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Abstract—We consider mutual secrecy requirements in a two
receiver relay broadcast channel, where the dedicated relay is
trusted by all parties. In our scheme, the relay decodes and
forwards the respective messages to their intended destinations.
Coherent transmission by the transmitter and relay is achieved by
employing the Marton-Marton coding technique. Double random
binning is then used to provide mutual secrecy. While our
encoding is irregular, the decoding at the receivers employs
forward sliding windows. This improves flexibility and reduces
decoding delay when compared to backward decoding. This will
be welcomed by wireless engineers. The multi-block equivocation
calculation also has some features of interest.

I. INTRODUCTION

We study a discrete memoryless relay broadcast channel
(DM-RBC) with a dedicated relay and two receivers – to each,
the source transmits an independent message. In a wireless
scenario, it is possible for both receivers to attempt to snoop
on the message intended for the other. Preventing successful
eavesdropping by either receiver is the mutual secrecy require-
ment imposed on the model. The relay, an extension of the
transmitter, is trusted by all parties. We study the “strong”
relay scenario where the transmitter-to-relay (Tx→Rel) link is
stronger than both transmitter-to-destination (Tx→Rx) links.
Here decode-forward (DF) is indicated [1]. The trusted relay
decodes-forwards both messages to their respective destina-
tions and assists the Tx in maintaining mutual confidentiality.

Both Tx and relay are used as broadcast channels in their
own right. This is in contrast to [2], who used the relay in
an RBC as a point-to-point channel to increase the common
message rate. Wireless networks are inherently broadcast –
[2]’s strategy is likely suboptimal. Coherent transmission be-
tween Tx and relay is obtained by the Marton-Marton coding
technique developed by [3], who introduced the modified
mutual covering lemma [3, Lemma 1] that we also use. (In
a Gaussian setting, [4] also uses the relay as a broadcast
channel).

The double random binning technique of [5] was the first
achievable scheme for mutual secrecy in a two-Rx broadcast
setup. [6] studied an extension of [5] wherein dedicated secure
Tx-Rx links carrying fixed-rate secret keys were present.
The model studied in this paper can be seen as another
extension of [5] with the introduction of a dedicated relay
trusted by all parties. It can also be seen as an extension

of relay-eavesdropper with a “strong” relay studied by [7,
Theorem 2] to a situation where both Rxs have legitimate
message requirements and mutual secrecy is desired.

[8, Chapter 7] indicate that for secrecy to be obtainable via
DF in relay-eavesdropper, the Rel→Rx link must be stronger
than the Rel→Eve link. Naively, this may lead one to conclude
that mutual secrecy is unobtainable with a relay that performs
DF. Our results indicate that this intuition may be incorrect.

The RBC with mutual secrecy was also studied by [9]. Their
achievable scheme – like [7] (and unlike ours) – uses backward
decoding and regular encoding, which respectively incurs large
delay and is inflexible. They have not used the relay as a
broadcast channel in its own right. The secret message is
carried on the Tr→Rx link, which is problematic in DF based
scenarios because this link is weaker than the Tr→Rel link.

Paper organization: Section II describes the model. Sec-
tion III states the main theorems. Sections IV through VII
respectively contain the achievable scheme, error probability
analysis and equivocation calculation, and the conclusion.
Note: For definitions of regular and irregular encoding, back-
ward and forward sliding window decoding, see [1].

II. THE MODEL: RBC WITH MUTUAL SECRECY

We assume a two-Rx discrete memoryless relay broadcast
channel (DM-RBC) with two confidential messages. The finite
sets Xt=1,2, Yt=2,3,4 respectively represent the input at node 1
(Tx), at node 2 (relay), the output at nodes 2, 3 (Rx 1) and
4 (Rx 2). The channel is described by the conditional prob-

ability distribution PY2,Y3,Y4|X1,X2
, where RVs Xt

t=1,2
∈ Xt,

Yt
t=2,3,4
∈ Yt. The Tx sends B−1 independent messages Mt ∈

{1, 2, . . . , 2nRt} ∆
= Mt to the respective Rx t ∈ {1, 2} in B

blocks of n channel uses each, while ensuring information
theoretic secrecy (see below). The channel is memoryless and

without feedback i.e. ∀(x1,x2) ∈
∏2
t=1 Xnt ,yt

t=2,3,4
∈ Ynt :

P (y2,y3,y4|x1,x2) =

n∏
i=1

PY2,Y3,Y4|X1,X2
(y2i,y3i,y4i|x1i,x2i)

The Tx channel input is obtained by passing satellite
codewords ut ≡ ut(|vt)t=1,2 through a stochastic en-
coder which generates x1 ∼

∏n
i=1 PX1|U1,U2

(x1i|u1i, u2i).
The relay channel input is obtained by passing codewords
vt=1,2 through a stochastic encoder which generates x2 ∼978-1-5386-3821-7/18/$31.00 c© 2018 IEEE
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Fig. 1. Two Receiver Dedicated Relay Broadcast Channel with Trusted Relay
(i.e. the relay is an extension of the transmitter, and is trusted by both Rxs)
and Two Confidential Messages.

∏n
i=1 PX2|V1,V2

(x2i|v1i, v2i). (See Section IV, encoding, for
how (ut,vt)t=1,2 are chosen). The sequences xt=1,2 are not
part of code C. They are generated at the time of transmission
by choosing an appropriate quadruple (ut,vt)t=1,2. The relay
decoding function is a map φ2 : Yn2 →M1×S1×M2×S2. In
the preceding, the subbin index St ∈ {1, 2, . . . , 2n[R2t−Rt]} ∆

=
St. (See Section IV). The decoding map at Rx 1 ≡ Y3

(resp. Rx 2 ≡ Y4) is φ3 : Yn3 × Yn3 → M1 × S1 (resp.
φ4 : Yn4 ×Yn4 →M2×S2). (See Remark 9 for why Sts are de-
coded). A (2nR1 , 2nR2 , n, P

(n)
e ) code for the RBC consists of

the stochastic encoding functions, decoding functions φt=2,3,4,
and the error probability P (n)

e
∆
= max{P (n)

e,2 , P
(n)
e,3 , P

(n)
e,4 }:

P
(n)
e,2 =

∑
(mt,st)t=1,2

Pr[φ2(Y2) 6= (mt, st)t=1,2|(mt, st)t=1,2]

2nR1 × 2n[R21−R1] × 2nR2 × 2n[R22−R2]

P
(n)
e,t+2
t=1,2

=
∑

(mt,st)

Pr[φt+2(Yt+2 ×Yt+2) 6= (mt, st)|mt, st]

2nRt × 2n[R2t−Rt]

Rates (R1, R2) achievable for the DM-RBC with confidential
messages if, for any ε0 > 0,∃(2nR1 , 2nR2 , n, P

(n)
e ) code s.t.:

P (n)
e ≤ ε0 reliability requirement

n(B − 1)R1 −H(M
[B−1]
1 |Y[B]

4 ) ≤ n(B − 1)ε0

n(B − 1)R2 −H(M
[B−1]
2 |Y[B]

3 ) ≤ n(B − 1)ε0

The last two constraints are the weak secrecy constraints [5].
We use the notation t ∆

= {1, 2}\{t}, and t[j] ∆
= {t1, t2, . . . , tj}.

III. INNER BOUND

Theorem 1. A (pure secrecy) rate pair
(R1, R2) is achievable if there exist distributions
PQPV1,V2|Q, PU1,U2|V1,V2,Q, PX1|U1,U2,Q, PX2|V1,V2,Q, so
that the following inequalities are satisfied.

R1 ≤ min{I(U1, V1;Y3|Q), I(U1;U2, V2, Y2|V1, Q)}
− I(U1, V1;U2, V2, Y4|Q)

R2 ≤ min{I(U2, V2;Y4|Q), I(U2;U1, V1, Y2|V2, Q)}
− I(U2, V2;U1, V1, Y3|Q)

R1 +R2 ≤ I(U1;V2, Y2|V1, Q) + I(U2;V1, Y2|V2, Q)

+ I(U1;U2|V1, V2, Y2, Q)

− I(U1, V1;U2, V2, Y4|Q)− I(U2, V2;U1, V1, Y3|Q)

(R1, R2) is obtained by Fourier-Motzkin (FM) elimination
of the following inequalities, followed by convexification
via a time-sharing random variable (RV) Q. In the doubly
subscripted quantities below, the first subscript refers to the
node index; the second to the intended Rx. Thus R12 refers
to the rate of the codebook at the Tx intended for Rx 2.

Theorem 2. A (pure secrecy) rate pair (R1, R2) is
achievable if ∃R11, R12, R21, R22, and distributions
PV1V2 , PU1U2|V1V2

, PX1|U1U2
, PX2|V1V2

, so that the following
inequalities are satisfied.

R11 ≤ min{I(U1, V1;Y3), I(U1;U2, V2, Y2|V1)} (1)
R12 ≤ min{I(U2, V2;Y4), I(U2;U1, V1, Y2|V2)}
R11 +R12 ≤ I(U1;V2, Y2|V1) + I(U2;V1, Y2|V2)

+ I(U1;U2|V1, V2, Y2)

R21 −R1 > I(V1;U2, V2, Y4) (2)
R22 −R2 > I(V2;U1, V1, Y3)

R11 −R1 = I(U1, V1;U2, V2, Y4)− ε11

R12 −R2 = I(U2, V2;U1, V1, Y3)− ε12

R11 −R21 > I(U1;V2|V1); R12 −R22 > I(U2;V1|V2) (3)
[R11 −R21] + [R12 −R22] > I(U1;V2|V1) + I(U2;V1|V2)

+ I(U1;U2|V1, V2)

Remark 3. From the above, we can obtain: R1t ≥ R2t ≥
Rt, t = 1, 2, indicating the ordering between the correspond-
ing codebook sizes at the Tx, the relay, and the (pure secrecy)
message rate intended for Rxs 1, 2.

Remark 4. In the inequalities (1) on R1t, t = 1, 2, the first
term inside the min arises from decoding at the intended
Rxs t = 1, 2 and second term from decoding at the relay.
The sum-rate constraint R11 + R12 arises from (nonunique)
decoding at the relay. The following redundant constraints also
arise from nonunique decoding at the relay.

R11 +R12 − R2t
t=1,2

≤ I(U1;V2, Y2|V1) + I(U2;U1, V1, Y2|V2)

Remark 5. The four inequalities (2) are packing constraints
on the bins at the relay and the transmitter that arise due to
secrecy requirements. ε1js satisfy nε1j

n↑∞→ 0.

Remark 6. Slack variables ∆t=1,2 > 0 can be used to rewrite
the first two inequalities in (2) as equalities and obtain, after
appropriate manipulations, the following constraints: ∆1 <
I(U1;U2, Y4|V1, V2), ∆2 < I(U2;U1, Y3|V1, V2), ∆1 + ∆2 <
I(U1;U2, Y4|V1, V2)+I(U2;U1, Y3|V1, V2)−I(U1;U2|V1, V2).

IV. ACHIEVABILITY SCHEME

In decode-forward scenarios, the relay and transmitter must
transmit coherently. This is enabled in our achievability
scheme by the Marton-Marton technique developed by [3].
Mutual secrecy is obtained by means of double random
binning developed by [5]. The employed coding structure is



C(b)
1j =

{
u

(b)
j (mj , sj , tj ,m

′
j , s
′
j)|mj ,m

′
j ∈

[
2nRj

]
, sj , s

′
j ∈

[
2n(R2j−Rj)

]
, tj ∈

[
2n(R1j−R2j)

]}
(4)

shown below. Let us consider rates R1, R2, R11, R12, R21, R22

satisfying the constraints in Theorem 2 for some distributions
PV1,V2

, PU1,U2|V1,V2
, PX1|U1,U2

, PX2|V1,V2
.

Codebook Generation: The Tx uses two codes, C11, C12,
one intended for each Rx. Similarly, the relay uses two codes,
C21, C22, one intended for each Rx. Our achievable scheme is
over B blocks of n channel uses each. So each code Cij has
B parts: Cij = (C(1)

ij , . . . , C
(B)
ij ). We now describe what these

codes contain, and how they are generated. The size of the
codes used by the relay are given by

|C(k)
2j | = 2nR2j for j = 1, 2; k ∈ [1 : B].

• For blocks b ∈ [1 : B], j = 1, 2, relay codebooks C(b)
2j :

C(b)
2j =

{
v

(b)
j (m′j , s

′
j)|m′j ∈

[
2nRj

]
, s′j ∈

[
2n(R2j−Rj)

]}
• For blocks b ∈ [1 : B], j = 1, 2, Tx codebooks C(b)

1j : See
the equation (4) at the top of the page.

All the codewords are generated independently, and the
components of u

(b)
j (mj , sj , tj ,m

′
j , s
′
j) are generated inde-

pendently as a satellite of v
(b)
j (m′j , s

′
j) using the con-

ditional distribution PUj |Vj
, i.e. u

(b)
j (mj , sj , tj ,m

′
j , s
′
j) ∼∏n

i=1 PUj |Vj
(u

(b)
ji |v

(b)
ji (m′j , s

′
j)). The code can be thought as

the union of satellite codebooks for each relay codeword
v

(b)
j (m′j , s

′
j) (m′, s′ corresponds to the previous block). Each

satellite codebook has 2nRj bins (≡ messages) indexed by
mj , 2n(R2j−Rj) subbins indexed by sj in each bin, and
2n(R1j−R2j) codewords indexed by tj in each subbin. Each
relay codebook has 2nRj bins indexed by m′j ; each relay bin
has 2n[R2j−Rj ] codewords, indexed by s′j . This is identical
to the number of subbins per bin in each satellite codebook,
enabling a one-to-one correspondence to be set up. The
codebooks to be used in the B blocks are supplied to all users.

Encoding at the transmitter: To transmit (m
(b)
1 ,m

(b)
2 ) in

block b, the Tx finds a pair (s
(b)
1 , s

(b)
2 ) s.t.:(

v
(b+1)
1 (m

(b)
1 , s

(b)
1 ),v

(b+1)
2 (m

(b)
2 , s

(b)
2 )
)
∈ Tε. (5)

Remark 7. The Tx looks inside the appropriate bins in the
relay codebooks in the next block b+ 1. Thus the codebooks
must be known at least one block in advance.

If there is no such pair, then the encoder chooses (1, 1), and
if there is more than one, then it chooses the least such pair
in lexicographical order. It then picks (t

(b)
1 , t

(b)
2 ) s.t.:(

u
(b)
1 (m

(b)
1 , s

(b)
1 , t

(b)
1 ,m

(b−1)
1 , s

(b−1)
1 ),v

(b)
1 (m

(b−1)
1 , s

(b−1)
1 ),

u
(b)
2 (m

(b)
2 , s

(b)
2 , t

(b)
2 ,m

(b−1)
2 , s

(b−1)
2 ),v

(b)
2 (m

(b−1)
2 , s

(b−1)
2 )

)
(6)

is typical where s(b−1)
1 ||b=1 = m

(b−1)
1 |b=1 = m

(b−1)
2 |b=1 = 1.

Also, s(0)
2 = 1′ is the least index s.t. (v

(1)
1 (1, 1),v

(1)
2 (1, 1′))

is jointly typical. By appropriate relabelling of
the indexes we can take m

(b−1)
2 = 1 itself, a

convention followed below. The codeword x
(b)
1 is

generated from u
(b)
1 (m

(b)
1 , s

(b)
1 , t

(b)
1 ,m

(b−1)
1 , s

(b−1)
1 ) and

u
(b)
2 (m

(b)
2 , s

(b)
2 , t

(b)
2 ,m

(b−1)
2 , s

(b−1)
2 ) component-wise using∏n

i=1 pX1|U1,U2
(x1i|u(b)

1i , u
(b)
2i ).

Decoding at the relay: The relay knows m(0)
1 = m

(0)
2 =

s
(0)
1 = s

(0)
2 = 1 and assigns the same decoded values m̃(0)

1 =

m̃
(0)
2 = s̃

(0)
1 = s̃

(0)
2 = 1. In block b, the relay chooses the

quadruple (m̃
(b)
1 , s̃

(b)
1 , m̃

(b)
2 , s̃

(b)
2 ) if it is the unique one s.t.:(

u
(b)
1 (m̃

(b)
1 , s̃

(b)
1 , t̃

(b)
1 , m̃

(b−1)
1 , s̃

(b−1)
1 ),v

(b)
1 (m̃

(b−1)
1 , s̃

(b−1)
1 ),

v
(b)
2 (m̃

(b−1)
2 , s̃

(b−1)
2 ),u

(b)
2 (m̃

(b)
2 , s̃

(b)
2 , t̃

(b)
2 , m̃

(b−1)
2 , s̃

(b−1)
2 ),y

(b)
2

)
is typical for some t̃

(b)
1 , t̃

(b)
2 . This is the value of the tuple

(m
(b)
1 , s

(b)
1 , t

(b)
1 ,m

(b)
2 , s

(b)
2 , t

(b)
2 ) decoded by the relay. We only

require that (m̃
(b)
1 , s̃

(b)
1 , m̃

(b)
2 , s̃

(b)
2 ) be unique. (t̃

(b)
1 , t̃

(b)
2 ) need

not be. If no such quadruple exists or there is more than one,
the relay chooses (m̃

(b)
1 , s̃

(b)
1 , m̃

(b)
2 , s̃

(b)
2 ) = (1, 1, 1, 1).

Encoding at the relay: In block b, the relay
transmits x2

(
v

(b)
1 (m̃

(b−1)
1 , s̃

(b−1)
1 ),v

(b)
2 (m̃

(b−1)
2 , s̃

(b−1)
2 )

)
,

where x2 is a stochastic mapping, according to∏n
i=1 p(x2i|v(b)

1i (m̃
(b−1)
1 , s̃

(b−1)
1 ), v

(b)
2i (m̃

(b−1)
2 , s̃

(b−1)
2 )).

Decoding at the receivers: The Rxs know m
(0)
1 = m

(0)
2 =

s
(0)
1 = s

(0)
2 = 1 and assign m̂

(0)
1 = m̂

(0)
2 = ŝ

(0)
1 =

ŝ
(0)
2 = 1. We assume that the Rx 1 has correctly decoded

(m̂
(b−1)
1 , ŝ

(b−1)
1 ). To decode m

(b)
1 , Rx 1 performs sliding

window decoding and looks for a unique tuple (m̂
(b)
1 , ŝ

(b)
1 )

s.t.:
(
v

(b+1)
1 (m̂

(b)
1 , ŝ

(b)
1 ),y

(b+1)
3

)
∈ Tε and(

u
(b)
1 (m̂

(b)
1 , ŝ

(b)
1 , t̂

(b)
1 , m̂

(b−1)
1 , ŝ

(b−1)
1 ),v

(b)
1 (m̂

(b−1)
1 , ŝ

(b−1)
1 ),y

(b)
3

)
is typical for some t̂(b)1 . If a unique such (m̂

(b)
1 , ŝ

(b)
1 ) is found,

then m̂(b)
1 is declared as the decoded message, else an error is

declared. Rx 2 decodes m(b)
2 in a similar manner.

Remark 8. t̂(b)k is decoded nonuniquely by Rx k, k = 1, 2.

Remark 9. Decoding m̂(b)
t correctly and ŝ(b)

t incorrectly (t =
1, 2) gives the correct block b message, but leads (w.h.p) to
error in block b + 1 as the relay codeword will have been
decoded incorrectly. Hence this is also considered an error.

V. PROBABILITY OF ERROR ANALYSIS

A. Probability of encoding error:

The modified mutual covering lemma [3, Lemma 1] ensures
that probability of success in the encoding step at the Tx given



in (6), can be made arbitrarily close to one for large enough
n by choosing, for t = 1, 2 : R1t −R2t > I(Ut;Vt|Vt) and∑
t=1,2

[R1t −R2t] >
∑
t=1,2

I(Ut;Vt|Vt) + I(U1;U2|V1, V2)

Success in the encoding step (5) is ensured by the condition
[R21−R1] + [R22−R2] > I(V1;V2) which follows from the
standard mutual covering lemma [1, Lemma 8.1]. Note that the
first two constraints in (2) in Theorem 2 make this redundant.

B. Probability of decoding error:

Under random coding arguments, assume w.l.o.g that the
transmitted indices are (1, 1, 1, 1) for all b ∈ [1 : B].
• Decoding at the relay: We list three kinds of error events.

– Er(e, 1): The tuple (m1, s1, 1, 1) satisfies the typ-
icality test for (m1, s1) 6= (1, 1). The number of
possibilities is (2nR11−2n[R11−R12])×1. The second
factor 1 hides a crucial subtlety. See remark 10.

– Er(1, e): The tuple (1, 1,m2, s2) satisfies the typi-
cality test for (m2, s2) 6= (1, 1). P (Er(1, e)) can be
obtained as above with a change of variables.

– Er(e, e): The tuple (m1, s1,m2, s2) satisfies the
typicality test for (m1, s1) 6= (1, 1) and (m2, s2) 6=
(1, 1). The number of possibilities is (2nR11 −
2n[R11−R12])× (2nR12 − 2n[R12−R22]).

By standard calculations, the relay’s decoding error prob-
ability can be made arbitrarily small if:

R11 ≤ I(U1;V2, U2, Y2|V1)− ε
R12 ≤ I(U2;V1, U1, Y2|V2)− ε

R11 +R12 ≤ I(U1;V2, Y2|V1) + I(U2;U1, V1, Y2|V2)− ε.

Remark 10. In computing the number of possibilities
above for error event Er(e, 1), we have written the
second factor as 1. It means that the relay has decoded
not just the indices (m2, s2) correctly as (1, 1), but also
t2 correctly. But if (m2, s2) is decoded correctly as (1, 1)
and t2 is decoded incorrectly within the correct subbin,
then the second factor above becomes 2n[R12−R22] − 1.
In this case, the RHS will be identical to the error event
Er(e, e); the LHS will have an extra term [R12 − R22],
giving a constraint redundant w.r.t the one on R11 +R12:

R11+R12−R22≤I(U1;V2,Y2|V1)+I(U2;U1,V1,Y2|V2)−ε

A similar remark w.r.t. Er(1, e) gives the other redundant
constraint with [R11 −R21] +R12 on the LHS.

• Decoding at the Rxs: We show that we can guaran-
tee successful decoding at Rxs by choosing R11 ≤
I(U1, V1;Y3) − ε and R12 ≤ I(U2, V2;Y4) − ε. Using
y

(b+1)
3 , Rx 1 list decodes to reduce the size of the ambigu-

ity set of possible v
(b+1)
1 from 2nR21 to 2n[R21−I(V1;Y3)].

Each v1 corresponds to a previous block subbin of
size 2n[R11−R21]. Thus the search space of possible u

(b)
1

is now of size 2n[R11−I(V1;Y3)] – assuming that the
relay codeword in block b has already been correctly
decoded (in the previous step). If so, the information

obtained from the other JT condition is 2nI(U1;Y3|V1). If
R11 − I(V1;Y3) < I(U1;Y3|V1) ≡ R11 < I(U1, V1;Y3),
then we can decode u

(b)
1 correctly w.h.p., and thus also

v
(b+1)
1 , as it’s a function of u(b)

1 . Rx 2 performs likewise.

VI. EQUIVOCATION CALCULATIONS

We denote the RVs for the messages in block b for the
two Rxs by M (b)

t , t = 1, 2. The codewords chosen by the Tx
and the relay in block b are denoted by U

(b)
1 ,U

(b)
2 ,V

(b)
1 ,V

(b)
2

respectively. The block b sequences inputted by Tx and relay
are denoted by X

(b)
1 and X

(b)
2 respectively. We will show that

the multi-block equivocation of the message M [B−1]
1 intended

for Rx 1 given the observation of the Rx 2 satisfies:

H(M
[B−1]
1 |Y[B]

4 , C) ≥ n(B − 1)(R1 − ε0)

Since the relay always chooses m(0)
1 = m

(0)
2 = s

(0)
1 = s

(0)
2 =

1, all parties know that V(1)
t = v

(1)
t (1, 1), t = 1, 2. We have:

H(M
[B−1]
1 |Y[B]

4 , C)
≥ H(M

[B−1]
1 |(U2,V2,Y4)[B], C)

≥ I((U1,V1)[B];M
[B−1]
1 |(U2,V2,Y4)[B], C)

= H((U1,V1)[B]|(U2,V2,Y4)[B], C)
−H((U1,V1)[B]|(U2,V2,Y4)[B],M

[B−1]
1 , C)

= H((U1,V1)[B]|(U2,V2)[B], C)
− I((U1,V1)[B];Y

[B]
4 |(U2,V2)[B], C)

−H(U
[B]
1 ,V

[B]
1 |(U2,V2,Y4)[B],M

[B−1]
1 , C) (7)

We expand the first term in (7) by the chain rule to obtain:
B∑
j=1

H((U1,V1)(j)|(U1,V1)[j−1], (U2,V2)[B], C)

≥
B∑
j=1

H(U
(j)
1 |V

(j)
1 , (U1,V1)[j−1], (U2,V2)[B], C)

(a)
=

B−1∑
j=1

H(U
(j)
1 |V

(j)
1 , (U1,V1)[j−1], (U2,V2)[B], C)

(b)
=

B−1∑
j=1

H(U
(j)
1 ,V

(j+1)
1 |V(j)

1 , (U1,V1)[j−1], (U2,V2)[B], C),

where (a) follows because U
(B)
1 =

u
(B)
1 (1, 1, 1,m(B−1), s(B−1)), (b) because V

(j+1)
1 is

determined by U
(j)
1 . Consider j = 1. The number of v

(2)
1 s

typical with a given (v2,u2)(2) pair is ≈ 2n(R21−I(V1;U2,V2)).
For each possible v

(2)
1 , the encoder can choose uniformly

from among 2n(R11−R21)u
(1)
1 sequences. The number of

possible choices for u
(1)
1 is thus 2n[R11−I(V1;U2,V2)]. Note

that since v
(1)
1 and (u2,v2)(1) are in the conditioning, we

can further reduce the number of possibilities for u
(1)
1 by

a factor 2nI(U1;U2,V2|V1) down to 2n[R11−I(U1,V1;U2,V2)].
In terms of equivocation, this contributes a term
n(R11 − I(U1, V1;U2, V2) − ε1). The same argument



applies for j = 2, 3, . . . , B − 1, and so we can lower bound
the first term as:

n(B − 1) (R11 − I(U1, V1;U2, V2)− ε1) (8)

To upper bound the second term of (7), we use the chain rule:
B∑
j=1

I((U1,V1)[B];Y
(j)
4 |Y

[j−1]
4 , (U2,V2)[B], C)

(a)

≤
B∑
j=1

I((U1,V1)(j);Y
(j)
4 |(U2,V2)(j))

(b)

≤ n(B − 1)[I(Y4;U1, V1|U2, V2) + ε2]

for large enough n for any ε > 0. Here, (a) follows because

Y
(j)
4 ↔ (U

(j)
1 ,V

(j)
1 ,U

(j)
2 ,V

(j)
2 )↔(

(U1,V1,U2,V2)[j−1], (U1,V1,U2,V2)[j+1:B],Y
[j−1]
4 , C

)
forms a Markov chain. In (b) we have a factor B− 1 and not
B because V

(1)
1 and U

(B)
1 do not contribute. See [5] for a

similar calculation bounding each individual term.
We define the RV IR = 0 if the relay makes a decoding

error in some block and IR = 1 if it decodes correctly in all
B blocks. Now we upper bound the third term of (7)

H((U1,V1)[B]|(U2,V2)[B], C,M [B−1]
1 ,Y

[B]
4 )

= H((U1,V1)[B]|IR, (U2,V2)[B], C,M [B−1]
1 ,Y

[B]
4 )

+ I(IR; (U1,V1)[B]|(U2,V2)[B], C,M [B−1]
1 ,Y

[B]
4 )

(a)

≤ H((U1,V1)[B]|IR, (U2,V2)[B], C,M [B−1]
1 ,Y

[B]
4 ) + 1

≤ H((S1, T1)[B]|IR, (U2,V2)[B], C,M [B−1]
1 ,Y

[B]
4 ) + 1

=

B−1∑
b=1

[
H((S1, T1)(b)|(S1, T1)[b−1], IR, . . .

. . . (U2,V2)[B], C,M [B−1]
1 ,Y

[B]
4 )
]

+ 1

where (a) follows because the conditional mutual information
term is upper bounded by H(IR) ≤ 1, as IR is a binary RV.

We will examine the ambiguity about (S1, T1)(b)

at the Rx 2 ≡ Y4 if it is additionally provided
M

[B−1]
1 , S

[b−1]
1 , T

[b−1]
1 , (U2,V2)[B] and also assuming

that the relay decodes correctly. Consider b = 1.
1) From (U2,V2,Y4)(2) Rx 2 gets ≈ nI(V1;Y4, U2, V2)

bits of information about V(2)
1 = v

(2)
1 (M

(1)
1 , S

(1)
1 ). Since

W
(1)
1 is known to Rx 2, its remaining uncertainty about

S
(1)
1 is ≤ n(R21 − R1) − nI(V1;Y4, U2, V2). Here note

that R21 − R1 > I(V1;Y4, U2, V2) by the conditions of
Theorem 2.

2) The remaining uncertainty in (S
(1)
1 , T

(1)
1 ) is thus ≤

n(R21 − R1) − nI(V1;Y4, U2, V2) + n(R11 − R21) =
n(R11 − R1) − nI(V1;Y4, U2, V2). So, there is a list of
about 2n((R11−R1)−I(V1;Y4,U2,V2)) pairs (S

(1)
1 , T

(1)
1 ) pairs.

This includes the uncertainty in T (1)
1 .

3) All the possible codewords in the list are from the
satellite codebook of V

(1)
1 . So, a randomly chosen

codeword from the list has a probability of about
2−nI(U1;U2,V2,Y4|V1) of being jointly typical with
(U

(1)
2 ,V

(1)
2 ,Y

(1)
4 ). So, the number of codewords from

the list that are jointly typical with U
(1)
2 ,V

(1)
2 ,Y

(1)
4

is ≈ 2n((R11−R1)−I(V1;U2,V2,Y4)−I(U1;U2,V2,Y4|V1)).
So the uncertainty remaining in (S

(1)
1 , T

(1)
1 ) is

≤ n ((R11 −R1)− I(U1, V1;U2, V2, Y4)− ε11)
But we have packed each transmitter bin with
R11 − R1 ≈ I(U1, V1;U2, V2, Y4) and by our choice
nε11

n↑∞→ 0, and so each term can be made as small as
desired and we can upper bound each term by nε3.

4) Each term j = 1, 2, . . . , B − 1 contributes at most nε3.
5) In the last block b = B, S(B)

1 = T
(B)
1 = 1. So there is

no uncertainty and the last block does not contribute.
We can upper bound the third term as the sum of B − 1

terms: ≤ n(B − 1)ε3 + 1 = n(B − 1)ε′3 (with ε′3
def
= ε+ 1/n).

Finally, the upper and lower bounds for terms in (7) give:

H(M
[B−1]
1 |Y[B]

4 , C) ≥ n(B − 1)(R11 − I(U1, V1;V2, U2)− ε1)

− n(B − 1)(I(Y4;U1, V1|U2, V2) + ε2)− n(B − 1)ε′3

= n(B − 1)[R11 − I(U1, V1;U2, V2, Y4)− ε5]

∵R11−R1=I(U1,V1;U2,V2,Y4)
= n(B − 1)[R1 − (ε1j + ε5)]

VII. CONCLUSION AND FUTURE WORK

We have some preliminary results for the “weak” relay using
compress-forward in the pure eavesdropper case. Our approach
provides a novel perspective distinct from [7, Theorems 3, 4],
and is an initial step to studying an RBC with mutual secrecy
with a relay “strong” wrt one Rx and “weak” wrt the other.
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