e , max{P (n)

e,1 , P
(n)
e,2 },

where for t = 1, 2,

P
(n)
e,t =

∑
w1,w2,k1,k2

P [φt(Kt,Yt) 6= wt|(w1, w2, k1, k2)]

2nR1 × 2nR2 × 2nRk1 × 2nRk2
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A rate pair (R1, R2) is said to be achievable for the broadcast channel with confiden-

tial messages and two secret keys at rates (Rk1 , Rk2) if, for any ε0 > 0, there exists a

(2nR1 , 2nR2 , 2nRk1 , 2nRk2 , n, P
(n)
e ) code which satisfies both

• reliability requirement: P
(n)
e ≤ ε0

• secrecy constraint:nRt −H(Wt|Yt,Kt) ≤ nε0, t = 1, 2.

This definition corresponds to the so-called weak secrecy-key rate [65]. We use the notation

t , {1, 2} \ {t}. We define a class πBC of distributions P (u, v1, v2, x, y1, y2) that factor as

P (u)P (v1, v2|u)P (x|v1, v2)P (y1, y2|x).

3.4 Inner Bound

The main result is presented below.

Theorem 16. Let RBC(πBC) denote the union of all (R1, R2) ∈ R2
+ satisfying

R1 ≤ I(V1;Y1|U) + min{Rk1 − I(V1;Y2|V2, U)− I(V1;V2|U), I(U ;Y1)}

R2 ≤ I(V2;Y2|U) + min{Rk2 − I(V2;Y1|V1, U)− I(V2;V1|U), I(U ;Y2}

R1 +R2 ≤ I(V1;Y1|U) + I(V2;Y2|U)− I(V1;V2|U) + min{I(U ;Y1), I(U ;Y2)}. (3.1)

where the union is over all distributions P (u, v1, v2, x, y1, y2) in πBC . Every rate

pair (R1, R2) ∈ RBC(πBC) is achievable.

The key rates determine the achievable scheme. We enumerate eight different

regimes and present their achievable schemes in Section IV.

• Case 1:

Rk1 ≤ I(V1;Y2|V2, U); Rk2 ≤ I(V2;Y1|V1, U).

• Case 2:

Rk2 ≤ I(V2;Y1|V1, U)

I(V1;Y2|V2, U) < Rk1 ≤ I(V1;Y2|V2, U) + I(V1;V2|U).

• Case 3: This is identical to Case 2 with the receivers’ roles reversed.

• Case 4:

I(V1;Y2|V2, U) < Rk1 ≤ I(V1;Y2|V2, U) + I(V1;V2|U)

I(V2;Y1|V1, U) < Rk2 ≤ I(V2;Y1|V1, U) + I(V2;V1|U).
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• Case 5:

Rk1 > I(V1;Y2|V2, U) + I(V1;V2|U)

I(V2;Y1|V1, U) < Rk2 ≤ I(V2;Y1|V1, U) + I(V2;V1|U).

• Case 6: This is identical to Case 5 with the receivers’ roles reversed.

• Case 7:

Rk1 > I(V1;Y2|V2, U) + I(V1;V2|U)

Rk2 > I(V2;Y1|V1, U) + I(V2;V1|U).

• Case 8: The remaining cases (where key rate mismatch is large) and

5− 7 have achievable schemes etc. similar to Case 4.

3.5 Achievability Schemes

For ease of exposition, we will distinguish between the terms code and codebook. Also,

R† , I(V1;V2|U) + ε′1 where ε′1 > 0 is a small positive constant.

3.5.1 Case 1:

The proposed achievable region becomes

R1 ≤ I(V1;Y1|U)− I(V1;V2|U)− I(V1;Y2|V2, U) +Rk1

R2 ≤ I(V2;Y2|U)− I(V2;V1|U)− I(V2;Y1|V1, U) +Rk2

Our achievability scheme melds the techniques of double random binning [65] and code con-

sisting of multiple key-dependent codebooks [67, Section IV, Case 1]. Double binning, in turn,

combines Gelfand-Pinsker binning and random binning (to satisfy mutual covering and to

confuse the other receiver to maintain perfect secrecy). The employed coding structure is

shown below. A joint encoder generates two equivocation codewords v1 and v2, one for each

message-key pair (W1,K1) and (W2,K2). The pair (v1,v2) is stochastically mapped into x.

The details follow.

3.5.1.1 Code Construction

Fix P (u), P (v1|u) and P (v2|u) as well as P (x|v1, v2) and define

R′1 , I(V1;Y2|V2, U)− ε′1 −Rk1
R′2 , I(V2;Y1|V1, U)− ε′1 −Rk2
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∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

2nRk1codebooks

2nR1

(bins)

2nR
′
1sub-bins

Figure 3.2: Case 1: Code for receiver 1

Randomly generate a sequence u ∼ P (u) =
∏n
i=1 P (ui). For t = 1, 2, generate code Ct with

2(Rkt+Rt+R
′
t+R

†) (conditionally) independent sequences vt each with probability P (vt|u) =∏n
i=1 P (vt,i|ui) and label them vt(kt, wt, st, rt) for kt ∈ {1, . . . , 2nRkt}, wt ∈ {1, . . . , 2nRt},

st ∈ {1, . . . , 2nR
′
t}, rt ∈ {1, . . . , 2nR

†}. W.l.o.g, 2nRkt , 2nRt , 2nR
′
t , 2nR

†
are considered to be

integers.

The code C1 for receiver 1 consists of 2nRk1 codebooks [67, Section IV, Case 1]. Each

codebook of C1 is doubly binned, as in [65], with 2nR1 bins, each containing

2nR
′
1 = 2n[I(V1;Y2|V2,U)−Rk1−ε

′
1] sub-bins. Receiver 2’s code C2 is similar. In all codebooks,

each sub-bin contains 2nR
†

= 2n[I(V1;V2|U)+ε′1] codewords. Furthermore, each codebook in

code Ct contains 2n[I(Vt;Yt|U)−ε′1] codewords. Please see Figure 3.2. The sequence u and code

C = {C1, C2} is commmunicated to all parties.

3.5.1.2 Encoding

Given key pair (k1, k2) ∈ K1×K2, the encoder chooses the appropriate codebooks C1(k1)

and C2(k2) in the respective codes C1 and C2. To send (w1, w2) ∈ W1 ×W2, the transmit-

ter randomly chooses a sub-bin Ct(kt, wt, st) from the bin Ct(kt, wt), for t = 1, 2. Next, a

pair (r1, r2) is chosen such that (v1(k1, w1, s1, r1),v2(k2, w2, s2, r2)) ∈ A(n)
ε (V1, V2|u), where

A
(n)
ε (V1, V2|u) indicates the set of jointly typical sequences (v1,v2,u) for the given realiza-

tion u, according to PV1,V2|U . By mutual covering [27, Chapter 8], such a pair exists with

high probability. If more than one jointly typical pair exists, one is randomly chosen. We

now employ the stochastic encoder which generates x ∼
∏n
i=1 p(xi|v1i, v2i) for transmission.

Note that the x codewords are not part of the code C. They are generated at the time of

transmission after choosing an appropriate (v1,v2) pair.
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3.5.1.3 Decoding

The decoder t has access to the shared key kt and so the decoding at decoder t for t = 1, 2

has to be done from among 2n(Rt+R′t+R
†) ≈ 2n[I(Vt;Yt|U)] sequences vt in the codebook Ct(kt),

see Fig 3.2. Decoder t chooses wt such that (vt(kt, wt, st, rt),yt,u) ∈ A(n)
ε (Vt, Yt, U) for some

(st, rt), if a unique such wt exists, else an error is declared.

3.5.1.4 Error Probability Analysis

While the codewords here are quadruply indexed to reflect the codebook index as shown

in Fig 3.2, the rest of the details are standard. The error probability analysis similar to [65],

with the main difference that the the codewords here are quadruply indexed to reflect the

codebook index.

W.l.o.g, assume that the transmitter sends the message pair (w1 = 1, w2 = 1) and

(s1 = 1, s2 = 1) and in addition, the secret keys are (k1 = 1, k2 = 1). Consider the

(encoding) error event T that the encoder cannot find an appropriately jointly typical pair,

i.e. ∀r1, r2

T , {(V1(1, 1, 1, r1),V2(1, 1, 1, r2)) /∈ A(n)
ε (V1, V2|u)}.

Since R† > I(V1;V2|U), by the mutual covering lemma, [27, Chapter 8], P{T} ≤ δ where

δ > 0 is small enough for large n. Let us assume that (V1(1, 1, 1, 1),V2(1, 1, 1, 1)) is chosen

for tranmission, and define the event

T c , {(V1(1, 1, 1, 1),V2(1, 1, 1, 1)) ∈ A(n)
ε (V1, V2|u)}.

The decoding error probability at receiver 1 is then bounded as

P
(n)
e,1 ≤ P{T }+ (1− P{T })[P{

⋂
s1,r1

Ec1(1, 1, s1, r1)|T c}+
∑
w1 6=1

∑
s1,r1

P{E1(1, w1, s1, r1)|T c}]

(3.2)

≤ P{T }+ P{Ec1(1, 1, 1, 1)|T c}+
∑
w1 6=1

∑
s1,r1

P{E1(1, w1, s1, r1)|T c} (3.3)

where

Et(1, wt, st, rt) = {(vt(1, wt, st, rt),yt) ∈ A(n)
ε (Vt, Yt|u)}.

Since P{E1(1, w1, s1, r1)|T c} ≤ 2−n[I(V1;Y1|U)−ε], by using joint typicality lemma [27], the

probability of error can be bounded as

P
(n)
e,1 ≤ δ + ε+ 2nR12nR

′
12nR

†
2−n[I(V1;Y1|U)−ε]. (3.4)

Thus, if R1 + R′1 + R† < I(V1;Y1|U) then, P
(n)
e,1 < ε0 for sufficiently large n. Similar

calculations for receiver 2 shows that if R2 +R′2 +R† < I(V2;Y2|U), then P
(n)
e,2 → 0.
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3.5.1.5 Equivocation calculation for Case 1

We prove that secrecy holds. It is worth mentioning that the calculations below have

subtle differences from a similar calculation in [67], improving the robustness. We first

express the equivocation as

H(W1|Y2,K2) =
∑
k2∈K2

P (K2 = k2)H(W1|Y2, k2) (3.5)

We will now show that ∀K2 = k2,

H(W1|Y2, k2) ≥ nR1 − nε̃, (3.6)

implying secrecy of Receiver 1’s messages.

H(W1|Y2, k2) (3.7)

≥ H(W1|Y2, k2,V2,U)

= H(W1,Y2|k2,V2,U)−H(Y2|k2,V2,U)

= H(W1,V1,Y2|k2,V2,U)−H(V1|k2,Y2,V2,U,W1)

−H(Y2|k2,V2,U)

= H(W1,V1|k2,V2,U) +H(Y2|k2,V1,V2,U,W1)

−H(Y2|k2,V2,U)−H(V1|k2,Y2,V2,U,W1)

Based on functional dependence graphs, we can show that ∀K2 = k2,

W1 → (V1,V2,U)→ Y2 forms a Markov Chain. Thus the second term becomes

H(Y2|k2,V1,V2,U,W1) = H(Y2|k2,V1,V2,U)

Making the replacement, we now have

H(W1|Y2, k2)

≥ H(W1,V1|k2,V2,U) +H(Y2|k2,V1,V2,U)

−H(Y2|k2,V2,U)−H(V1|k2,Y2,V2,U,W1)

= H(W1,V1|k2,V2,U)− I(V1; Y2|k2,V2,U)−H(V1|k2,Y2,V2,U,W1)

. (3.8)

By a calculation analogous to [65, Lemma 2], we can show that

H(V1|k2,Y2,V2,U,W1) ≤ nε′3, (3.9)

where ε′3 is small for sufficiently large n. This can be interpreted to mean that there is

no uncertainty left in V1 given (k2,Y2,V2,U,W1). If there were, the randomness can be

included in W1 to improve the rate R1.
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To compute H(V1|k2,Y2,V2,U,W1), we proceed as follows. Suppose W1 = w1, Re-

ceiver 2 (acting as the eavesdropper) tries to decode v1(k1, w1, s1, r1) based on its received

sequence y2 (of course it already has knowledge of its own key k2). Since Decoder 2 knows

w1, let λk2(w1) denote the average probability of error of decoding the indices (k1, s1, r1) at

Receiver 2 (given that its key is k2). Joint typicality enables us to show that:

Lemma 17. λk2(w1) ≤ ε′0 for sufficiently large n.

Proof. For a given time-sharing sequence u, let A
(n)
ε (PV1,V2,Y2|U ) denote the set of jointly

typical sequences v1 and (v2,y2) with respect to P (v1, v2, y2|u). For a given W1 = w1,

Decoder 2 chooses (k1, s1, r1) with

(v1,v2,y2) ∈ A(n)
ε (PV1,V2,Y2|U ),

if such a pair (k1, s1, r1) exists and is unique; else an error is declared.

We define the event

Ê(k1, s1, r1) = (v1(k1, w1, s1, r1),v2,y2) ∈ A(n)
ε (PV1,V2,Y2|U )

W.l.o.g, we assume that v1(k1 = 1, w1, s1 = 1, r1 = 1) was chosen, and define the event

Bw1 = {v1(1, w1, 1, 1) chosen}

Hence

λk2(w1) ≤ P{Êc(k1 = 1, s1 = 1, r1 = 1)|Bw1}+
∑

(k1,s1,r1)6=(1,1,1)

P{Ê((k1, s1, r1))|Bw1}

(3.10)

where Êc(k1 = 1, s1 = 1, r1 = 1) denotes the event

{(v1(1, w1, 1, 1),v2,y2) /∈ A(n)
ε (PV1,V2,Y2|U )} (3.11)

By the joint AEP, P{Êc(k1 = 1, s1 = 1, r1 = 1)} ≤ ε and for (k1, s1, r1) 6= (1, 1, 1),

P{Ê((k1, s1, r1))|Bw1} ≤ 2−n[I(V1;V2,Y2|U)−ε] (3.12)

We upper bound λk2(w1) as

ε+ 2nRk12nR
′
12nR

†
2−n[I(V1;V2,Y2|U)−ε] (3.13)

Now since Rk1 +R′1 +R† = I(V1;V2, Y2|U), we finally have λk2(w1) ≤ ε′0 where ε′0 small for

n sufficiently large.
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By Fano’s inequality

1

n
H(V1|k2,Y2,V2,U,W1 = w1) ≤ 1

n
[1 + λk2(w1) log[2nRk12nR

′
12nR

†
]]
4
= ε′3 (3.14)

We conclude that

1

n
H(V1|k2,Y2,V2,U,W1) =

1

n

∑
w1∈W1

P (W1 = w1)H(V1|k2,Y2,V2,U,W1 = w1) ≤ ε′3

(3.15)

The above is an application of the technique from [67] whereby the key index (Kt, t =

1, 2) introduces an extra degree of randomness which increases equivocation only at the

receiver for which the message is not intended. The secret keys ensure that the randomness

requirement (the RV that chooses the subbin) for the transmitter-receiver t pair is reduced

by the respective key rate Rkt from I(Vt;Yt|Vt, U) to I(Vt;Yt|Vt, U) − Rkt for t = 1, 2. We

have shown that

H(V1|k2,Y2,V2,U,W1) ≤ nε′3 (3.16)

Substituting the above inequality in (3.8), we get

H(W1|Y2, k2) ≥ H(W1,V1|k2,V2,U)− I(V1; Y2|k2,V2,U)− nε′3. (3.17)

Now, in the first term on the RHS above, the equivocation of (W1,V1) is the logarithm of

the total number of cells in the code C1, which is 2n[I(V1;Y1|U)+Rk1 ]. Next, we note that in

the random codebook C, our coding scheme only requires that we find a codeword V2 that

is jointly typical with V1, thus the choice of key k2 does not play a role. Conditioning by V2

causes a reduction by a factor of 2I(V1;V2|U), to give 2n[I(V1;Y1|U)+Rk1 ]2−I(V1;V2|U). Taking

logs, we get n[I(V1;Y1|U) +Rk1 ]− I(V1; V2|U). Thus we have

H(W1|Y2, k2) ≥ n[I(V1;Y1|U) +Rk1 ]− I(V1; V2|U)− I(V1; Y2|k2,V2,U)− nε′3 (3.18)

Now, by a calculation that essentially upper bounds the mutual information between code-

words in codebooks (the basic idea comes from [65]), we can obtain the following inequalities:

I(V1; V2|U) ≤ nI(V1;V2|U) + nε′2 (3.19)

and

I(V1; Y2|k2,V2,U) ≤ nI(V1;Y2|V2, U) + nε′4 (3.20)

Substituting (3.19) and (3.20) in (3.18), we get

H(W1|Y2, k2) ≥ n[I(V1;Y1|U) +Rk1 ]− nI(V1;V2)− nI(V1;Y2|V2, U)− n(ε′2 + ε′3 + ε′4)

= nR1 − n(ε′2 + ε′3 + ε′4) (3.21)

which gives us (3.6), and thence (3.5), as desired. The equivocation calculation for receiver

2 in this case is similar.
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3.5.2 Case 2:

The key idea for this case is to employ the sectioning technique of [142]. We have to

show that the rate-pairs

R1 ≤ I(V1;Y1|U)− I(V1;V2|U)− I(V1;Y2|V2, U) +Rk1

R2 ≤ I(V2;Y2|U)− I(V2;V1|U)− I(V2;Y1|V1, U) +Rk2 ,

are achievable. We split the message W1 , (W̃1,W
otp
1 ) and define

R′k1 , I(V1;Y2|V2, U)− ε′1; Rotpk1 , Rk1 −R′k1
R̃1 , I(V1;Y1|U)− I(V1;V2|U)− ε′1

Total secure achievable rate for Receiver 1 in this regime consists of W̃1 at R̃1 by channel

coding techniques, and W otp
1 at rate Rotp1 = Rotpk1 .

3.5.2.1 Code Construction

Fix P (u), P (v1|u), P (v2|u),P (x|v1, v2) and (re-)define

R′1 , I(V1;Y2|V2, U)− ε′1 −R′k1 = 0

(R′2 as in Case 1). Randomly generate u ∼
∏n
i=1 P (ui). The code C1 for receiver 1 consists

of 2
nR′k1 codebooks. A codebook contains 2nR̃1 bins, each containing 2nR

†
= 2n[I(V1;V2|U)+ε′1]

codewords v1 ∼
∏n
i=1 PV1|U (v1i|ui). The notion of sub-bins in Fig 3.2 are replaced by sections

for user 1 in this case. Each bin is divided evenly into 2
nRotpk1 sections. If w1 = (w̃1, w

otp
1 ), w̃1

is encoded as the bin index. The pair (wotp1 , kotp1 ) picks the section wotp1 ⊕ kotp1 , as in [142],

securing wotp1 by an OTP.

The code C2 of receiver 2 is identical to that in Case 1. The code-construction for re-

ceiver 1 is summarized. Generate a code with 2
(R′k1

+R̃1+R†)
(conditionally) independent se-

quences v1 each with probability P (v1|u) =
∏n
i=1 P (v1,i|ui) and label them v1(k′1, w̃1, r1) for

k′1 ∈ {1, . . . , 2
nR′k1}, w̃1 ∈ {1, . . . , 2nR̃1}, r1 ∈ {1, . . . , 2nR

†}. W.l.o.g, 2
nR′k1 , 2

nRotpk1 ,2nRk2 ,2nR̃1 ,

2nR2 , 2nR
′
2 , 2nR

†
are considered to be integers. The sequence u and code C = {C1, C2} is

commmunicated to all parties.

3.5.2.2 Encoding

Given key pair (k1, k2) ∈ K1 × K2, where k1 = (k′1, k
otp
1 ), the encoder chooses the code-

books C1(k′1) and C2(k2). To send (w1, w2) ∈ W1 ×W2, where w1 = (w̃1, w
otp
1 ), the encoder

chooses the section wotp1 ⊕ kotp1 from the bin C1(k′1, w̃1). It randomly chooses a sub-bin

C2(k2, w2, s2) from C2(k2, w2). Since this contains 2n[I(V1;V2|U)+ε′1] codewords, the number of
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available pairs (v1,v2) is ≥ 2n[I(V1;V2|U)+ε′1], so that, by mutual covering [27, Chapter 8],

with very high probability, jointly typical pairs exist. One is chosen randomly. Generate

x ∼
∏n
i=1 PX|V1,V2(xi|v1i, v2i) (stochastic encoding) and transmit.

3.5.2.3 Decoding

Receiver 1 knows the codebook C1(k′1), and so decodes v1 from among ≈ 2n[I(V1;Y1|U)]

possibilities by joint typicality with y1 and u. Clearly v1, and so w1 = (w̃1, w
otp
1 ) can be

decoded with low error probability. Receiver 2 proceeds as in Case 1.

3.5.2.4 Error Probability Analysis

For receiver 2, the analysis is the same as in Case 1. For receiver 1, analysis similar to

Case 1, but the sub-bin index s1 is not used.

3.5.2.5 Equivocation for Case 2

With the replacements W1 ← W̃1 and R1 ← R̃1, the calculation is similar to Case 1.

The message portion wotp1 is secured by OTP, and is perfectly, and hence weakly secure.

Replacing W1 ← W̃1 in the expression (3.7), and by similar steps as in (3.8) – (3.17),

along with Markov chain W̃1 → (V1,V2,U) → Y2 which holds for all K2 = k2, we get in

place of (3.17),

H(W̃1|Y2, k2) ≥ H(W̃1,V1|V2,U, k2)− I(V1; Y2|V2,U, k2)− nε′3 (3.22)

Expansion of the first term gives

H(W̃1,V1|V2,U, k2) = H(W̃1|V2,U, k2) +H(V1|V2,U, W̃1, k2).

Notice that

H(W̃1|V2,U, k2) = nR̃1. (3.23)

To compute the second term, we note that the total number of entries in the code C1 is

2
n[I(V1;Y1|U)+R′k1

]
. Conditioning by the message W̃1 causes a reduction of possible transmitted

V1 sequences by a factor of 2nR̃1 . Furthermore, conditioning by V2 causes a further reduction

by a factor of 2I(V1;V2|U). Note that, as in Case 1, key K2’s value plays no role. So the

remaining number of possible V1 sequences are

Ñ1 =
2
n[I(V1;Y1|U)+R′k1

]
2−I(V1;V2|U)

2n[I(V1;Y1|U)−I(V1;V2|U)−ε′1]

=
2n[I(V1;Y1|U)+I(V1;Y2|V2,U)−ε′1]2−I(V1;V2|U)

2n[I(V1;Y1|U)−I(V1;V2|U)−ε′1]
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Thus

H(V1|V2,U, W̃1, k2) = log Ñ1

= nI(V1;Y2|U, V2) + nI(V1;V2|U)− I(V1; V2|U)

≥ n
(
I(V1;Y2|U, V2)− ε′2

)
(3.24)

where the last inequality follows by [65, Lemma 3]. From (3.22) – (3.24), it follows that

H(W̃1|Y2,K2) =
∑
k2∈K2

P (K2 = k2)H(W̃1|Y2, k2)

≥ nR̃1 + nI(V1;Y2|U, V2)− I(V1; Y2|V2,U, k2)− n(ε′2 + ε′3)

≥ nR̃1 − nε

where the last inequality again follows from [65, Lemma 3]. The other portion of the message

of receiver 1, namely, wotp1 is secured by an OTP, and so is perfectly, and hence weakly secure.

Equivocation calculation for receiver 2 in this case is exactly the same as in Case 1.

3.5.3 Case 3:

The achievable region similar to Case 2 with roles of the receivers reversed.

3.5.4 Case 4:

The key idea for this case is double-encryption on time-sharing sequences. The proposed

achievable region becomes

R1 ≤ I(V1;Y1|U)− I(V1;V2|U)− I(V1;Y2|V2, U) +Rk1

R2 ≤ I(V2;Y2|U)− I(V2;V1|U)− I(V2;Y1|V1, U) +Rk2

R1 +R2 ≤ I(V1;Y1|U) + I(V2;Y2|U)− I(V1;V2|U)

+ min{I(U ;Y1), I(U ;Y2)} (3.25)

3.5.4.1 Overview

We will split the key into three portions. The portion Kut (at rate Rukt) is used to perform

double-encryption on the time-sharing sequence u, the portion K′t (at rate R′kt) is used to

generate key-dependent codebooks, and the remaining portion Kotpt (at rate Rotpkt ) is used

for sectioning the bins as in cases 2 and 3. The message is transmitted in three portions,

portions W u
t (at rate Rut , carried by u) and W otp

t (at rate Rotpt ) are protected by OTP using

Kut and Kotpt respectively, necessitating Rut ≤ Rukt and Rotpt ≤ Rotpkt . The portion R̃t (carried

by binned sequences vt) is transmitted securely by pure channel coding technique. Thus the

total secure rate is Rt = Rut + R̃t +Rotpt .
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3.5.4.2 Code Construction

The following holds for t = 1, 2, as also equations (3.26) to (3.30). Split

Wt ,
(
W̃t,W

otp
t ,W u

t

)
and Kt ,

(
K′t,K

otp
t ,Kut

)
. Rt and Rkt are split as

Rt =
(
R̃t, R

otp
t , Rut

)
s.t Rt = R̃t +Rotpt +Rut (3.26)

Rkt =
(
R′kt , R

otp
kt
, Rukt

)
s.t Rkt = R′kt +Rotpkt +Rukt . (3.27)

Let us first choose

R′kt = I(Vt;Yt|Vt, U)− ε′1 (3.28)

Now a pair (Rotp1 , Rotp2 ) is chosen such that

0 ≤ Rotp1 ≤ Rk1 −R′k1 ; 0 ≤ Rotp2 ≤ Rk2 −R′k2
0 ≤ Rotp1 +Rotp2 ≤ I(V1;V2|U) + ε′1. (3.29)

Let us set Rotpkt = Rotpt . Let Rut and Rukt respectively denote the remaining parts of the

message and key rates, which can be empty depending on the choice in (3.29). Gen-

erate 2n(Ru1+Ru2 ) sequences u(l1, l2), for t = 1, 2, lt = 0, 1, 2, . . . , 2nR
u
t − 1. For each u,

generate a satellite code C(u) = {C1(u), C2(u)}. Ct(u) has 2
nR′kt codebooks, with vt ∼∏n

i=1 PVt|U (vti|ui). A codebook contains 2nR̃tt codewords and is divided into 2nR̃t bins, each

with 2nR
†

codewords, giving:

R̃t = R̃tt −R† (3.30)

Bins are divided evenly into 2nR
otp
t sections. Every such pair – one each from C1 and C2 –

contains ≥ 2n[I(V1;V2|U)+ε′1] (v1,v2) pairs to satisfy mutual covering [27, Chapter 8], and so:

[R† −Rotp1 ] + [R† −Rotp2 ] ≥ I(V1;V2|U) + ε′1,

which gives (3.29) on simplification.

3.5.4.3 Encoding

(wu1 , w
u
2 ) is protected by OTP by picking u(wu1⊕ku1 , wu2⊕ku2 ). It searches inside the pair of

sections Ct(u(wu1⊕ku1 , wu2⊕ku2 ), k′t, w̃t, w
otp
t ⊕k

otp
t ) for t = 1, 2 for a (v1,v2) pair that is jointly

typical ∈ A(n)
ε′1

(V1, V2|u(wu1 ⊕ ku1 , wu2 ⊕ ku2 )). By construction, the number of (v1,v2) pairs ≥
2n[I(V1;V2|U)+ε′1], so a jointly typical pair exists with very high probability, by mutual covering,

[27, Chapter 8]. The encoder generates and transmits x ∼
∏n
i=1 PX|V1,V2(xi|v1i, v2i).
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3.5.4.4 Decoding

Receiver t uses simultaneous decoding of (u,vt) by joint typicality with yt. We concisely

describe the error events and their respective rate constraints. For a simpler but similar

calculation, see [27, Chapter 8, Theorem 8.4, also Exercise 8.10].

Receiver t incorrectly decodes both u and vt, constraining:

Ru1 +Ru2 + R̃tt < I(U, Vt;Yt) (3.31)

Receiver t correctly decodes u but incorrectly decodes vt. Since she knows the codebook,

this gives the rate constraint:

R̃tt ≤ I(Vt;Yt|U) (3.32)

By construction, mutual covering (R̃11 − R̃1) + (R̃22 − R̃2) > I(V1;V2|U) + ε′1 is satisfied for

any arbitrary pair of sections inside the respective bins, hence by the bins themselves.

(3.30), (3.31), the definition of R†, and Ru
t
≥ 0, give:

Rut + R̃t < I(U, Vt;Yt)− I(V1;V2|U) (3.33)

Adding Rotpt to both sides of (3.33) and using (3.29), we obtain:

Rt , Rut + R̃t +Rotpt < I(U ;Yt) + I(Vt;Yt|U)− I(V1;V2|U) +Rkt −R′kt (3.34)

We can choose the satellite codebook size R̃tt to be the upper bound (3.32). This choice of

R̃tt gives upper bounds via, (3.30), on R̃t and, via (3.31), on Ru1 +Ru2 :

R̃t,max = I(Vt;Yt|U)− I(V1;V2|U) (3.35)

(Ru1 +Ru2)max = min{I(U ;Y1), I(U ;Y2)} (3.36)

Since Rut +Rotpt ≤ Rkt −R′kt , we also have:

Rt , R̃t + (Rut +Rotpt ) < I(Vt;Yt|U)− I(V1;V2|U) +Rkt −R′kt (3.37)

Comparing (3.34) with (3.37), (3.37) is tighter. Substituting for R′kt gives the individual

rate constraint in (3.25). We now upper bound the total secure sum-rate:

R1 +R2 = (Ru1 +Ru2) + R̃1 + R̃2 + (Rotp1 +Rotp2 ) (3.38)

Applying (3.29), (3.35) and (3.36) to the RHS of (3.38) gives (3.25):

R1 +R2 < I(V1;Y1|U) + I(V2;Y2|U)− I(V1;V2|U) + min{I(U ;Y1), I(U ;Y2)} (3.39)
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3.5.4.5 Error Probability Analysis

The error probability analysis is standard, and there are no surprises.

3.5.4.6 Equivocation Calculation

For t = 1, 2, W otp
t ,W u

t are protected by OTPs and are secure. W̃t is protected by the

scheme developed for W̃1 of receiver 1 in Case 2.

3.5.4.7 Cases 5, 6, 7 and Other Cases

In Case 5, an individual v1 sequence can be used to encode a different message, conse-

quently rates R1 > I(V1;Y1|U) attainable and bottlenecks on the individual rate constraints

(3.34), and thence I(U, V1;Y1) become active. In Case 6, the same holds for v2. Note that

when Rk1 = Rk2 = 0, the achievable region simplifies to [65], and when R2 = 0, we get [67].

3.5.5 Generalization(s)

The following two generalizations are standard in these scenarios:

• Transmitting a common message.

• Obtaining the rate-equivocation region.

3.6 Outer Bound(s)

Theorem 18. Let RO(πBC) denote the union of all (R1, R2) satisfying

R1 ≥ 0, R2 ≥ 0

R1 ≤ min{ I(V1;Y1|U) + min{Rk1 − I(V1;Y2|U), I(U ;Y1), I(U ;Y2)},

I(V1;Y1|V2, U) + min{Rk1 − I(V1;Y2|V2, U), I(U, V2;Y1), I(U, V2;Y2)}}

R2 ≤ min{ I(V2;Y2|U) + min{Rk2 − I(V2;Y1|U), I(U ;Y1), I(U ;Y2)},

I(V2;Y2|V1, U) + min{Rk2 − I(V2;Y1|V1, U), I(U, V2;Y1), I(U, V1;Y1)}}

(3.40)

over all distributions PU,V1,V2,X,Y1,Y2 in πBC and auxiliary random variables U, V1, V2 satis-

fying

U → V1 → X and U → V1 → X

For the broadcast channel with secret keys and with confidential messages, the capacity region

CBC ⊆ RO(πBC)
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Note that Rk1 = Rk2
set
= 0 simplifies to the outer bound for the broadcast channel with

mutual secrecy requirements studied by [65].

3.6.1 Outer Bound Proofs

Consider R1 in (3.40). The first term inside the outer minimization corresponds to

the receiver 2 attempting to eavesdrop without having decoded its own message, hence

no conditioning on V2. The second term inside the minimization occurs when receiver 2

attempts to decode the message of receiver 1 after decoding its own message, hence the

terms are conditioned on V2. The proof for the first term inside each outer minimization

follows closely the associated converse proof in [67]. The proof for the second term inside

each outer minimization is more involved, and uses the technique employed in the second

outer bound obtained in [65, Section IV-B], where a genie gives receiver 1 the message and

key (W2,K2), while receiver 2 attempts to evaluate the equivocation with (W2,K2) as side

information.

We will only prove the bounds for R1. The corresponding inequality for R2 follows by

symmetry.

3.6.1.1 First Bound: The other receiver attempts to eavesdrop without first

decoding its own message/codeword

Unlike in the case of achievability proofs, where we followed the techniques in [65] with

appropriate changes due to the presence of secret keys as in [67], here we primarily follow

the proof technique in [67], with modifications appropriate to our model. The modifications

play an important role in obtaining the second outer bound, as they are suggested by the

second bound obtained by [65].

We restate the following inequalities [67, equations (8) and (9)] in terms of our notation

where Y ← Y1 and Z ← Y2 Note that the inequalities in [67] are themselves taken from

Csiszár and Korner’s textbook [147, p. 314, equation (3.34)].

For ease of reference, we (re-)derive the following equality

H(Yn
1,1)−H(Yn

2,1) =
n∑
i=1

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 )−H(Y2i|Yn

1,i+1,Y
i−1
2,1 )] (3.41)
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To the LHS of (3.41), add and subtract H(Y2,1,Y
n
1,2) to get

H(Yn
1,1)−H(Yn

2,1) =

H(Yn
1,1)−H(Y2,1,Y

n
1,2) +H(Y2,1,Y

n
1,2)−H(Yn

2,1) =(
H(Y1,1|Yn

1,2) +XXXXXH(Yn
1,2)
)
−
(
H(Y2,1|Yn

1,2)) +XXXXXH(Yn
1,2)
)
+(

H(Yn
1,2|Y2,1) +���

��H(Y2,1)
)
−
(
��

���H(Y2,1) +H(Yn
2,2|Y2,1)

)
(3.42)

thus obtaining

H(Yn
1,1)−H(Yn

2,1) =(
H(Y1,1|Yn

1,2)−H(Y2,1|Yn
1,2)+

H(Yn
1,2|Y2,1)−H(Yn

2,2|Y2,1) (3.43)

Now, consider the second line of (3.43), namely

H(Yn
1,2|Y2,1)−H(Yn

2,2|Y2,1) (3.44)

Note that this resembles what we started with, namely, the LHS of (3.41) with the changes

that we have an extra conditioning on Y2,1, and Yn
1,1 ← Yn

1,2 and Yn
2,1 ← Yn

2,2. So, in

analogy with (3.43), we can write

H(Yn
1,2|Y2,1)−H(Yn

2,2|Y2,1) =(
H(Y1,2|Yn

1,3,Y2,1)−H(Y2,2|Yn
1,3,Y2,1)+

H(Yn
1,3|Y2,2,Y2,1)−H(Yn

2,3|Y2,2,Y2,1) (3.45)

As before, we expand only the second line, namely

H(Yn
1,3|Y2,2,Y2,1)−H(Yn

2,3|Y2,2,Y2,1) (3.46)

We proceed iteratively. Note that

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 )−H(Y2i|Yn

1,i+1,Y
i−1
2,1 )]

∣∣∣∣
i=1

= H(Y1,1|Yn
1,2)−H(Y2,1|Yn

1,2) (3.47)

which was the first line on the RHS of (3.43). Similarly

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 )−H(Y2i|Yn

1,i+1,Y
i−1
2,1 )]

∣∣∣∣
i=2

= H(Y1,2|Yn
1,3,Y2,1)−H(Y2,2|Yn

1,3,Y2,1) (3.48)

which was the first line on the RHS of (3.45). Iterating, we finally expand the RHS as

n∑
i=1

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 )−H(Y2i|Yn

1,i+1,Y
i−1
2,1 )]
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to obtain

H(Yn
1,1)−H(Yn

2,1) =
n∑
i=1

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 )−H(Y2i|Yn

1,i+1,Y
i−1
2,1 )] (3.49)

which is the same as (3.41), which was to be proved. We can also condition on K2 and on

(W1,K1,K2)) and derive the following equalities analogously:

H(Yn
1,1|K2)−H(Yn

2,1|K2) =
n∑
i=1

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 ,K2)−H(Y2i|Yn

1,i+1,Y
i−1
2,1 ,K2)].

and

H(Yn
1,1|W1,K1,K2)−H(Yn

2,1|W1,K1,K2) =
n∑
i=1

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 ,W1,K1,K2)−

H(Y2i|Yn
1,i+1,Y

i−1
2,1 ,W1,K1,K2)].

We define the auxiliary RVs:

Ui , (Yn
1,i+1,Y

i−1
2,1 ) (3.50)

We also define a time-sharing RV Q, which is independent of everything else, and is uniform

on the set {1, 2, 3, . . . , n}. With this definition of U and Q, we further define the following

RVs:

U , (UQ, Q), Ũ , (U,K2), V1 , (Ũ ,W1,K1)

X , XQ, Y1 , Y1Q, Y2 , Y2Q

Note that the Markov chain condition Ũ → V1 → X → (Y1, Y2) is satisfied. Using the above

equations and the definitions of the auxiliary RVs, we can show that [147, p. 314, equation

(3.34)] ∃t, tK2 , t(W1,K1,K2) ∈ R s.t.

1

n
H(Yn

1,1) = H(Y1|U) + t (3.51)

1

n
H(Yn

2,1) = H(Y2|U) + t (3.52)

1

n
H(Yn

1,1|K2) = H(Y1|U,K2) + tK2 = H(Y1|Ũ) + tK2 (3.53)

1

n
H(Yn

2,1|K2) = H(Y2|U,K2) + tK2 = H(Y2|Ũ) + tK2 (3.54)
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and also

1

n
H(Yn

1,1|W1,K1,K2) = H(Y1|V1) + t(W1,K1,K2)

= H(Y1|Ũ , V1) + t(W1,K1,K2) (3.55)

1

n
H(Yn

2,1|W1,K1,K2) = H(Y2|V1) + t(W1,K1,K2)

= H(Y2|Ũ , V1) + t(W1,K1,K2) (3.56)

where the last equality in both equations (3.74) and (3.75) above follows due to the Markov

Chain condition Ũ → V1 → Y1 and Ũ → V1 → Y2 where

0 ≤ t ≤ min{I(U ;Y1), I(U ;Y2)} (3.57)

0 ≤ tK2 ≤ min{I(Ũ ;Y1), I(Ũ ;Y2)} (3.58)

0 ≤ t(W1,K1,K2) ≤ min{I(V1;Y1), I(V1;Y2)} (3.59)

Since the code satisfies the information leakage constraint, namely

nµ ≥ I(W1; Yn
2,1|K2)

= I(W1,K1; Yn
2,1|K2)− I(K1; Yn

2,1|W1,K2)

= H(Yn
2,1|K2)−H(Yn

2,1|W1,K1,K2)

−H(K1|W1,K2) +H(K1|Yn
2,1,W1,K2)

≥ H(Yn
2,1|K2)−H(Yn

2,1|W1,K1,K2)−H(K1|W1,K2)

∵K1⊥⊥(W1,K2)
=

H(Yn
2,1|K2)−H(Yn

2,1|W1,K1,K2)−H(K1)

= H(Yn
2,1|K2)−H(Yn

2,1|W1,K1,K2)− nRk1
= n(H(Y2|Ũ) + tK2 −H(Y2|V1)− t(W1,K1,K2) −Rk1)

∵Ũ→V1→Y2=

n(H(Y2|Ũ) + tK2 −H(Y2|V1, Ũ)− t(W1,K1,K2) −Rk1)

= n(I(V1;Y2|Ũ) + tK2 − t(W1,K1,K2) −Rk1) (3.60)

Therefore

�nµ ≥�n(I(V1;Y2|Ũ) + tK2 − t(W1,K1,K2) −Rk1)

=⇒ tK2 − t(W1,K1,K2) ≤ Rk1 − I(V1;Y2|Ũ) + µ (3.61)

We also have

tK2 − t(W1,K1,K2) ≤ tK2 ≤ min{I(Ũ ;Y1), I(Ũ ;Y2)} (3.62)
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Thus, from (3.61) and (3.62), we have

tK2 − t(W1,K1,K2) ≤ min{Rk1 − I(V1;Y2|Ũ) + µ, I(Ũ ;Y1), I(Ũ ;Y2)} (3.63)

Now

|W1| = H(W1)
W1⊥⊥(K1,K2)

= H(W1|K1,K2)

= H(W1|Yn
1,1,K1,K2) + I(W1; Yn

1,1|K1,K2)

Fano
≤ I(W1; Yn

1,1|K1,K2) + nεn

≤ I(W1,K1; Yn
1,1|K2) + nεn

= H(Yn
1,1|K2)−H(Yn

1,1|W1,K1,K2) + nεn

= n
[
H(Y1|Ũ) + tK2 −H(Y1|V1)− t(W1,K1,K2) + εn

]
Ũ→V1→Y1=

n
[
H(Y1|Ũ) + tK2 −H(Y1|V1, Ũ)− t(W1,K1,K2) + εn

]
= n

[
I(Y1;V1|Ũ) + (tK2 − t(W1,K1,K2)) + εn

]
≤ n

[
I(Y1;V1|Ũ) + min{Rk1 − I(V1;Y2|Ũ) + µ, I(Ũ ;Y1), I(Ũ ;Y2)}+ εn

]
(3.64)

Together with H(W1) = nR1, equation (3.64) implies that

R1 ≤ I(Y1;V1|Ũ) + εn + min
{
Rk1 − I(V1;Y2|Ũ) + µ, I(Ũ ;Y1), I(Ũ ;Y2)

}
(3.65)

which gives (as µ and εn can be made arbitrarily small)

R1 ≤ I(Y1;V1|Ũ) + min{Rk1 − I(V1;Y2|Ũ), I(Ũ ;Y1), I(Ũ ;Y2)} (3.66)

which is the first term inside the outer minimization in (3.40)

3.6.1.2 Second Bound: Where the other receiver decodes its own codeword

before eavesdropping

The bound is obtained by considering that:

• a genie gives receiver 1 message-key pair (W2,K2)

• receiver 2 attempts to evaluate the equivocation with (W2,K2) as side information

This is inspired by [65]. We rewrite the equations/inequalities used in [67, Equations (18)

and (22)] employing these insights.
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Consider the inequality (note that this follows very closely the corresponding chain of

inequalities in [67] with the crucial change of additional conditioning RVs (W2,K2)

|W1| = H(W1)

= H(W1|K1) Since W1 ⊥⊥ K1

= H(W1|K1,W2,K2) Since (W1,K1) ⊥⊥ (W2,K2)

(3.67)

We interpret the last equation above, (3.67), as a genie giving (W2,K2) to receiver 1. We

continue

H(W1) = H(W1|K1,W2,K2)

= H(W1|K1,W2,K2)−H(W1|Yn
1,1,K1,W2,K2) +H(W1|Yn

1,1,K1,W2,K2)

= I(W1; Yn
1,1|K1,W2,K2) +H(W1|Yn

1,1,K1,W2,K2)

≤ I(W1; Yn
1,1|K1,W2,K2) +H(W1|Yn

1,1,K1)

Fano
≤ I(W1; Yn

1,1|K1,W2,K2) + nεn

≤ I(W1,K1; Yn
1,1|W2,K2) + nεn

= H(Yn
1,1|W2,K2)−H(Yn

1,1|W1,K1,W2,K2) + nεn (3.68)

Analogously to (3.53), (3.54), (3.74) and (3.75) it can be s.t. that ∃t(W2,K2), t(W1,K1,W2,K2) ∈
R s.t.

1

n
H(Yn

1,1|W2,K2) = (1/n)H(Yn
1.1|K2)(W2)

= (H(Y1|U,K2) + tK2)(W2)

= H(Y1|U,K2,W2) + t(W2,K2)

= H(Y1|Ũ ,W2) + t(W2,K2) (3.69)

1

n
H(Yn

2,1|W2,K2) = H(Y2|U,K2,W2) + t(W2,K2)

= H(Y2|Ũ ,W2) + t(W2,K2) (3.70)

Define

V2 ,W2, Ṽ2 , (Ũ , V2) (3.71)

Note that the Markov Chain Ũ → Ṽ2 → X → (Y1, Y2) is satisfied. We have

1

n
H(Yn

1,1|W2,K2) = H(Y1|Ũ , V2) + t(V2,K2) = H(Y1|Ṽ2) + t(V2,K2)

= H(Y1|Ṽ2, Ũ) + t(V2,K2) (3.72)

1

n
H(Yn

2,1|W2,K2) = H(Y2|Ũ , V2) + t(V2,K2) = H(Y2|Ṽ2) + t(V2,K2)

= H(Y2|Ṽ2, Ũ) + t(V2,K2) (3.73)
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and also

1

n
H(Yn

1,1|W2,K2,W1,K1)

=
(
H(Y1|U) + t

)
(W1,K1,W2,K2)

= H(Y1|U,W1,K1,W2,K2) + t(W1,K1,W2,K2)

= H(Y1|Ũ , V1, Ṽ2) + t(W1,K1,W2,K2) (3.74)

1

n
H(Yn

2,1|W2,K2,W1,K1)

=
(
H(Y2|U) + t

)
(W1,K1,W2,K2)

= H(Y2|U,W1,K1,W2,K2) + t(W1,K1,W2,K2)

= H(Y2|Ũ , V1, Ṽ2) + t(W1,K1,W2,K2) (3.75)

We finally have

H(W1) ≤ n
(
H(Y1|Ũ , Ṽ2) + t(V2,K2) −H(Y1|Ũ , Ṽ2, V1)− t(W1,K1,W2,K2) + εn

)
= n

(
I(V1;Y1|Ṽ2, Ũ) + t(V2,K2) − t(W1,K1,W2,K2) + εn

)
(3.76)

Now, since, H(W1) = nR1, substituting in (3.76), we get

R1 ≤ I(V1;Y1|Ṽ2, Ũ) + t(V2,K2) − t(W1,K1,W2,K2) + εn (3.77)

Since the information leakage condition is satisfied, and the receiver 2 attempts to evaluate

the equivocation with (W2,K2) as side information, we can write

nµ ≥ I(W1; Yn
2,1|W2,K2)

= I(W1,K1; Yn
2,1|W2,K2)− I(K1; Yn

2,1|W1,W2,K2)

=
(
H(Yn

2,1|W2,K2)−H(Yn
2,1|W1,K1,W2,K2)

)
−
(
H(K1|W2,K2,W1)−H(K1|Yn

2,1,W2,K2,W1)
)

≥ H(Yn
2,1|W2,K2)−H(Yn

2,1|W1,K1,W2,K2)

−H(K1|W2,K2,W1). (3.78)

Now, by mutual independence of (W1,K1,W2,K2), we simplify the last term in (3.78) as

H(K1|W2,K2,W1) = H(K1) (3.79)

(3.78) and (3.79) together imply that

nµ ≥ H(Yn
2,1|W2,K2)−H(Yn

2,1|W1,K1,W2,K2)−H(K1)

= n
(
H(Y2|Ũ , Ṽ2) + t(V2,K2) −H(Y2|Ũ , Ṽ2, V1)− t(W1,K1,W2,K2) −Rk1

)
(3.80)
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Simplifying gives:

µ ≥ I(V1;Y2|Ṽ2, Ũ) + t(V2,K2) − t(W1,K1,W2,K2) − nRk1

Rearranging the above gives:

t(V2,K2) − t(W1,K1,W2,K2) ≤ Rk1 − I(V1;Y2|Ṽ2, Ũ) + µ (3.81)

We also have

t(V2,K2) − t(W1,K1,W2,K2) ≤ t(V2,K2) ≤ min{I(Ũ , Ṽ2;Y1), I(Ũ , Ṽ2;Y2)} (3.82)

Inequalities (3.81) and (3.82) together give

t(V2,K2) − t(W1,K1,W2,K2) ≤ min{Rk1 − I(V1;Y2|Ṽ2, Ũ) + µ, I(Ũ , Ṽ2;Y1), I(Ũ , Ṽ2;Y2)} (3.83)

On substituting (3.83) into the inequality (3.77), we get

R1 ≤ I(V1;Y1|Ṽ2, Ũ) + εn + min{Rk1 − I(V1;Y2|Ṽ2, Ũ) + µ, I(Ũ , Ṽ2;Y1), I(Ũ , Ṽ2;Y2)}

which, since εn, µ can be arbitrarily small, gives

R1 ≤ I(V1;Y1|Ṽ2, Ũ) + min{Rk1 − I(V1;Y2|Ṽ2, Ũ), I(Ũ , Ṽ2;Y1), I(Ũ , Ṽ2;Y2)}

which is the second term in the outer minimization for R1 in (3.40).
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Chapter 4

Relay Eavesdropper Channel under

Decode and Forward

4.1 Introduction

The relay channel models a situation where a causal helper node aids the transmissions

from the source to a destination. More specifically, a full duplex relay node listens to a

channel from the source, and its transmissions to the destination are a function of the past

received symbols. In a Decode-Forward (DF) scheme of operation, the relay first decodes

the messages from the source and then cooperates with the source in de-mystifying the

uncertainty at the receiver. The DF scheme is known to be optimal when the receiver is

physically degraded with respect to the relay [27]. An alternate method is where the relay

compresses the received symbols without decoding the actual messages, and then forwards

the compressed values to the destination. This is called Compress-Forward (CF) scheme.

Vector quantizers are commonly employed to achieve compression in this context. In a

Gaussian relay setting, typically used in wireless models, it is popular for the relay to simply

scale and retransmit the received values, a technique known as Amplify-Forward (AF). Notice

that AF is a version of CF. Conventional CF and DF are also widely used in Gaussian relay

models [27].

In this chapter, we study a relay wiretap channel where an eavesdropper named Eve

listens to the transmissions in a conventional relay channel. The legitimate receiver is re-

quired to decode the encoded message reliably, whereas the message is required to be secret

from the eavesdropper. The relay itself is allowed to gain information about the message,

and is trusted not to reveal the information to Eve. We present an achievable scheme using

multi-block encoding where the relay decodes and forwards (DF), and the legitimate receiver

decodes using a sliding window. While, the content of this chapter will be extended in the

next chapter to the case of individual private messages to two legitimate receivers, where

65



CHAPTER 4. RELAY EAVESDROPPER CHANNEL UNDER DECODE AND
FORWARD 66

each receiver attempts to eavesdrop on the unintended messages, the underlying techniques

are better explained for a single receiver and eavesdropper.

The relay model with eavesdropper was studied by Lai and Gamal [72, Theorem 2], who

employed the so called regular encoding, along with a DF scheme. The legitimate receiver

performs backward decoding under block Markov encoding, where data is decoded only after

all the blocks of received symbols are available. In contrast, the approach here is forward

decoding using a sliding window (SW). Though the achieved rate is the same as that in [72],

our scheme incurs less decoding delay (see Remark 21) and it also extends naturally to a

multiple receiver model in the next chapter.

4.2 System Model and Notation

The system model is depicted in Fig. 5.1. We assume a two receiver discrete memoryless

relay eavesdropper channel with a confidential message intended for one of the receivers,

with the other acting as an eavesdropper. The finite sets X1,X2, Y2, Y3, Z respectively

represent the channel’s input at node 1 (the transmitter), at node 2 (the relay), the channel’s

output at nodes 2, 3 (legitimate receiver aka Bob) and 4 (eavesdropper aka Eve). The

channel is described by the conditional probability distribution PY2,Y3,Z|X1,X2
, where RVs

Xi ∈ Xi, i = 1, 2 and Yi ∈ Yi, i = 2, 3 and Z ∈ Z. The transmitter intends to send an

independent message W ∈ {1, 2, . . . , 2nR} ∆
= W to the receiver Rx Y3 in n channel uses

while ensuring information theoretic secrecy, defined below. The channel is memoryless and

without feedback i.e. ∀(x1,x2) ∈
∏2
t=1X nt ,yt ∈ Ynt , t = 2, 3, z ∈ Zn,

P (y2,y3, z|x1,x2) =

n∏
i=1

PY2,Y3,Z|X1,X2
(y2i, y3i, zi|x1i, x2i)

Remark 19. Note that we could also have specified the channel by the marginal transition

probabilities PY2|X1
and PY3,Z|X1,X2

. The availability of joint laws does not change the results

of the DF model considered.

The decoding function at the relay is a mapping φ2 : Yn2 → W × S. In the preceding,

S ∈ {1, 2, . . . , 2n[R2−R]} ∆
= S. The decoding function at the legitimate receiver ≡ Y3 is a map

φ3 : Yn3 × Yn3 →W ×S.

A (2nR, n, P
(n)
e ) code for the relay eavesdropper channel consists of two (stochastic)

encoding functions, two decoding functions φt, t = 2, 3, and the error probability
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X1 Y2 : X2

Y3

Z

Figure 4.1: Relay eavesdropper channel

Alice p(y2, y3, z|x1, x2)

Bob

Eve

Rel

X1

Y3

Z

W1

W1

�
�Z
ZW1

X2Y2

Figure 4.2: Relay-Eavesdropper channel with trusted relay and a confidential message in-

tended for Bob. RV X2: relay’s input to the channel. RV Y2: the channel’s output as seen

by the relay

P
(n)
e

∆
= max{P (n)

e,2 , P
(n)
e,3 } where

P
(n)
e,2 =

∑
(w,s)

Pr[φ2(Y2) 6= (w, s)|(w, s)]
2nR × 2n[R2−R]

P
(n)
e,3 =

∑
(w,s)

Pr[φ3(Y3 ×Y3) 6= (w, s)|w, s]
2nR × 2n[R2−R]

A secrecy rate R is said to be achievable for the DM relay eavesdropper channel if, for

any ε0 > 0, ∃(2nR, n, P (n)
e ) code s.t. the following requirements are satisfied:

reliability: P (n)
e ≤ ε0

(weak) secrecy: n(B − 1)R1 −H(W [B−1]|Z[B]) ≤ n(B − 1)ε0

The last constraint is the weak secrecy constraint [65]. We use the notation

t
∆
= {1, 2} \ {t}, and t[j]

∆
= {t1, t2, . . . , tj}.
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4.3 The Achievable Rate

Theorem 20. [72] Any rate R satisfying

R < max
PX1X2

min
{
I(X1, X2;Y3), I(X1;Y2|X2)

}
− I(X1, X2;Z)

is achievable.

Notice that the above rate was also achieved by a scheme in [72], which employs a

backward decoding scheme. As pointed out in the beginning of the chapter, we consider a

forward decoding scheme, which has significantly lower delay in decoding (see Remark 21)

than the backward decoding of [72]. Furthermore, the scheme here will be shown to have a

natural generalization while broadcasting independent messages to two receivers over a relay

channel under a mutual secrecy requirement. We now describe an achievable scheme using

block-Markov encoding, and forward decoding using sliding windows over successive blocks.

4.4 Achievable Scheme

For a given distribution pX1X2 , we will show the achievability of a rate

R ≤ min
{
I(X1, X2;Y3), I(X1;Y2|X2)

}
− I(X1, X2;Z)− ε,∀ε > 0. (4.1)

We choose two quantities R1 > R2 > R such that

R1 = R+ I(X1, X2;Z)− ε/2 (4.2)

and R2 > R+ I(X2;Z). (4.3)

Both conditions arise from the need for perfect secrecy. ε is a “small” quantity s.t.

nε
n↑∞→ 0. The equality constraint on R1 determines the packing R1 − R ≈ I(X1, X2;Z) of

the transmitter bins, which is identical to that of [72, Theorem 2]. The strict lower bound

on R2 gives in turn a strict lower bound on the packing R2−R of a relay bin. Equivalently,

we may write R2 = R + I(X2;Z) + ∆, ∆ ∈ (0, I(X1;Z|X2) − ε/2]. This constraint (which

does not appear in [72, Theorem 2] which uses regular encoding) reflects the minimum size

of a relay bin to ensure perfect secrecy.

The block Markov transmission scheme involves nB channel uses, over B blocks of n

channel uses each. For each block j ∈ [1 : B], C(j)
1 denotes the code used by the transmitter,

C(j)
2 is the code used by the relay, and the pair of these codes is denoted by C(j). The complete

code is denoted by C ∆
= (C(1), . . . , C(B)). For any j, we denote C[j] := (C(1), . . . , C(j)). Similarly

for all relevant random variables, a superscript [j] signifies the collection of random variables

till block j. We describe the construction of the code below.
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Codebook Generation: The following describes the codebook in an individual block.

Let R,R2, R1 be three non-negative values in the increasing order.

• The relay codebook C(b)
2 in block b is given by

C(b)
2 =

{
x

(b)
2 (m′, s′)|m′ ∈

[
2nR

]
, s′ ∈

[
2n(R2−R)

]}
• Transmitter codebook C(b)

1 in block b is given by

C(b)
1 =

{
x

(b)
1 (m, s, t,m′, s′)|m,m′ ∈

[
2nR

]
, s, s′ ∈

[
2n(R2−R)

]
, t ∈

[
2n(R1−R2)

]}
All the codewords are generated independently, and the components of

x
(b)
1 (m, s, t,m′, s′) are generated independently as a satellite of x

(b)
2 (m′, s′) using the

conditional distribution PX1|X2
, i.e.

x
(b)
1 (m, s, t,m′, s′) ∼

n∏
i=1

PX1|X2
(x

(b)
1i |x

(b)
2i (m′, s′)).

Here, the code can be thought as the union of satellite codebooks for each relay code-

word x
(b)
2 (m′, s′) (m′, s′ will correspond to the previous block). Each satellite codebook

has 2nR bins indexed by m, 2n(R2−R) sub-bins indexed by s in each bin, and 2n(R1−R2)

codewords indexed by t in each sub-bin.

Encoding at the transmitter: Let m(1),m(2), · · · ,m(B−1) be the sequence of messages to

be encoded. The encoder chooses s(1), s(2), · · · , s(B−1) independently and uniformly at ran-

dom from [2n(R2−R)], and also t(1), t(2), · · · , t(B−1) independently and uniformly at random

from [2n(R1−R2)]. In the following, we assume that m(0) = s(0) = 1, and this is known to all

parties beforehand, including the eavesdropper.

In block b ∈ [1 : B], the source transmits x
(b)
1 (m(b), s(b), t(b),m(b−1), s(b−1)). Here m(B) =

s(B) = t(B) = 1 is assumed.

Decoding at the relay:

In block b ∈ [1 : B − 1], the relay looks for a unique tuple (m̃(b), s̃(b)) and some t̃(b) that

satisfies the joint typicality criterion

(x
(b)
1 (m̃(b), s̃(b), t̃(b), m̃(b−1), s̃(b−1)),x

(b)
2 (m̃(b−1), s̃(b−1)),y

(b)
2 ) ∈ Tε.

Here m̃(0) = s̃(0) = 1, and for b > 1, m̃(b−1), s̃(b−1) are the relay’s decoded values in the

previous block. If the tuple (m̃(b), s̃(b)) is not unique, an error is declared.

Encoding at the relay:

In block 1, the relay transmits x
(1)
2 (1, 1). In block b > 1, the relay transmits

x
(b)
2 (m̃(b−1), s̃(b−1)).
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Decoding at the receiver: The receiver uses sliding window decoding. To decode mb

(b ∈ [1 : B − 1]), it finds a unique (m̂(b), ŝ(b)) and some t̂(b) such that

(x
(b)
1 (m̂(b), ŝ(b), t̂(b), m̂(b−1), ŝ(b−1)),x

(b)
2 (m̂(b−1), ŝ(b−1)),y

(b)
2 )

is jointly typical, and also

(x
(b+1)
2 (m̂(b), ŝ(b)),y

(b+1)
2 )

is jointly typical. If there is none or more than one such (m̂(b), ŝ(b)), then it declares error.

Remark 21. • Note that the individual messages are decoded with a delay of two blocks,

unlike in backward decoding [72] where the decoding has a delay of B blocks.

• t̂(b) is decoded nonuniquely.

• Decoding m̂(b) correctly and decoding ŝ(b) incorrectly will give the correct message for

block b, but will (w.h.p) lead to an error in the next block as the relay codeword will

have been decoded incorrectly. Hence this is also considered an error event.

Probability of decoding error: Let us first analyze the decoding error probability at the

relay. By random coding arguments, the condition

R1 ≤ I(X1;Y2|X2)− ε1, ε1 > 0 (4.4)

is sufficient for the probability of decoding error at the relay to become arbitrarily small for

large enough n.

Decoding of the message at the receiver can go wrong if some other message index than

the intended one satisfies the typicality test. Notice that it is sufficient to recover the indexes

(m, s) in each block. Hence the receiver is able to employ nonunique decoding. W.l.o.g assume

(m, s) = (1, 1). Of the 2nR1 − 2n(R1−R2) codewords which have the index (m, s) 6= (1, 1), the

chance of each satisfying the typicality tests is at most 2−n(I(X1;Y3|X2)−ε2n)2−n(I(X2;Y3)−ε3n),

where ε2n and ε3n goes to zero with n. Using the union bound, the probability of error in

decoding can be made to decay exponentially towards zero by taking

R1 ≤ I(X1, X2;Y3)− ε4, ε4 ≥ 0. (4.5)

Equivocation Calculation: In the following, W (b) denotes the random variable for the

message in the b-th block, for b ∈ [1 : B − 1]. We consider the multi-block equivocation:

H(W [B−1]|Z[B], C)
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Here we have explicitly conditioned on the codebook over all blocks, namely

C ∆
= {C(1), . . . , C(B)}. Note that X

(1)
2 = x

(1)
2 (1, 1) is known to everybody as the code is

known.

H(W [B−1]|Z[B], C)

≥ I(X
[B]
1 ,X

[B]
2 ;W [B−1]|Z[B], C)

= H(X
[B]
1 ,X

[B]
2 |Z

[B], C)−H(X
[B]
1 ,X

[B]
2 |W

[B−1],Z[B], C)

= H(X
[B]
1 ,X

[B]
2 |C)− I(X

[B]
1 ,X

[B]
2 ; Z[B]|C)−H(X

[B]
1 ,X

[B]
2 |W

[B−1],Z[B], C) (4.6)

The first term is bounded as

H(X
[B]
1 ,X

[B]
2 |C) ≥H(X

[B]
1 |C)

≥I(W [B], S[B], T [B]; X
[B]
1 |C)

(a)

≥I(W [B], S[B], T [B]; Y
[B]
2 |C)

(b)

≥H(W [B], S[B], T [B])− n(B − 1)ε5n (by Fano’s ineq.)

=n(B − 1)(R1 − ε1) (4.7)

where ε5n → 0 as n → ∞. Here (a) follows because (W [B], S[B], T [B]) −X
[B]
1 −Y

[B]
2 forms

a Markov chain, and (b) follows because the relay decodes W [B], S[B], T [B] with a small

probability of error.

Now, we proceed to upper bound the second term of (4.6):

I((X1,X2)[B]; Z[B]|C) =
B∑
j=1

I((X1,X2)[B]; Zj |Z[j−1], C)

=
B∑
j=1

H(Zj |Z[j−1], C)

−H(Zj |X1,j ,X2,j , (X1,X2)[B]\{j},Z[j−1], C)

≤
B∑
j=1

H(Zj)−H(Zj |X1,j ,X2,j , (X1,X2)[B]\{j},Z[j−1], C)

(a)
=

B∑
j=1

H(Zj)−H(Zj |X1,j ,X2,j)

=

B∑
j=1

I(X1,j ,X2,j ; Zj)

(b)

≤ nBI(X1, X2;Z) + nBε (4.8)
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Here, (a) follows because the channel is a DMC and consequently

Zj ↔ (X1,j ,X2,j)↔
(
(X1,X2)[j−1], (X1,X2)[j+1:B],Z[j−1], C

)
forms a Markov chain, and (b) follows by standard calculations, see for example [65].

Before examining the third term of (4.6), we define the event Rj to mean that the relay

has decoded the message in block j correctly. We further define:

Rj ∆
= ∩jk=1Rk

to denote the event that the relay has decoded messages in all blocks up to and including

block j correctly. We use RB ≡ R interchangeably and define the RV:

IR = 0 if the relay makes a decoding error in some block

= 1 if the relay decodes correctly in all B blocks.

Now we proceed to upper bound the third term of (4.6)

H((X1,X2)[B]|C,W [B−1],Z[B])

= H((X1,X2)[B]|IR, C,W [B−1],Z[B]) + I(IR; (X1,X2)[B]|C,W [B−1],Z[B])

(a)

≤ H((X1,X2)[B]|IR, C,W [B−1],Z[B]) + 1

(a) follows by using the fact that IR is a binary random variable. For a tighter and more

insightful upper bound on the last term, see the footnote.1

So we consider the term:

H((X1,X2)[B−1]|IR, C,W [B−1],Z[B]).

To analyze this term, we study how much uncertainty Eve will have about (X1,X2)[B−1]

if she is provided with W [B−1] in addition to Z [B], under the assumption that the relay

decodes correctly.

1Let pR be the probability of correct decoding in all blocks at the relay. Then IR ∼ Ber(pR). As block

length n → ∞, and recall that B
say∼ O(

√
n), the Bernoulli RV IR which has a probability of success pR

approaches in distribution a Bernoulli RV – call it S for “sure thing”– with probability of success = 1 i.e.

S ∼ Ber(1). Mathematically, we have:

IR
distribution as n↑∞−→ S =⇒ H(IR)

n→∞−→ H(S) = 0

and we also have (since conditioning reduces entropy):

H(IR|C,W [B−1],Z[B]) ≤ H(IR)→ 0 =⇒ H(IR|C,W [B−1],Z[B])→ 0

Since as discussed above when considering the term 1, we know that pR → 1 exponentially fast in n, we

can conclude that the same must hold for H(IR)→ 0 as well.
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Eve performs sliding window decoding in a manner analogous to Bob. Since Eve is given

W (1), Eve considers the relay bin corresponding to W (1) in the relay codebook intended for

receiver 1 in block 2, namely C(2)
21 . This bin contains

2n[R2−R] = 2n[I(X2;Z)+∆]

codewords, and Eve uses its received sequence Z2 to form a list of possible jointly typical

x
(2)
2 codewords. By this, it obtains ≈ nI(X2;Z) bits of information and reduces the size of

the ambiguity set of x2 codewords down to

2n[I(X2;Z)+∆]

2nI(X2;Z)
= 2n∆

Each of these surviving 2n∆x2 codewords corresponds to a subbin. In block 1, the decoder

looks in the appropriate satellite codebook (which is known to all parties beforehand, being

the satellite codebook of X
(1)
2 ). The search space of possible x

(1)
1 codewords is of size

number of surviving x2 codewords× size of a subbin

= 2n∆ × 2n[R1−R2]

By our choices,

R1 = R+ I(X1, X2;Z)− ε/2, R2
∆>0
= I(X2;Z) + ∆

=⇒ R1 −R2 = I(X1;Z|X2)−∆− ε/2

Substituting, we can calculate the size of the search space as:

2n∆ × 2n[I(X1;Z|X2)−∆−ε/2] = 2n[I(X1;Z|X2)−ε/2]

But knowing X
(1)
2 correctly and having received Z1 means that Eve can obtain I(X1;Z|X2)

(independent) bits, and this suffices to decode uniquely X
(1)
1 and thus also X

(2)
2 . This

decoding is correct w.h.p. The process repeats in the next block.

By standard techniques involving Fano’s inequality, this can be shown to be upper

bounded as

H((X1,X2)[B−1]|IR, C,W [B−1],Z[B]) ≤ n(B − 1)ε2 (4.9)

for some ε2 → 0. Thus collecting all the expressions from (4.7), (4.8), and (4.9) into (4.6),

we obtain

H(W [B−1]|Z[B], C) ≥ n(B − 1)(R1 − ε1)− nBI(X1, X2;Z)− n(B − 1)ε2

= n(B − 1)

(
R1 − I(X1, X2;Z)− ε1 − ε2 −

1

B − 1
· I(X1, X2;Z)

)
= n(B − 1)

(
R− ε/2− ε1 − ε2 −

1

B − 1
· I(X1, X2;Z)

)
(Using (4.2))
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Since B →∞ and ε1, ε2 → 0 as n→∞, for large enougn n, we have

H(W [B−1]|Z[B], C) ≥ n(B − 1)(R− ε).

for an appropriate ε > 0. This completes the proof of secrecy, and thus also the proof of

achievability.
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Chapter 5

Relay Broadcast Channel under

Mutual Secrecy

5.1 Introduction

In this chapter, we study a different kind of extension of Liu, Maric, Spasojevic, Yates

[65] than the one studied in Chapter 3. Here we dispense with the secret keys and employ

a relay trusted by all parties, one which acts as an extension of the transmitter. As in the

previous chapter, we only consider the “strong” relay scenario, where the T-to-R link is

stronger than both T-to-D links. As before, DF is indicated – see [71]. However, as pointed

out by Ekrem and Ulukus in [75, Chapter 7], for DF to be effective in a relay-eavesdropper

channel, the relay-receiver link must be stronger than the relay-eavesdropper link. This may

lead one to naively conclude that a relay cannot be used to obtain mutual secrecy in DF based

scenarios. We show that this intuition is incorrect. The following points are worthy of note:

• For the same reasons as before, we continue to employ sliding window decoding.

• As before, the relay and the receivers employ nonunique decoding.

• We employ the relay as a broadcast channel in its own right, as in [76]. Notice that

Kramer et al [77] used the relay as a point-to-point channel in their relay broadcast

channel. The latter approach is likely to be suboptimal in wireless scenarios, which

are inherently broadcast [76].

5.2 System Model

We assume a two receiver discrete memoryless relay broadcast channel (DM-RBC) with

two confidential messages. The finite sets X1,X2, Y2, Y3, Y4 respectively represent the

channel’s input at node 1 (the Tx), at node 2 (the relay), the channel’s output at nodes 2,
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3 (Rx 1) and 4 (Rx 2). The channel is described by the conditional probability distribution

PY2,Y3,Y4|X1,X2
, where RVs Xi ∈ Xi, i = 1, 2 and Yi ∈ Yi, i = 2, 3, 4. The transmitter intends

to send an independent message Wt ∈ {1, 2, . . . , 2nRt}
∆
= Wt to the respective Rx t ∈ {1, 2}

in n channel uses while ensuring information theoretic secrecy, defined below. The channel

is memoryless and without feedback i.e. ∀(x1,x2) ∈
∏2
t=1X nt ,yt ∈ Ynt , t = 2, 3, 4,

P (y2,y3,y4|x1,x2) =

n∏
i=1

PY2,Y3,Y4|X1,X2
(y2i, y3i, y4i|x1i, x2i)

The channel input at the Tx is obtained by passing codewords ut ≡ ut(|vt), t = 1, 2 through

X1 Y2 : X2

Y3

Y4

Figure 5.1: Relay broadcast channel

Encoder p(y2, y3, y4|x1, x2)

Rx1

Rx2

Rel

X2Y2

X1

Y3

Y4

W1

W2

W1

�
�Z
ZW2

�
�Z
ZW1
W2

Figure 5.2: Two Receiver Dedicated Relay Broadcast Channel with Trusted Relay (i.e. the

relay is an extension of the transmitter, and is trusted by both Rxs) and Two Confidential

Messages.

a stochastic encoder which generates x1 ∼
∏n
i=1 PX1|U1,U2

(x1i|u1i, u2i). The channel input at

the relay is obtained by passing codewords vt, t = 1, 2 through a stochastic encoder which

generates x2 ∼
∏n
i=1 PX2|V1,V2(x2i|v1i, v2i). (See the encoding for how ut,vt, t = 1, 2 are

chosen). The sequences xt, t = 1, 2 are not part of code C. They are generated at the

time of transmission by choosing an appropriate quadruple (ut,vt : t = 1, 2). The decoding
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function at the relay is a mapping φ2 : Yn2 → W1 × S1 × W2 × S2. In the preceding,

St ∈ {1, 2, . . . , 2n[R2t−Rt]} ∆
= St. The decoding function at Rx 1 ≡ Y3 (resp. Rx 2 ≡ Y4) is

a map φ3 : Yn3 × Yn3 → W1 × S1 (resp. φ4 : Yn4 × Yn4 → W2 × S2). A (2nR1 , 2nR2 , n, P
(n)
e )

code for the RBC consists of the stochastic encoding functions, three decoding functions

φt, t = 2, 3, 4, and the error probability P
(n)
e

∆
= max{P (n)

e,2 , P
(n)
e,3 , P

(n)
e,4 } where

P
(n)
e,2 =

∑
(wt,st)t=1,2

Pr[φ2(Y2) 6= (wt, st)t=1,2|(wt, st)t=1,2]

2nR1 × 2n[R21−R1] × 2nR2 × 2n[R22−R2]

P
(n)
e,t+2
t=1,2

=
∑

(wt,st)

Pr[φt+2(Yt+2 ×Yt+2) 6= (wt, st)|wt, st]
2nRt × 2n[R2t−Rt]

A rate pair (R1, R2) is said to be achievable for the DM-RBC with confidential messages if,

for any ε0 > 0, ∃(2nR1 , 2nR2 , n, P
(n)
e ) code s.t.:

P (n)
e ≤ ε0 reliability requirement

n(B − 1)R1 −H(W
[B−1]
1 |Y[B]

4 ) ≤ n(B − 1)ε0

n(B − 1)R2 −H(W
[B−1]
2 |Y[B]

3 ) ≤ n(B − 1)ε0

The last two constraints are the weak secrecy constraints [65]. We use the notation t
∆
=

{1, 2} \ {t}, and t[j]
∆
= {t1, t2, . . . , tj}.

5.3 Rate Region

Theorem 22. A (pure secrecy) rate pair (R1, R2) is achievable if there exist distributions

PQPV1,V2|Q, PU1,U2|V1,V2,Q, PX1|U1,U2,Q, PX2|V1,V2,Q, so that the following inequalities are satis-

fied.

R1 ≤ min{I(U1, V1;Y3|Q), I(U1;U2, V2, Y2|V1, Q)} − I(U1, V1;U2, V2, Y4|Q)

R2 ≤ min{I(U2, V2;Y4|Q), I(U2;U1, V1, Y2|V2, Q)} − I(U2, V2;U1, V1, Y3|Q)

R1 +R2 ≤ I(U1;V2, Y2|V1, Q) + I(U2;V1, Y2|V2, Q) + I(U1;U2|V1, V2, Y2, Q)

− I(U1, V1;U2, V2, Y4|Q)− I(U2, V2;U1, V1, Y3|Q)

(R1, R2) is obtained by Fourier-Motzkin (FM) elimination of the following set of in-

equalities, followed by convexification using a time-sharing random variable (RV) Q. In the

following, if a quantity is doubly subscripted, the first subscript refers to the node index,

and the second to the intended Rx. Thus R12 refers to the rate of the codebook at the Tx

intended for Rx 2.
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Theorem 23. A (pure secrecy) rate pair (R1, R2) is achievable if ∃R11, R12, R21, R22, and

distributions PV1V2 , PU1U2|V1V2 , PX1|U1U2
, PX2|V1V2, s.t. the following inequalities are satisfied.

Decoding Constraints:

R11 ≤ min{I(U1, V1;Y3), I(U1;U2, V2, Y2|V1)}

R12 ≤ min{I(U2, V2;Y4), I(U2;U1, V1, Y2|V2)}

R11 +R12 ≤ I(U1;V2, Y2|V1) + I(U2;V1, Y2|V2) + I(U1;U2|V1, V2, Y2) (5.1)

Secrecy Constraints: Packing constraints on the bin sizes at the transmitter and relay

due to the secrecy requirements

R21 −R1 > I(V1;U2, V2, Y4)
∆1>0≡ R21 −R1 = I(V1;U2, V2, Y4) + ∆1

R22 −R2 > I(V2;U1, V1, Y3)
∆2>0≡ R22 −R2 = I(V2;U1, V1, Y3) + ∆2

R11 −R1 = I(U1, V1;U2, V2, Y4)− ε11

R12 −R2 = I(U2, V2;U1, V1, Y3)− ε12 (5.2)

Encoding Constraints: Constraints on the trasmitter subbin sizes

R11 −R21 > I(U1;V2|V1)

R12 −R22 > I(U2;V1|V2)

[R11 −R21] + [R12 −R22] > I(U1;V2|V1) + I(U2;V1|V2) + I(U1;U2|V1, V2) (5.3)

Remark 24. • From the above, we can obtain: R1t ≥ R2t ≥ Rt, t = 1, 2. This indicates

the ordering between the corresponding codebook sizes at the Tx, the relay, and the (pure

secrecy) message rate intended for Rxs 1, 2.

• In the first decoding two constraints above, the first term inside each min arises from

the requirement for correct decoding at the respective receivers.

• Our achievable scheme uses nonunique decoding at the relay. The second term in each

of the first two decoding constraints arises from (nonunique) decoding at the relay, as

does the third constraint on the sum-rate R11 +R12.

The following two redundant constraints also arise due to nonunique decoding at the

relay:

[R11 −R21] +R12 ≤ I(U1;V2, Y2|V1) + I(U2;V1, Y2|V2) + I(U1;U2|V1, V2, Y2)

R11 + [R12 −R22] ≤ I(U1;V2, Y2|V1) + I(U2;V1, Y2|V2) + I(U1;U2|V1, V2, Y2)

78



CHAPTER 5. RELAY BROADCAST CHANNEL UNDER MUTUAL SECRECY 79

• The first two secrecy constraints give a strict lower bound on the relay bin sizes to

maintain perfect (weak) secrecy. They are the analogues of the constraint R2 − R >

I(X2;Z) in the previous chapter. The next two secrecy constraints are (essentially)

equality constraints. The quantities ε1j , j = 1, 2 have the property that nε1j
n↑∞→ 0.

They are the analogues of the constraint R1−R ≈ I(X1, X2;Z) in the previous chapter.

• The three encoding constraints arise due to a variant of the mutual covering lemma

developed by Zhao and Chung that they have dubbed the “modified mutual covering

lemma” [76, Lemma 1]. In [76], there is a further strict lower bounding constraint on

the sum-rate of the relay bin sizes. But the analogous constraint on the sum-rate of

the relay bin sizes, namely:

[R21 −R1] + [R22 −R2] > I(V1;V2)

is made redundant by the above individual packing constraints on the relay bin sizes

due to secrecy requirements. (See subsection 5.5.1). This recalls how the individual

constraint on the bin sizes in the broadcast channel with mutual secrecy [65] makes

redundant the constraint on the sum of the bin sizes in Marton coding for a broadcast

channel.

5.4 Achievable Scheme

Codebook Generation:

The transmitter employs two codes, C11, C12, one intended for each receiver. Similarly,

the relay has two codes, C21, C22, one intended for each receiver. Our achievable scheme is

over B blocks of n channel uses each. So each code Cij has B parts: Cij = (C(1)
ij , · · · , C

(B)
ij ).

We now describe what these codes contain, and how they are generated. The size of the

codes used by the relay are given by

|C(k)
2j | = 2nR2j for j = 1, 2; k ∈ [1 : B].

• For blocks b ∈ [1 : B], the relay codebooks C
(b)
2j are given by

C
(b)
2j =

{
v

(b)
j (m′j , s

′
j)|m′j ∈

[
2nRj

]
, s′j ∈

[
2n(R2j−Rj)

]}
for j = 1, 2.

• Transmitter codebooks C(b)
1j ; j = 1, 2 in block b are given by

C
(b)
1j =

{
u

(b)
j (mj , sj , tj ,m

′
j , s
′
j)|mj ,m

′
j ∈

[
2nRj

]
, sj , s

′
j ∈

[
2n(R2j−Rj)

]
,

tj ∈
[
2n(R1j−R2j)

]}
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All the codewords are generated independently, and the components of u
(b)
j (mj , sj , tj ,m

′
j , s
′
j)

are generated independently as a satellite of v
(b)
j (m′j , s

′
j) using the conditional distribution

PUj |Vj , i.e. u
(b)
j (mj , sj , tj ,m

′
j , s
′
j) ∼

∏n
i=1 PUj |Vj (u

(b)
ji |v

(b)
ji (m′j , s

′
j)). Here, the code can be

thought as the union of satellite codebooks for each relay codeword v
(b)
j (m′j , s

′
j) (m′, s′ will

correspond to the previous block). Each satellite codebook has 2nRj bins (≡ messages)

indexed by mj , 2n(R2j−Rj) subbins indexed by sj in each bin, and 2n(R1j−R2j) codewords

indexed by tj in each subbin. Each relay codebook has 2nRj bins indexed by m′j , and each

relay bin has 2n[R2j−Rj ] codewords, indexed by s′j . This is identical to the number of subbins

per bin in each satellite codebook, enabling a one-to-one correspondence to be set up. The

following picture illustrates the code construction in each block intended for Rx 1. Rx 2

uses a similar construction. Notice that the intended receiver for the two codebooks in the

figure is the same i.e. Rx 1. All the different codebooks to be employed in the B blocks are

supplied to all users.

1 2 2n(R21−R1)

1

2

2nR1

2nR21v1 codewords

1 2 2n(R21−R1)

1

2

2nR1

2nR11u1 codewords

Figure 5.3: Illustrating the Binning Structure

Encoding at the transmitter: To transmit the new message pair (m
(b)
1 ,m

(b)
2 ) in block b ∈

[1 : B], the transmitter first finds a pair of indices (s
(b)
1 , s

(b)
2 ) such that(

v
(b+1)
1 (m

(b)
1 , s

(b)
1 ),v

(b+1)
2 (m

(b)
2 , s

(b)
2 )
)
∈ Tε. (5.4)

Remark 25. • This step’s success is guaranteed w.h.p. by the mutual covering lemma

[27, Lemma 8.1] if the sum-rate constraint [R21 − R1] + [R22 − R2] > I(V1;V2). But
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this strict inequality is a trivial consequence of our choices above w.r.t. the individual

relay bin rates.

• Note that the transmitter looks inside the appropriate bins in the relay codebooks in the

next block. Thus the codebooks must be known at least one block in advance.

If there is no such pair, then the encoder chooses (1, 1), and if there are more than one,

then it chooses the least such pair in the lexicographical order. It then picks a pair (t
(b)
1 , t

(b)
2 )

such that (
u

(b)
1 (m

(b)
1 , s

(b)
1 , t

(b)
1 ,m

(b−1)
1 , s

(b−1)
1 ),v

(b)
1 (m

(b−1)
1 , s

(b−1)
1 ),

u
(b)
2 (m

(b)
2 , s

(b)
2 , t

(b)
2 ,m

(b−1)
2 , s

(b−1)
2 ),v

(b)
2 (m

(b−1)
2 , s

(b−1)
2 )

)
(5.5)

is typical where s
(b−1)
1 |b=1 = m

(b−1)
1 |b=1 = m

(b−1)
2 |b=1 = 1. Also, s

(0)
2 = 1′ is the least index

such that (v
(1)
1 (1, 1), v

(1)
2 (1, 1′)) is jointly typical. By appropriate relabelling of the indexes

we can take m
(b−1)
2 = 1 itself, a convention followed below. The transmitted codeword

x1 is generated from u
(b)
1 (m

(b)
1 , s

(b)
1 , t

(b)
1 ,m

(b−1)
1 , s

(b−1)
1 ) and u

(b)
2 (m

(b)
2 , s

(b)
2 , t

(b)
2 ,m

(b−1)
2 , s

(b−1)
2 )

component-wise using the distribution
∏n
i=1 p(x1i|u(b)

1i , u
(b)
2i ).

Decoding at the relay: Assume that the relay already knows m
(0)
1 = m

(0)
2 = s

(0)
1 = s

(0)
2 =

1. So it assigns the same decoded values: m̃
(0)
1 = m̃

(0)
2 = s̃

(0)
1 = s̃

(0)
2 = 1. In block b, the

relay chooses the index tuple (m̃
(b)
1 , s̃

(b)
1 , m̃

(b)
2 , s̃

(b)
2 ) if it is the unique tuple for which(

u
(b)
1 (m̃

(b)
1 , s̃

(b)
1 , t̃

(b)
1 , m̃

(b−1)
1 , s̃

(b−1)
1 ),v

(b)
1 (m̃

(b−1)
1 , s̃

(b−1)
1 ),

v
(b)
2 (m̃

(b−1)
2 , s̃

(b−1)
2 ),u

(b)
2 (m̃

(b)
2 , s̃

(b)
2 , t̃

(b)
2 , m̃

(b−1)
2 , s̃

(b−1)
2 ),y

(b)
2

)
∈ Tε

is typical for some t̃
(b)
1 , t̃

(b)
2 . This is the value of the tuple (m

(b)
1 , s

(b)
1 , t

(b)
1 ,m

(b)
2 , s

(b)
2 , t

(b)
2 ) de-

coded by the relay. Analogous to the relay-eavesdropper case, where the relay performed

nonunique decoding and only the uniqueness of the tuple (m̃(b), s̃(b)) was insisted upon,

here we only require that the tuple (m̃
(b)
1 , s̃

(b)
1 , m̃

(b)
2 , s̃

(b)
2 ) be unique. The tuple (t̃

(b)
1 , t̃

(b)
2 )

need not be. If no such tuple exists or there are more than one, then the relay chooses

(m̃
(b)
1 , s̃

(b)
1 , m̃

(b)
2 , s̃

(b)
2 ) = (1, 1, 1, 1).

Encoding at the relay: In block b, the relay transmits

x2

(
v

(b)
1 (m̃

(b−1)
1 , s̃

(b−1)
1 ),v

(b)
2 (m̃

(b−1)
2 , s̃

(b−1)
2 )

)
, where x2 is a stochastic mapping, according to∏n

i=1 p(x2i|v(b)
1i (m̃

(b−1)
1 , s̃

(b−1)
1 ), v

(b)
2i (m̃

(b−1)
2 , s̃

(b−1)
2 )). Note that m̃

(0)
1 = m̃

(0)
2 = s̃

(0)
1 = s̃

(0)
2 = 1

by assumption.

Decoding at the receivers: The receiver knows m
(0)
1 = m

(0)
2 = s

(0)
1 = s

(0)
2 = 1. So

it assigns the same decoded values: m̂
(0)
1 = m̂

(0)
2 = ŝ

(0)
1 = ŝ

(0)
2 = 1. We assume that the
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receiver 1 has correctly decoded (m̂
(b−1)
1 , ŝ

(b−1)
1 ). To decode m

(b)
1 , the receiver 1 at Y3 performs

sliding window decoding and looks for a unique tuple (m̂
(b)
1 , ŝ

(b)
1 ) such that(

v
(b+1)
1 (m̂

(b)
1 , ŝ

(b)
1 ),y

(b+1)
3

)
∈ Tε

and
(
u

(b)
1 (m̂

(b)
1 , ŝ

(b)
1 , t̂

(b)
1 , m̂

(b−1)
1 , ŝ

(b−1)
1 ),v

(b)
1 (m̂

(b−1)
1 , ŝ

(b−1)
1 ),y

(b)
3

)
∈ Tε

for some t̂
(b)
1 . If a unique such (m̂

(b)
1 , ŝ

(b)
1 ) is found, then m̂

(b)
1 is declared as the decoded

message, otherwise the decoder declares an error. Receiver 2 ≡ Y4 decodes m
(b)
2 in a similar

manner, with appropriate changes to reflect its received sequences.

Remark 26. • t̂(b)1 (resp. t̂
(b)
2 ) is decoded nonuniquely by Rx 1 (resp. Rx 2).

• Decoding m̂
(b)
1 correctly and decoding ŝ

(b)
1 incorrectly will give the correct message for

block b, but will (w.h.p) lead to an error in block b+ 1 as the relay codeword will have

been decoded incorrectly. Hence this is also considered an error event in the error

analysis. Likewise for receiver 2.

5.5 Probability of Error Calculations

5.5.1 Probability of encoding error:

Let us first consider the probability of success in the encoding step at the transmitter

given in (5.5), this can be made arbitrarily close to one for large enough n by choosing the

transmitter subbin sizes (in terms of rates):

R11 −R21 > I(U1;V2|V1) (5.6)

R12 −R22 > I(U2;V1|V2) (5.7)

[R11 −R21] + [R12 −R22] > I(U1;V2|V1) + I(U2;V1|V2) + I(U1;U2|V1, V2) (5.8)

The above requirements follow from the “modified mutual covering lemma” developed by

Zhao and Chung [76, Lemma 1] which we reproduce below for ease of reference. (See also

Remark 24, bullet point 4).

Lemma 27. [76, Modified Mutual Covering Lemma] Let (V1, V2, U1, U2) ∼ p(v1, v2, u1, u2)

and ε′ < ε. Let (V n
1 , V

n
2 ) ∼ p(vn1 , v

n
2 ) be a pair of random sequences with P{(V n

1 , V
n

2 ) ∈
T (n)
ε′ }

n↑∞→ 1. Let Un1 (m1),m1 ∈ [1 : 2nr1 ], be pairwise conditionally independent random

sequences, each distributed according to
∏n
i=1 pU1|V1(u1i|v1i). Similarly, let Un2 (m2),m2 ∈ [1 :

2nr2 ], be pairwise conditionally independent random sequences, each distributed according to∏n
i=1 pU2|V2(u2i|v2i). Assume that {Un1 (m1) : m1 ∈ [1 : 2nr1 ]} and {Un2 (m2) : m2 ∈ [1 : 2nr2 ]}

are conditionally independent given (V n
1 , V

n
2 ). Then, there exists δ(ε) > 0

ε→0→ 0 such that

lim
n→∞

P{(V n
1 , V

n
2 , U

n
1 (m1), Un2 (m2)) /∈ T (n)

ε ∀(m1 ∈ [1 : 2nr1 ],m2 ∈ [1 : 2nr2 ])} = 0
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if

r1 > I(U1;V2|V1) + 3δ(ε)

r2 > I(U2;V1|V2) + 3δ(ε)

r1 + r2 > H(U1|V1) +H(U2|V2)−H(U1, U2|V1, V2) + δ(ε)

Furthermore, success in the encoding step (5.4) can be achieved by the condition on the

sum of the relay binning rates:

[R21 −R1] + [R22 −R2] > I(V1;V2) + ε. (5.9)

which follows from the standard mutual covering lemma [27, Lemma 8.1]. But note that

the individual constraints on the relay binning rates that arise due to secrecy make these

redundant.

5.5.2 Probability of decoding error:

Under random coding arguments, assume w.l.o.g that the transmitted indices are

(1, 1, 1, 1) for all b ∈ [1 : B]. Let us first consider the decoding at the relay. We list three

kinds of error events.

• Er(e, 1): The tuple (m1, s1, 1, 1) satisfies the typicality test for (m1, s1) 6= (1, 1). The

number of possibilities is (2nR11 − 2n[R11−R12]) × 1, which, in rate, is asymptotically
n↑∞→ R11. The second factor 1 hides a crucial subtlety. See remark 28 below.

P (Er(e, 1)) =
∑

(u1,u2,v1,v2,y2)∈Tε

p(u1,v1)p(y2,u2,v2|v1)

≈ 2nH(U1,V1,U2,V2,Y2)2−nH(U1,V1)2−nH(U2,V2,Y2|V1)

= 2−nI(U1;V2,U2,Y2|V1).

• Er(1, e): The tuple (1, 1,m2, s2) satisfies the typicality test for (m2, s2) 6= (1, 1). The

error probability P (Er(1, e)) can be obtained as above with a change of variables.

• Er(e, e): The tuple (m1, s1,m2, s2) satisfies the typicality test for (m1, s1) 6= (1, 1) and

(m2, s2) 6= (1, 1). The number of possibilities is (2nR11 − 2n[R11−R12])×
(2nR12 − 2n[R12−R22]), which, in rate, is asymptotically

n↑∞→ R11 +R12.

P (Er(e, e)) =
∑

(u1,u2,v1,v2,y2)∈Tε

p(v1,v2)p(u1|v1)p(u2|v2)p(y2|v1,v2)

≈ 2nH(U1,U2|Y2,V1,V2)2−nH(U1|V1)2−nH(U2|V2)

= 2−n(I(U1;V2,Y2|V1)+I(U2;U1,V1,Y2|V2)).
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Using the union bound, we deduce that the error probability of decoding at the relay can

be made arbitrarily small by choosing,

R11 ≤ I(U1;V2, U2, Y2|V1)− ε

R12 ≤ I(U2;V1, U1, Y2|V2)− ε

R11 +R12 ≤ I(U1;V2, Y2|V1) + I(U2;V1, Y2|V2) + I(U1;U2|V2, V1, Y2)− ε.

Notice that the decoding employed here did not really care about the indices t1 and t2, thus

leading to non-unique decoding at the relay.

Remark 28. In computing the number of possibilities above for error event Er(e, 1), we

have written the second factor as 1. It means that the relay has decoded correctly not just

the indices (m2, s2) correctly – by assumption – as (1, 1), but also the index t2 correctly.

What happens if (m2, s2) is decoded correctly as (1, 1), but the index t2 is decoded incorrectly

within the correct subbin? Then the second factor above becomes 2n[R12−R22] − 1. In this

case, the RHS will be identical to the error event Er(e, e), but the LHS will have an extra

term [R11 −R21]. This gives rise to:

R11 + [R12 −R22] ≤ I(U1;V2, Y2|V1) + I(U2;V1, Y2|V2) + I(U1 : U2|V2, V1, Y2)− ε (5.10)

This is redundant w.r.t the sum-rate constraint on R11 + R12. A symmetric (and also re-

dundant) constraint is obtained by switching the roles in the computation of Er(1, e):

[R11 −R21] +R12 ≤ I(U1;V2, Y2|V1) + I(U2;V1, Y2|V2) + I(U1;U2|V2, V1, Y2)− ε (5.11)

Let us now consider decoding at the respective receivers. We will show that we can

guarantee successful decoding at receivers by choosing

R11 ≤ I(U1, V1;Y3)− ε (5.12)

R12 ≤ I(U2, V2;Y4)− ε (5.13)

Using the received sequence in block b + 1, Rx 1 performs list decoding to reduce the

ambiguity set of possible v1 sequences from 2nR21 down to 2n[R21−I(V1;Y3)]. Each of these

v1 codewords corresponds to a subbin in the previous block of size 2n[R11−R21]. Thus the

search space of possible u1 codewords is now of size 2n[R21−I(V1;Y3)+R11−R21] = 2n[R11−I(V1;Y3)].

Assuming that the relay codeword in block b has already been correctly decoded (in the

previous decoding step), the information obtained from the other JT condition is 2nI(U1;Y3|V1).

If R11 − I(V1;Y3) < I(U1;Y3|V1), equivalently, if R11 < I(U1, V1;Y3), then we can decode

the u
(b)
1 correctly and uniquely w.h.p., and thus also the v

(b+1)
1 codeword, as it is wholly

determined by u
(b)
1 . With appropriate changes, a similar calculation is performed by Rx 2.
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5.5.3 Constraints on ∆1 and ∆2

Since:

R11 −R1 = [R11 −R21] + [R21 −R1]

=⇒ I(U1, V1;U2, V2, Y4)− ε11 = [R11 −R21] + I(V1;U2, V2, Y4) + ∆1

giving: R11 −R21 = I(U1;U2, V2, Y4|V1)−∆1 − ε11

Similarly: R12 −R22 = I(U2;U1, V1, Y3|V2)−∆2 − ε12

In what follows, we drop the quantities ε1j , j = 1, 2. Now recalling the constraints on

the subbin sizes, we have:

I(U1;U2, V2, Y4|V1)−∆1 > I(U1;V2|V1)

I(U2;U1, V1, Y3|V2)−∆2 > I(U2;V1|V2)

and the sum-rate constraint:

I(U1;U2, V2, Y4)−∆1 + I(U2;U1, V1, Y3)−∆2

> I(U1;V2|V1) + I(U1;V2|V1) + I(U1;U2|V1, V2)

After appropriate algebraic manipulations, we obtain:

∆1 < I(U1;U2, Y4|V1, V2)

∆2 < I(U2;U1, Y3|V1, V2)

∆1 + ∆2 < I(U1;U2, Y4|V1, V2) + I(U2;U1, Y3|V1, V2)− I(U1;U2|V1, V2)

5.5.4 Equivocation Calculation:

We denote the random variable for the messages in block b for the two receivers by W
(b)
1

and W
(b)
2 . The codewords chosen by the transmitter and the relay in block b are denoted by

U
(b)
1 ,U

(b)
2 ,V

(b)
1 ,V

(b)
2 respectively. The random vectors transmitted by the transmitter and

the relay in block b are denoted by X
(b)
1 and X

(b)
2 respectively. We consider the equivocation

of the message W
[B−1]
1 intended for the first receiver given the observation of the second

receiver:

H(W [B−1]|Y[B]
4 , C).

Since the relay always chooses m
(0)
1 = m

(0)
2 = s

(0)
1 = s

(0)
2 = 1, it is known by everybody that

V
(0)
1 = v

(b)
1 (1, 1) V

(0)
2 = v

(b)
2 (1, 1).
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We now have,

H(W
[B−1]
1 |Y[B]

4 , C)

≥ H(W
[B−1]
1 |(U2,V2)[B],Y

[B]
4 , C)

≥ I(U
[B]
1 ,V

[B]
1 ;W

[B−1]
1 |(U2,V2)[B],Y

[B]
4 , C)

= H(U
[B]
1 ,V

[B]
1 |(U2,V2)[B],Y

[B]
4 , C)−H(U

[B]
1 ,V

[B]
1 |(U2,V2)[B],W

[B−1]
1 ,Y

[B]
4 , C)

= H(U
[B]
1 ,V

[B]
1 |(U2,V2)[B], C)− I(U

[B]
1 ,V

[B]
1 ; Y

[B]
4 |(U2,V2)[B], C)

−H(U
[B]
1 ,V

[B]
1 |(U2,V2)[B],W

[B−1]
1 ,Y

[B]
4 , C) (5.14)

We now bound the first term in (5.14):

H(U
[B]
1 ,V

[B]
1 |(U2,V2)[B], C) =

B∑
j=1

H((U1,V1)(j)|(U1,V1)[j−1], (U2,V2)[B], C)

≥
B∑
j=1

H(U
(j)
1 |V

(j)
1 , (U1,V1)[j−1], (U2,V2)[B], C)

(a)
=

B−1∑
j=1

H(U
(j)
1 |V

(j)
1 , (U1,V1)[j−1], (U2,V2)[B], C), (5.15)

(b)
=

B−1∑
j=1

H(U
(j)
1 ,V

(j+1)
1 |V(j)

1 , (U1,V1)[j−1], (U2,V2)[B], C),

(5.16)

where (a) follows because U
(B)
1 = u

(B)
1 (1, 1, 1,m(B−1), s(B−1)). Step (b) follows because

V
(j+1)
1 is determined by U

(j)
1 .

Now consider j = 1 term i.e. H(U
(1)
1 ,V

(2)
1 |V

(1)
1 , (U2,V2)[B], C). The number of v

(2)
1

sequences typical with a given (v2,u2)(2) pair is ≈ 2n(R21−I(V1;U2,V2)). For each possible v
(2)
1 ,

the encoder can choose from among 2n(R11−R21) sequences u
(1)
1 (based on the index t). The

number of possible choices for u
(1)
1 is thus:

2n[R21−I(V1;U2,V2)] × 2n[R11−R21] = 2n[R11−I(V1;U2,V2)]

But now we note that since v
(1)
1 and (u2,v2)(1) are in the conditioning, we can further reduce

the number of possibilities for u
(1)
1 by 2nI(U1;U2,V2|V1). Thus we finally have:

2n[R11−I(V1;U2,V2)]

2nI(U1;U2,V2|V1)
= 2n[R11−I(U1,V1;U2,V2)]

possibilities. In terms of equivocation, this contributes a term n(R11− I(U1, V1;U2, V2)− ε).
Essentially the same argument applies for j = 2, 3, . . . , B − 1, and so we have

B−1∑
j=1

H(U
(j)
1 ,V

(j+1)
1 |V(j)

1 , (U1,V1)[j−1], (U2,V2)[B], C)

= n(B − 1) (R11 − I(U1, V1;U2, V2)− ε) (5.17)
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Now, we proceed to upper bound the second term of (5.14):

I(U
[B]
1 ,V

[B]
1 ; Y

[B]
4 |(U2,V2)[B], C)

=
B∑
j=1

I((U1,V1)[B]; Y
(j)
4 |Y

[j−1]
4 , (U2,V2)[B], C)

=
B∑
j=1

(
H(Y

(j)
4 |Y

[j−1]
4 , (U2,V2)[B], C)−H(Y

(j)
4 |(U1,V1)[B],Y

[j−1]
4 , (U2,V2)[B], C)

)
(a)

≤
B∑
j=1

(
H(Y

(j)
4 |(U2,V2)(j), C)−H(Y

(j)
4 |(U1,V1,U2,V2)(j), C)

)

=
B∑
j=1

I((U1,V1)(j); Y
(j)
4 |(U2,V2)(j))

(b)

≤ n(B − 1)[I(Y4;U1, V1|U2, V2) + ε]

for large enough n for any ε > 0. Here, (a) follows because

Y
(j)
4 ↔ (U

(j)
1 ,V

(j)
1 ,U

(j)
2 ,V

(j)
2 )

↔
(
(U1,V1,U2,V2)[j−1], (U1,V1,U2,V2)[j+1:B],Y

[j−1]
4 , C

)
forms a Markov chain. Also, in (b) we have a factor B − 1 and not B because V

(1)
1 and

U
(B)
1 do not contribute. See, for example, [65].

As in the previous chapter, we define the RV:

IR = 0 if the relay makes a decoding error in some block

= 1 if the relay decodes correctly in all B blocks.

Now we proceed to upper bound the third term of (5.14)

H((U1,V1)[B]|(U2,V2)[B], C,W [B−1]
1 ,Y

[B]
4 )

= H((U1,V1)[B]|IR, (U2,V2)[B], C,W [B−1]
1 ,Y

[B]
4 )

+ I(IR; (U1,V1)[B]|(U2,V2)[B], C,W [B−1]
1 ,Y

[B]
4 )

(a)

≤ H((U1,V1)[B]|IR, (U2,V2)[B], C,W [B−1]
1 ,Y

[B]
4 ) + 1

≤ H((S1, T1)[B]|IR, (U2,V2)[B], C,W [B−1]
1 ,Y

[B]
4 ) + 1

=
B−1∑
b=1

H(S
(b)
1 , T

(b)
1 |S

[b−1]
1 , T

[b−1]
1 , IR, (U2,V2)[B], C,W [B−1]

1 ,Y
[B]
4 ) + 1

where (a) follows because the conditional mutual information term is upper bounded by

H(IR) which in turn is ≤ 1, as IR is a binary RV.
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We will examine how much ambiguity about (S1, T1)(b) the receiver with Y4 will have if it

is additionally provided W
[B−1]
1 , S

[b−1]
1 , T

[b−1]
1 , (U2,V2)[B] and also assuming that the relay

decodes correctly. Consider b = 1.

1. From (U2,V2,Y4)(2) receiver 2 gets almost nI(V1;Y4, U2, V2) bits of information about

V
(2)
1 = v

(2)
1 (W

(1)
1 , S

(1)
1 ). Since W

(1)
1 is already provided to the receiver, its remaining

uncertainty about S
(1)
1 is ≤ n(R21−R1)−nI(V1;Y4, U2, V2). Here note that R21−R1 >

I(V1;Y4, U2, V2) by (5.2)

2. The remaining uncertainty in (S
(1)
1 , T

(1)
1 ) is thus ≤ n(R21 −R1)− nI(V1;Y4, U2, V2) +

n(R11 −R21) = n(R11 −R1)− nI(V1;Y4, U2, V2). So, there is a list of about

2n((R11−R1)−I(V1;Y4,U2,V2)) pairs (S
(1)
1 , T

(1)
1 ) pairs. This includes the uncertainty in T

(1)
1 .

3. All the possible codewords in the list are from the satellite codebook of V
(1)
1 . So, a

randomly chosen codeword from the list has a probability of about 2−nI(U1;U2,V2,Y4|V1)

of being jointly typical with (U
(1)
2 ,V

(1)
2 ,Y

(1)
4 ). So, the number of codewords from the

list that are jointly typical with U
(1)
2 ,V

(1)
2 ,Y

(1)
4 is about

2n((R11−R1)−I(V1;U2,V2,Y4)−I(U1;U2,V2,Y4|V1)).

So the uncertainty remaining in (S
(1)
1 , T

(1)
1 ) is

≤ n ((R11 −R1)− I(V1;U2, V2, Y4)− I(U1;U2, V2, Y4|V1)− ε15)

≤ n ((R11 −R1)− I(U1, V1;U2, V2, Y4)− ε11)

But we have packed each transmitter bin with R11 −R1 ≈ I(U1, V1;U2, V2, Y4) and by

our choice nε11
n↑∞→ 0, and so each term can be made as small as desired.

4. In the last block b = B, S
(B)
1 = T

(B)
1 = 1. So there is no uncertainty and the last block

does not contribute.

Thus, we have a sum of B − 1 terms:

H((U1,V1)[B]|(U2,V2)[B], C,W [B−1]
1 ,Y

[B]
4 )

≤ n(B − 1)(R11 −R1 − I(U1, V1;Y4, U2, V2)− ε11) + 1

Finally, the upper and lower bounds for terms in (5.14) give:

H(W
[B−1]
1 |Y[B]

4 , C) ≥ n(B − 1)(R11 − I(U1, V1;V2, U2)− ε1)

− n(B − 1)(I(Y4;U1, V1|U2, V2) + ε2)− n(B − 1)ε′3

= n(B − 1)[R11 − I(U1, V1;U2, V2, Y4)− ε5]

∵R11−R1=I(U1,V1;U2,V2,Y4)
= n(B − 1)[R1 − (ε1j + ε5)]
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Chapter 6

Conclusion and Future Work

As mentioned in the introductory chapter, the introduction of even a single relay entails

many complexities. In chapters 4 and 5, we have considered “strong” relay scenarios i.e.

scenarios where the relay performs DF. We also have some (preliminary) results in the “weak”

relay scenario, described below. Here, compress-forward (CF) is the preferred option [27,

Chapter 16, Section 16.7]. Our preliminary results, based on combining insights obtained

from the work of Luo and co-workers’ [81] and Tang, Liu, Spasojevic, Poor [148], and also

Wu and Xie (see Wu’s PhD thesis [58], for example) seem to indicate that noise forwarding

is unnecessary, and possibly suboptimal.

• Relay-Eavesdropper

Chapter 4 studies the relay-eavesdropper channel with a “strong” relay – this means

that the relay can decode completely the message intended for the destination, and

that the Tx→Rel link is stronger than the Tx→Rx link. What happens if the relay

is “weak” i.e. the Tx→Rel link is weaker than the Tx→Rx link? In this case, re-

quiring the relay to decode the message would introduce an unnecessary bottleneck

and give a suboptimal solution. The “weak” relay problem in the context of an exter-

nal eavesdropper was also first studied by Lai and Gamal [72, Theorems 3, 4]. Each

compression sequence was represented by many different relay channel codewords – a

technique they referred to as “noise forwarding” (NF). No Wyner-Ziv binning of the

compression sequences was performed. Tang, Liu, Spasojevic, Yates [148] (see also

[149]) suggested an improvement to the NF technique developed by [72, Theorem 3]

by noting that there was no need for the eavesdropper to be able to decode the relay

codeword. We take [148] as our starting point.

For the canonical relay channel using CF (hence “weak” relay scenario), Luo, Gohary,

Yanikomeroglu [81, 57] have developed a decoding technique which uses WZ binning.

The usual constraint on relay codeword rate that enables it to be decoded uniquely is
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replaced by a constraint on the compression sequence rate that acts as a proxy for the

relay codeword to be decoded uniquely. The work of Wu, Fa, Xie shows that too many

compression sequences in a WZ bin may themselves act as “noise” [111], [112], [58].

Thus there may not be need for separate NF step as used by [72]. We are currently

investigating this matter.

Post-Review Update:

The following is a plausible achievable region via a CF scheme without NF obtained

after the thesis reviews arrived. The possible enlargement of the achievable rate due to

this scheme is of future interest.

We define:

WZBob
def
= I(Ŷ2;X1, Y3|X2) and WZEve

def
= I(Ŷ2;X1, Z|X2)

We use R1 to denote the achievable secrecy rate. Also, the general constraint R̂ ≥ R2

holds throughout.

1. Case 1 : I(X2;Z) +WZEve < I(X2;Y3) +WZBob.

(a) Case 1(a) : (I(X2;Z) <) I(X2;Z) +WZEve < I(X2;Y3) + I(Ŷ2;Y3|X2)

i. Case 1(a)(i) : I(X2;Z|X1) < I(X2;Y3) + I(Ŷ2;Y3|X2). The choices

R2 = max{I(X2;Y3), I(X2;Z|X1)}+ε and R̂ = I(X2;Y3)+I(Ŷ2;Y3|X2)−
ε > I(X2;Z) +WZEve, enable the secrecy rate R1 = I(X1; Ŷ2, Y3|X2)−
I(X1;Z).

ii. Case 1(a)(ii) : I(X2;Y3)+I(Ŷ2;Y3|X2) < I(X2;Z|X1). The choices R2 =

max{I(X2;Y3), I(X2;Z)}+ε, R̂ as before, enable R1 = I(X1; Ŷ2, Y3|X2)−
[I(X1, X2;Z) − R2]. The penalty term can be reduced by choosing ε > 0

s.t. R2 ↑ R̂.

(b) Case 1(b) : I(X2;Y3) + I(Ŷ2;Y3|X2) < I(X2;Z) + WZEve < I(X2 : Y3) +

WZBob

i. Case 1(b)(i) : I(X2;Z|X1) < I(X2;Y3) + WZBob. The choices R2 =

max{I(X2;Z|X1), I(X2;Y3)}+ ε(> I(X2;Z)) and

R̂ ∈ (I(X2;Z)+WZEve, I(X2;Y3)+WZBob)(> I(X2;Y3)+I(Ŷ2;Y3|X2)),

enable the secrecy rate R1 = I(X1; Ŷ2, Y3|X2)+I(X2;Y3)+I(Ŷ2;Y3|X2)−
max{I(X2;Z|X1), I(X2;Y3)} − I(X1;Z).

ii. Case 1(b)(ii) : I(X2;Y3) + WZBob < I(X2;Z|X1). The choices R2 >

max{I(X2;Y3), I(X2;Z)} + ε and R̂ ∈ (I(X2;Z) + WZEve, I(X2;Y3) +

WZBob) enable the secrecy rate R1 = I(X1; Ŷ2, Y3|X2) + I(X2;Y3) +

I(Ŷ2;Y3|X2)− [I(X1, X2;Z)].
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2. Case 2 : I(X2;Y3) +WZBob < I(X2;Z) +WZEve

(a) Case 2(a) : WZEve < WZBob( =⇒ I(X2;Y3) < I(X2;Z))

i. Case 2(a)(i) : WZEve < I(Ŷ2;Y3|X2). The choices R2 > I(X2;Y3), R̂ −
R2 > WZEve, R̂ < I(X2;Y3) + I(Ŷ2;Y3|X2) are consistent and enable

secrecy rate R1 = I(X1; Ŷ2, Y3|X2)− I(X1;Z|X2).

ii. Case 2(a)(ii) : I(Ŷ2;Y3|X2) < WZEve < WZBob. The choices R2 >

I(X2;Y3), R̂ − R̆ > WZEve, R̂ < I(X2;Y3) + WZBob enable secrecy rate

R1 = [I(X1;Y3|X2)− I(X1;Z|X2)] + [WZBob −WZEve].

(b) Case 2(b) : WZBob < WZEve

i. Case 2(b)(i) : I(X2;Y3) < I(X2;Z). The choices R2 < I(X2;Y3) and

R̂ > I(X2;Z) + WZEve enable the secrecy rate R1 = I(X1;Y3|X2) −
I(X1;Z|X2).

ii. Case 2(b)(ii) : I(X2;Z) < I(X2;Y3).

A. I(X2;Z) < I(X2;Y3) < I(X2;Z|X1). The choicesR2 ∈ (I(X2;Z), I(X2;Y3)),

and R̂ − R2 > WZEve enable the secrecy rate R1 = I(X1;Y3|X2) −
[I(X1, X2;Z) − R2]. The penalty term is reduced by choosing R̆ ↑
I(X2;Y3)

B. I(X2;Z) < I(X2;Z|X1) < I(X2;Y3). The choices

R2 ∈ (I(X2;Z|X1), I(X2;Y3)) and R̂−R2 as before, enable the secrecy

rate R1 = I(X1;Y3|X2)− I(X1;Z).

In many regimes, the relay both assists Bob and interferes with Eve.

End of Update.

• Relay-Broadcast with Mutual Secrecy: DF + “Peeling Off” + CF case.

The relay plays a starring role. It is possible that of two receivers, the relay is “strong”

with respect to one (say, Rx 1) and “weak” with respect to the other (say, Rx 2). The

relay can perform the following operations on its received sequence. It decodes the

message of Rx 1, and then “peels off” (see [150, Theorem 2] and [69, Theorems 1, 4, 5])

the transmitted codeword from its received sequence. It re-encodes the message in-

tended for Rx 1. It then compresses the peeled off sequence and performs WZ binning

on it. Finally, taking into account the requirements for coherent transmission for the

DF receiver and mutual secrecy for both receivers, the relay broadcasts a re-encoded

version of the message intended for Rx 1 together with a compressed version of the

“peeled off” sequence intended for Rx 2. This has not been done – to the best of

our knowledge – even in the case of no secrecy requirements, at least using [76]’s in-
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sight that the relay be used as a broadcast channel. We are currently exploring these

matters.

Remark 29. Peeling off: It seems to us that the papers that have discussed “peeling

off” have not described the theoretical justification for the appropriate expressions.

We have described what we think is the correct way to think about the process using an

application of the functional representation lemma [27, Appendix B].

Studying the combined effect of a pair of secret keys and a trusted relay would also be

a worthwhile exercise. This would, in effect, constitute a generalization of both the models

studied in chapter 3 and chapter 5.

Consider Ekrem and Ulukus [69]. This is a three-node network that they have referred

to as a relay broadcast channel. They study both a one-sided cooperative link as well as a

two-sided cooperative link. It will be interesting to see what the addition of a relay trusted

by one (or both destination nodes) has on the achievable region of [69].

Many of the following are natural generalizations of interest in their own right.

• Common message, rate-equivocation: A very natural generalization is to consider a

common message to both receivers. Further, in our achievable schemes, we have only

considered pure secrecy in all the models studied in chapters 3 to 5. It may be that

pure secrecy is not desired for one or both receivers, i.e. a portion of one or both

receivers’ messages is private but not necessarily secret. In that case, we would need

to obtain the rate-equivocation region.

• Multiple relays, with all relays trusted by both destinations: assisting in creating mu-

tual secrecy through pure DF based techniques. This would be a natural and useful

generalization of the work of Bassily and Ulukus [151]. The techniques developed in

Razaghi and Yu [122] are applicable to this problem and may need to be extended

keeping the constraint of mutual secrecy in mind.

The (single-)relay broadcast channel using DF considers coherent transmission between

two broadcast channels, with both the transmitter and relay treated as broadcast

channels in their own right. With multiple relays, an extension of the lemma developed

in [76] would be required if all relays perform DF and coherent transmission is desired.

• Multiple relays, with each destination trusting some – possibly distinct– subset: A

pair of relays, each trusted by exactly one receiver. This would also constitute a

generalization of the model studied by Behboodi and Piantanida [71] to the problem

of mutual secrecy. Note that in this case, each destination has to contend with two
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eavesdroppers – the other destination and “its” relay. [71] employ backward decoding,

which we can dispense with.

If multiple relays are present, some subset may not be trusted by one or more desti-

nations, yet their assistance may prove useful, as demonstrated by He and Yener in a

sequence of papers [102], [104], [152], [105]. (This automatically necessitates CF based

techniques).

• Wu and Xie [60] have developed a framework with both D-F and C-F nodes. This is a

current topic of much interest. See also Behboodi and Piantanida [71]. The introduc-

tion of secrecy and/or untrusted relays will add an additional degree of complexity, as

an untrusted relay can only employ CF techniques.

• Side information: The impact of receiver side information on secrecy in broadcast

channels is of interest, see, for example, [153]. The presence of a relay that is aware

of some or all of the side information would be useful to understand.

• Cognitive relay and/or relay as recipient: The relay(s) may itself (themselves) have

messages of its (their) own to transmit or to receive. This kind of scenario was first

explored by Tannious and Nosratinia [150], and also by Ekrem and Ulukus [69], and

more recently, by Nagananda [54, 107].

• It is likely that the techniques developed by Razaghi and Yu [117] and which were

developed for the interference channel will also find application in multi-relay networks,

as Zhong, Haija, Vu [95] indicate. This holds even more strongly if the two destinations

are attempting to eavesdrop on each other’s message.

• ≥ 3 destinations: Chia and Gamal [56], [154] have studied the 3-receiver broadcast

channel with confidential messages. It would be interesting to study the impact of a

dedicated relay. Chia and Gamal also have some results on 2-eavesdropper scenarios,

which would give insights into the above suggested generalization of Behbodi and

Piantanida. Note that indirect (aka nonunique) decoding is used, and the work of

Bidokhti, Diggavi and Prabhakaran [155], [156] indicates that this may be unnecessary

In the above, we have considered secrecy. A different kind of generalization of Zhao

and Chung [76] – without taking secrecy into account – would be to consider ≥ 3

destinations and a dedicated relay. Note that there are partial results on broadcast

channels with 3 destinations in the literature, for example, Chia and El Gamal [157]

(which involves secrecy), and Nair and El Gamal [158], [159] (which do not). The

introduction of single relay in such a scenario would require studying the interaction

between two 3-receiver broadcast channels.
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