
Broadcast Channel with Confidential Messages and
Secret Keys

Krishnamoorthy Iyer

Abstract—We consider the problem of transmitting confiden-
tial messages over a two receiver broadcast channel. Two private
messages are to be communicated, one to each of the two
receivers. Each message is to be kept secret from the unintended
receiver. Secret keys are available at fixed rates between each
receiver and the transmitter. Various regimes of the key rates are
described and achievable schemes are presented for each. Our
schemes involve double random binning, key-dependent code-
books, and a technique called sectioning. Interestingly, double
encryption on time-sharing sequences enhances the achievable
region in certain regimes. The model subsumes several other
models in the literature.

Index Terms—broadcast channel, secrecy capacity region, con-
fidential messages, secret keys

I. INTRODUCTION

We study a discrete-memoryless broadcast channel (DM-
BC) with two receivers. The transmitter needs to send separate
messages to each receiver, and the message intended for each
receiver is to be kept secret from the other. In addition,
each transmitter-receiver pair has a secret key available at a
fixed rate unknown to the other receiver. These can assist in
achieving secrecy. We present an inner bound of the capacity
region for this problem. We also state an outer bound.

Security of transmitted messages is of prime concern in
broadcast networks. Even if no external eavesdropper is
present, it is sometimes necessary to secure the messages
of the receivers against each other. One example of this is
the model studied by [1], where secrecy-rate regions were
obtained by using double-random binning. [2] extended this
model by requiring the transmission of a common message,
and obtained an achievable rate-equivocation region.

To the best of our knowledge, [3] was the first to develop
a coherent scheme that unified channel coding techniques and
the use of secret keys to increase secrecy/equivocation rates for
a (degraded/less-noisy) DM-BC. More recently, [4] extended
the result of [3] to a general BC – they introduced the notion of
key-dependent codebooks, which was crucial to their scheme.
In both [3] and [4], the legitimate information flow is point-to-
point, and the eavesdropper is external. The scheme in [4] also
involved, in some regimes, encoding encrypted data inside a
sequence decoded by both the eavesdropper and the legitimate
user.

In [1], two legitimate information flows are present, and
both receivers also eavesdrop on the others’ message. While
the underlying broadcast model is similar to [1], the presence
of of secret keys introduces a degree of freedom that changes
the dynamics significantly, requiring the application of a novel
technique (used in [4]) to exploit them fully. In order to

achieve (weak) secrecy, the achievable scheme of [1] incurs
two separate rate penalties on each individual data stream due
to double random binning.

We show that the availability of secret keys can be used to
progressively dispense with this double penalty. We develop
a unified scheme naturally integrating double-random binning
[1], key-dependent codebooks [4], and sectioning [5]. This
seamlessly gives the rate-region corresponding to Marton’s
region with high enough secret key rates. Furthermore, in the
extreme cases where there are no secret keys or there is only
one legitimate receiver, the region respectively simplifies to
the regions of [1] and [4], which can be seen as special cases
of our model.

As already noted in [4], surprisingly, it is often beneficial
to encrypt information into a common sequence, which is
decoded by both the receivers. Though the sequence is com-
monly received, encryption ensures secrecy. Our method of
encrypting to a common sequence differs significantly from
the scheme of [4, Section IV, Case 2]. We show that a simple,
but appropriate, one-time pad (OTP) idea is enough to encrypt
the data contained in the common sequence, thereby also
simplifying the coding scheme of [4].

In other relevant work, [6] and [7] considered BCs with
common and confidential messages with feedback used to
generate secret keys. [8] and [9] respectively study two models
with two legitimate receivers and an external eavesdropper,
and a secret key shared between each transmitter and le-
gitimate receiver pair. However, there is no confidentiality
requirement between the legitimate receivers.

The paper is organized as follows. In Section II, the model is
described. In Section III, the main theorem and various cases
are enumerated. Section IV details the achievable schemes.
In Section V, we state the outer bound(s). In section VI, we
summarize the results obtained.

II. THE MODEL

We assume a two-receiver discrete memoryless BC with
two confidential messages and two secret keys. The finite
sets X , Y1, Y2 represent the channel’s input and the two
output alphabets respectively. The channel is described by the
conditional probability distribution PY1,Y2|X(y1, y2|x), where
RVs X ∈ X , Y1 ∈ Y1, Y2 ∈ Y2. In addition, we assume
the availability of secret keys, denoted by RVs K1 ∈ K1 and
K2 ∈ K2, between each respective transmitter-receiver pair 1
and 2 unknown to the other receiver, at rates Rk1 and Rk2
respectively. The transmitter intends to send an independent
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Fig. 1. Two Receiver Broadcast Channel with Two Confidential Messages
and Two Secret Keys

message Wt ∈ {1, 2 . . . , 2nRt} , Wt to the respective re-
ceiver t ∈ {1, 2} in n channel uses while ensuring information
theoretic secrecy, defined below. The channel is memoryless
and without feedback i.e. ∀x ∈ Xn, yt ∈ Ynt , t = 1, 2

P (y1,y2|x) =

n∏
i=1

PY1,Y2|X(y1i, y2i|xi)

A stochastic encoder is specified by a matrix of conditional
probabilities f(x|w1, k1, w2, k2), ∀wt ∈ Wt, kt ∈ Kt, and∑

x∈Xn

f(x|w1, k1, w2, k2) = 1

f(x|w1, k1, w2, k2) is the probability that the quadruple
of messages and keys (w1, k1, w2, k2) are encoded as the
channel input x. The decoding function at the receiver
t = 1, 2 is a mapping φt : Kt × Ynt → Wt. A
(2nR1 , 2nR2 , 2nRk1 , 2nRk2 , n, P

(n)
e ) code for the broadcast

channel consists of the encoding function f , decoding func-
tions φ1, φ2, and the error probability defined as

P (n)
e , max{P (n)

e,1 , P
(n)
e,2 },

where for t = 1, 2,

P
(n)
e,t =

∑
w1,w2,k1,k2

P [φt(Kt,Yt) 6= wt|(w1, w2, k1, k2)]

2nR1 × 2nR2 × 2nRk1 × 2nRk2

A rate pair (R1, R2) is said to be achievable for the broad-
cast channel with confidential messages and two secret keys
at rates (Rk1 , Rk2) if, for any ε0 > 0, there exists a
(2nR1 , 2nR2 , 2nRk1 , 2nRk2 , n, P

(n)
e ) code which satisfies both

• reliability requirement: P (n)
e ≤ ε0

• secrecy constraint:nRt−H(Wt|Yt,Kt) ≤ nε0, t = 1, 2.
This definition corresponds to the so-called weak secrecy-key
rate [1]. We use the notation t , {1, 2} \ {t}. We define a
class πBC of distributions P (u, v1, v2, x, y1, y2) that factor as
P (u)P (v1, v2|u)P (x|v1, v2)P (y1, y2|x).

III. INNER BOUND

The main result of our paper is presented below.

Theorem 1. Let RBC(πBC) denote the union of all
(R1, R2) ∈ R2

+ satisfying

R1 ≤ I(V1;Y1|U) + min
{
Rk1 − I(V1;Y2|V2, U)

− I(V1;V2|U), I(U ;Y1), I(U ;Y2)
}

R2 ≤ I(V2;Y2|U) + min
{
Rk2 − I(V2;Y1|V1, U)

− I(V2;V1|U), I(U ;Y1), I(U ;Y2)
}

R1 +R2 ≤ I(V1;Y1|U) + I(V2;Y2|U)− I(V1;V2|U)

+ min{I(U ;Y1), I(U ;Y2)}. (1)

where the union is over all distributions P (u, v1, v2, x, y1, y2)
in πBC . Every rate pair (R1, R2) ∈ RBC(πBC) is achievable.

The key rates determine the achievable scheme. We enu-
merate eight different regimes and present their achievable
schemes in Section IV.

• Case 1:

Rk1 ≤ I(V1;Y2|V2, U); Rk2 ≤ I(V2;Y1|V1, U).

• Case 2:

Rk2 ≤ I(V2;Y1|V1, U)

I(V1;Y2|V2, U) < Rk1 ≤ I(V1;Y2|V2, U) + I(V1;V2|U).

• Case 3: This is identical to Case 2 with the roles of the
receivers switched.

• Case 4:

I(V1;Y2|V2, U) < Rk1 ≤ I(V1;Y2|V2, U) + I(V1;V2|U)

I(V2;Y1|V1, U) < Rk2 ≤ I(V2;Y1|V1, U) + I(V2;V1|U).

• Case 5:

Rk1 > I(V1;Y2|V2, U) + I(V1;V2|U)

I(V2;Y1|V1, U) < Rk2 ≤ I(V2;Y1|V1, U) + I(V2;V1|U).

• Case 6: This is identical to Case 5 with the roles of the
receivers switched.

• Case 7:

Rk1 > I(V1;Y2|V2, U) + I(V1;V2|U)

Rk2 > I(V2;Y1|V1, U) + I(V2;V1|U).

• Case 8: The remaining cases (where key rate mismatch
large) and 5− 7 have achievable schemes etc. similar to
Case 4.

IV. ACHIEVABILITY SCHEMES

For ease of exposition, we will distinguish between the
terms code and codebook. Also, R† , I(V1;V2|U)+ε′1 where
ε′1 > 0 is a small positive constant.



A. Case 1:

The proposed achievable region becomes

R1 ≤ I(V1;Y1|U)− I(V1;V2|U)− I(V1;Y2|V2, U) +Rk1

R2 ≤ I(V2;Y2|U)− I(V2;V1|U)− I(V2;Y1|V1, U) +Rk2

Our achievability scheme melds the techniques of double
random binning [1] and code consisting of multiple key-
dependent codebooks [4, Section IV, Case 1]. Double binning,
in turn, combines Gelfand-Pinker binning and random binning
(to satisfy mutual covering and to confuse the other receiver
to maintain perfect secrecy).

The employed coding structure is shown below. A joint
encoder generates two equivocation codewords v1 and v2, one
for each message-key pair (W1,K1) and (W2,K2). The pair
(v1,v2) is stochastically mapped into x. The details follow.

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

2nRk
1codebooks
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(bins)

2nR
′
1 sub-bins

Fig. 2. Case 1: Code for receiver 1

1) Code Construction: Fix P (u), P (v1|u) and P (v2|u) as
well as P (x|v1, v2) and define

R′1 , I(V1;Y2|V2, U)− ε′1 −Rk1
R′2 , I(V2;Y1|V1, U)− ε′1 −Rk2

Randomly generate a sequence u ∼ P (u) =
∏n
i=1 P (ui).

For t = 1, 2, generate code Ct with 2(Rkt+Rt+R
′
t+R

†) (con-
ditionally) independent sequences vt each with probability
P (vt|u) =

∏n
i=1 P (vt,i|ui) and label them vt(kt, wt, st, rt)

for kt ∈ {1, . . . , 2nRkt}, wt ∈ {1, . . . , 2nRt}, st ∈
{1, . . . , 2nR′

t}, rt ∈ {1, . . . , 2nR
†}. W.l.o.g, 2nRkt , 2nRt ,

2nR
′
t , 2nR

†
are considered to be integers.

The code C1 for receiver 1 consists of 2nRk1 codebooks
[4, Section IV, Case 1]. Each codebook of C1 is doubly
binned, as in [1], with 2nR1 bins, each containing 2nR

′
1 =

2n[I(V1;Y2|V2,U)−Rk1
−ε′1] sub-bins. Receiver 2’s code C2 is

similar.
In all codebooks, each sub-bin contains 2nR

†
=

2n[I(V1;V2|U)+ε′1] codewords. Furthermore, each codebook in
code Ct contains 2n[I(Vt;Yt|U)−ε′1] codewords. Please see Fig-
ure 2.

The sequence u and code C = {C1, C2} is commmunicated
to all parties.

2) Encoding: Given key pair (k1, k2) ∈ K1 × K2, the
encoder chooses the appropriate codebooks C1(k1) and C2(k2)
in the respective codes C1 and C2. To send (w1, w2) ∈ W1 ×
W2, the transmitter randomly chooses a sub-bin Ct(kt, wt, st)
from the bin Ct(kt, wt), for t = 1, 2. Next, a pair (r1, r2)
is chosen such that (v1(k1, w1, s1, r1),v2(k2, w2, s2, r2)) ∈
A

(n)
ε (V1, V2|u), where A

(n)
ε (V1, V2|u) indicates the set of

jointly typical sequences (v1,v2,u) for the given realization
u, according to PV1,V2|U . By mutual covering [10], such a pair
exists with high probability. If more than one jointly typical
pair exists, one is randomly chosen. We now employ the
stochastic encoder which generates x ∼

∏n
i=1 p(xi|v1i, v2i)

for transmission. Note that the x codewords are not part of
the code C. They are generated at the time of transmission
after choosing an appropriate (v1,v2) pair.

3) Decoding: The decoder t has access to the shared key
kt and so the decoding at decoder t for t = 1, 2 has to be
done from among 2n(Rt+R

′
t+R

†) ≈ 2n[I(Vt;Yt|U)] sequences
vt in the codebook Ct(kt), see Fig 2. Decoder t chooses wt
such that (vt(kt, wt, st, rt),yt,u) ∈ A(n)

ε (Vt, Yt, U) for some
(st, rt), if a unique such wt exists, else an error is declared.

4) Error Probability Analysis: While the codewords here
are quadruply indexed to reflect the codebook index as shown
in Fig 2, the rest of the details are standard, omitted here due
to space limitations [11].

5) Equivocation calculation for Case 1: We prove that
secrecy holds. It is worth mentioning that the calculations
below have subtle differences from a similar calculation in [4],
improving the robustness. We first express the equivocation as

H(W1|Y2,K2) =
∑
k2∈K2

P (K2 = k2)H(W1|Y2, k2) (2)

We will now show that ∀K2 = k2,

H(W1|Y2, k2) ≥ nR1 − nε̃, (3)

implying secrecy of Receiver 1’s messages.

H(W1|Y2, k2) (4)
≥ H(W1|Y2, k2,V2,U)

= H(W1,Y2|k2,V2,U)−H(Y2|k2,V2,U)

= H(W1,V1,Y2|k2,V2,U)

−H(V1|k2,Y2,V2,U,W1)−H(Y2|k2,V2,U)

= H(W1,V1|k2,V2,U) +H(Y2|k2,V1,V2,U,W1)

−H(Y2|k2,V2,U)−H(V1|k2,Y2,V2,U,W1)

Based on functional dependence graphs, we can show that
∀K2 = k2, W1 → (V1,V2,U)→ Y2 forms a Markov Chain.
Thus the second term becomes

H(Y2|k2,V1,V2,U,W1) = H(Y2|k2,V1,V2,U)



Making the replacement, we now have

H(W1|Y2, k2)

≥ H(W1,V1|k2,V2,U) +H(Y2|k2,V1,V2,U)

−H(Y2|k2,V2,U)−H(V1|k2,Y2,V2,U,W1)

= H(W1,V1|k2,V2,U)− I(V1;Y2|k2,V2,U)

−H(V1|k2,Y2,V2,U,W1). (5)

By a calculation analogous to [1, Lemma 2], we can show that

H(V1|k2,Y2,V2,U,W1) ≤ nε′3, (6)

where ε′3 is small for sufficiently large n. This can be inter-
preted to mean that there is no uncertainty left in V1 given
(k2,Y2,V2,U,W1). If there were, the randomness can be
included in W1 to improve the rate R1.

To compute H(V1|k2,Y2,V2,U,W1), we proceed as fol-
lows. Suppose W1 = w1, Receiver 2 (acting as the eavesdrop-
per) tries to decode v1(k1, w1, s1, r1) based on its received
sequence y2 (of course it already has knowledge of its own
key k2). Since Decoder 2 knows w1, let λk2(w1) denote the
average probability of error of decoding the indices (k1, s1, r1)
at Receiver 2 (given that its key is k2). Joint typicality enables
us to show that

Lemma 2. λk2(w1) ≤ ε′0 for sufficiently large n.

Proof. For a given time-sharing sequence u, let
A

(n)
ε (PV1,V2,Y2|U ) denote the set of jointly typical sequences

v1 and (v2,y2) with respect to P (v1, v2, y2|u). For a given
W1 = w1, Decoder 2 chooses (k1, s1, r1) with

(v1,v2,y2) ∈ A(n)
ε (PV1,V2,Y2|U ), (7)

if such a pair (k1, s1, r1) exists and is unique; else an error is
declared.

We define the event

Ê(k1, s1, r1) = (v1(k1, w1, s1, r1),v2,y2) ∈ A(n)
ε (PV1,V2,Y2|U )

(8)

W.l.o.g, we assume that v1(k1 = 1, w1, s1 = 1, r1 = 1) was
chosen, and define the event

Bw1
= {v1(1, w1, 1, 1) chosen} (9)

Hence

λk2(w1) ≤ P{Êc(k1 = 1, s1 = 1, r1 = 1)|Bw1
}

+
∑

(k1,s1,r1)6=(1,1,1)

P{Ê((k1, s1, r1))|Bw1
} (10)

where Êc(k1 = 1, s1 = 1, r1 = 1) denotes the event

{(v1(1, w1, 1, 1),v2,y2) /∈ A(n)
ε (PV1,V2,Y2|U )} (11)

By the joint AEP,

P{Êc(k1 = 1, s1 = 1, r1 = 1)} ≤ ε (12)

and for (k1, s1, r1) 6= (1, 1, 1),

P{Ê((k1, s1, r1))|Bw1
} ≤ 2−n[I(V1;V2,Y2|U)−ε] (13)

We upper bound λk2(w1) as

ε+ 2nRk1 2nR
′
12nR

†
2−n[I(V1;V2,Y2|U)−ε] (14)

Now since Rk1 +R′1 +R† = I(V1;V2, Y2|U), we finally have

λk2(w1) ≤ ε′0 (15)

where ε′0 small for n sufficiently large.

By Fano’s inequality

1

n
H(V1|k2,Y2,V2,U,W1 = w1) ≤

1

n
[1 + λk2(w1) log[2nRk1 2nR

′
12nR

†
]]
4
= ε′3 (16)

We conclude that
1

n
H(V1|k2,Y2,V2,U,W1)

=
1

n

∑
w1∈W1

P (W1 = w1)H(V1|k2,Y2,V2,U,W1 = w1)

≤ ε′3 (17)

The above is an application of the technique from [4] whereby
the key index (Kt, t = 1, 2) introduces an extra degree of ran-
domness which increases equivocation only at the receiver for
which the message is not intended. The secret keys ensure that
the randomness requirement (the RV that chooses the subbin)
for the transmitter-receiver t pair is reduced by the respective
key rate Rkt from I(Vt;Yt|Vt, U) to I(Vt;Yt|Vt, U)−Rkt for
t = 1, 2.

We have shown that

H(V1|k2,Y2,V2,U,W1) ≤ nε′3 (18)

Substituting the above inequality in (5), we get

H(W1|Y2, k2) ≥ H(W1,V1|k2,V2,U)

− I(V1;Y2|k2,V2,U)− nε′3. (19)

Now, in the first term on the RHS above, the equivocation
of (W1,V1) is the logarithm of the total number of cells in
the code C1, which is 2n[I(V1;Y1|U)+Rk1

]. Next, we note that
in the random codebook C, our coding scheme only requires
that we find a codeword V2 that is jointly typical with V1,
thus the choice of key k2 does not play a role. Condition-
ing by V2 causes a reduction by a factor of 2I(V1;V2|U),
to give 2n[I(V1;Y1|U)+Rk1

]2−I(V1;V2|U). Taking logs, we get
n[I(V1;Y1|U) +Rk1 ]− I(V1;V2|U). Thus we have

H(W1|Y2, k2) ≥ n[I(V1;Y1|U) +Rk1 ]− I(V1;V2|U)

− I(V1;Y2|k2,V2,U)− nε′3 (20)

Now, by a calculation (omitted due to space limitations) (see
[11]), we can obtain the following inequalities:

I(V1;V2|U) ≤ nI(V1;V2|U) + nε′2 (21)

and

I(V1;Y2|k2,V2,U) ≤ nI(V1;Y2|V2, U) + nε′4 (22)



Substituting (21) and (22) in (20), we get

H(W1|Y2, k2)

≥ n[I(V1;Y1|U) +Rk1 ]− nI(V1;V2)− nI(V1;Y2|V2, U)

− n(ε′2 + ε′3 + ε′4)

= nR1 − n(ε′2 + ε′3 + ε′4) (23)

which gives us (3), as desired.
The equivocation calculation for receiver 2 in this case is

similar.

B. Case 2:

The key idea for this case is to employ the sectioning
technique of [5]. We have to show that the rate-pairs

R1 ≤ I(V1;Y1|U)− I(V1;V2|U)− I(V1;Y2|V2, U) +Rk1

R2 ≤ I(V2;Y2|U)− I(V2;V1|U)− I(V2;Y1|V1, U) +Rk2 ,

are achievable. We split the message W1 , (W̃1,W
otp
1 ) and

define

R′k1 , I(V1;Y2|V2, U)− ε′1; Rotpk1 , Rk1 −R′k1
R̃1 , I(V1;Y1|U)− I(V1;V2|U)− ε′1

Total secure achievable rate for Receiver 1 in this regime
consists of W̃1 at R̃1 by channel coding techniques, and W otp

1

at rate Rotp1 = Rotpk1 .
1) Code Construction: Fix P (u), P (v1|u),

P (v2|u),P (x|v1, v2) and (re-)define

R′1 , I(V1;Y2|V2, U)− ε′1 −R′k1 = 0

(R′2 as in Case 1). Randomly generate u ∼
∏n
i=1 P (ui).

The code C1 for receiver 1 consists of 2nR
′
k1 codebooks.

A codebook contains 2nR̃1 bins, each containing 2nR
†

=
2n[I(V1;V2|U)+ε′1] codewords v1 ∼

∏n
i=1 PV1|U (v1i|ui). The

notion of sub-bins in Fig 2 are replaced by sections for user 1

in this case. Each bin is divided evenly into 2nR
otp
k1 sections.

If w1 = (w̃1, w
otp
1 ), w̃1 is encoded as the bin index. The pair

(wotp1 , kotp1 ) picks the section wotp1 ⊕ kotp1 , as in [5], securing
wotp1 by an OTP.

The code C2 of receiver 2 is identical to that in Case 1.
The code-construction for receiver 1 is summarized. Generate
a code with 2(R

′
k1

+R̃1+R
†) (conditionally) independent se-

quences v1 each with probability P (v1|u) =
∏n
i=1 P (v1,i|ui)

and label them v1(k′1, w̃1, r1) for k′1 ∈ {1, . . . , 2
nR′

k1 },
w̃1 ∈ {1, . . . , 2nR̃1}, r1 ∈ {1, . . . , 2nR

†}. W.l.o.g, 2nR
′
k1 ,

2nR
otp
k1 ,2nRk2 ,2nR̃1 ,2nR2 , 2nR

′
2 , 2nR

†
are considered to be

integers. The sequence u and code C = {C1, C2} is comm-
municated to all parties.

2) Encoding: Given key pair (k1, k2) ∈ K1 × K2,
where k1 = (k′1, k

otp
1 ), the encoder chooses the code-

books C1(k′1) and C2(k2). To send (w1, w2) ∈ W1 × W2,
where w1 = (w̃1, w

otp
1 ), the encoder chooses the section

wotp1 ⊕ kotp1 from the bin C1(k′1, w̃1). It randomly chooses a
sub-bin C2(k2, w2, s2) from C2(k2, w2). Since this contains
2n[I(V1;V2|U)+ε′1] codewords, the number of available pairs

(v1,v2) is ≥ 2n[I(V1;V2|U)+ε′1], so that, by mutual covering
[10], with very high probability, jointly typical pairs exist. One
is chosen randomly. Generate x ∼

∏n
i=1 PX|V1,V2

(xi|v1i, v2i)
(stochastic encoding) and transmit.

3) Decoding: Receiver 1 knows the codebook C1(k′1),
and so decodes v1 from among ≈ 2n[I(V1;Y1|U)] possibili-
ties by joint typicality with y1 and u. Clearly v1, and so
w1 = (w̃1, w

otp
1 ) can be decoded with low error probability.

Receiver 2 proceeds as in Case 1.
4) Error Probability Analysis: For receiver 2, the analysis

is the same as in Case 1. For receiver 1, analysis similar to
Case 1, but the sub-bin index s1 is not used.

5) Equivocation for Case 2: With the replacements W1 ←
W̃1 and R1 ← R̃1, the calculation is similar to Case 1. The
message portion wotp1 is secured by OTP, and is perfectly, and
hence weakly secure [11].

C. Case 3:

The achievable region similar to Case 2 with roles of the
receivers reversed.

D. Case 4:

The proposed achievable region becomes

R1 ≤ I(V1;Y1|U)− I(V1;V2|U)− I(V1;Y2|V2, U) +Rk1
(24)

R2 ≤ I(V2;Y2|U)− I(V2;V1|U)− I(V2;Y1|V1, U) +Rk2

R1 +R2 ≤ I(V1;Y1|U) + I(V2;Y2|U)− I(V1;V2|U)

+ min{I(U ;Y1), I(U ;Y2)}.

1) Code Construction: Equations (25) to (28) hold for t =

1, 2. Split Wt ,
(
W̃t,W

otp
t ,Wu

t

)
and Kt ,

(
K′t,K

otp
t ,Kut

)
.

Rt and Rkt are split as

Rt =
(
R̃t, R

otp
t , Rut

)
s.t Rt = R̃t +Rotpt +Rut (25)

Rkt =
(
R′kt , R

otp
kt
, Rukt

)
s.t Rkt = R′kt +Rotpkt +Rukt . (26)

Let us first choose

R̃t = I(Vt;Yt|U)− I(V1;V2|U)− ε′1
R′kt = I(Vt;Yt|Vt, U)− ε′1 (27)

With this choice, and by (24)

Rt − R̃t ≤ Rkt −R′kt . (28)

Now a pair (Rotp1 , Rotp2 ) is chosen such that

0 ≤ Rotp1 ≤ Rk1 −R′k1 ; 0 ≤ Rotp2 ≤ Rk2 −R′k2
0 ≤ Rotp1 +Rotp2 ≤ I(V1;V2|U) + ε′1. (29)

Let us set

Rotpkt = Rotpt , t = 1, 2. (30)

For t = 1, 2, let Rut and Rukt respectively denote the remaining
parts of the message and key rates, which can be empty



depending on the choice in (29). Clearly, by (28), Rut ≤ Rukt
by our rate choices. We also constrain

Ru1 +Ru2 ≤ min{I(U ;Y1), I(U ;Y2)}. (31)

Generate 2n(R
u
1+R

u
2 ) sequences u(l1, l2), for t = 1, 2, lt =

0, 1, 2, . . . , 2nR
u
t − 1. For each u, generate a satellite code

C(u) = {C1(u), C2(u)}. For t = 1, 2, Ct(u) has 2nR
′
kt

codebooks, with vt ∼
∏n
i=1 PVt|U (vti|ui). A codebook is

divided into 2nR̃t bins, each with 2nR
†

codewords. A bin is
divided evenly into 2nR

otp
t sections. This gives (29), as every

pair of sections – one each from C1 and C2 – must contain
≥ 2n[I(V1;V2|U)+ε′1] (v1,v2) pairs to satisfy mutual covering
[10], and so we require

[R† −Rotp1 ] + [R† −Rotp2 ] ≥ I(V1;V2|U) + ε′1,

which gives (29) on simplification.

2) Encoding: (wu1 , w
u
2 ) is protected by OTP by picking

u(wu1 ⊕ ku1 , wu2 ⊕ ku2 ). It searches inside the pair of sections
Ct(u(wu1 ⊕ ku1 , wu2 ⊕ ku2 ), k′t, w̃t, w

otp
t ⊕ kotpt ) for t = 1, 2 for

a (v1,v2) pair that is jointly typical ∈ A(n)
ε′1

(V1, V2|u(wu1 ⊕
ku1 , w

u
2 ⊕ ku2 )). By construction, the number of (v1,v2) pairs

≥ 2n[I(V1;V2|U)+ε′1], so a jointly typical pair exists with
very high probability, by mutual covering, [10]. The encoder
generates and transmits x ∼

∏n
i=1 PX|V1,V2

(xi|v1i, v2i).

3) Decoding: By (31), u are generated at a rate ≤
min{I(U ;Y1), I(U ;Y2)}, so both receivers can decode u with
arbitrarily low error probability error by joint typicality with
yt. Decoding now proceeds exactly as in previous cases.

4) Error Probability Analysis: The analysis for both re-
ceivers is similar to that for receiver 1 in Case 2.

5) Equivocation Calculation: For t = 1, 2, W otp
t ,Wu

t are
protected by OTPs and are secure. W̃t is protected by the
scheme developed for W̃1 of receiver 1 in Case 2.

6) Cases 5, 6, 7 and Other Cases: In Case 5, individual
v1 sequences can be used to encode a different message,
consequently rates R1 > I(V1;Y1|U) attainable and individual
rate constraints become active. In Case 6, the same holds for
v2. Details omitted [11].

V. OUTER BOUND(S)

We state the outer bound(s) without proof.

Theorem 3. Consider P ∈ πBC such that

U → V1 → X, U → V2 → X

Let Ro(P ) be the set of all (R1, R2) ∈ R2
+ s.t.

R1 ≤ min
{

I(V1;Y1|U)+

min{Rk1 − I(V1;Y2|U), I(U ;Y1), I(U ;Y2)},
I(V1;Y1|V2, U)+

min{Rk1 − I(V1;Y2|V2, U), I(U ;Y1), I(U ;Y2)}
}

R2 ≤ min
{

I(V2;Y2|U)+

min{Rk2 − I(V2;Y1|U), I(U ;Y1), I(U ;Y2)},
I(V2;Y2|V1, U)+

min{Rk2 − I(V2;Y1|V1, U), I(U ;Y1), I(U ;Y2)}
}

Then the capacity region

CBC ⊆ ∪P∈πBC :U→Vt→X for t=1,2Ro(P ) (32)

VI. CONCLUSION

For confidential message transmission over a two receiver
broadcast channel, we have proposed an inner and an outer
bound. The achievable schemes proposed use different tech-
niques for different key rates. We plan to consider common
messages and the rate-equivocation region in future work.
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VIII. APPENDIX

A. Error Probability Analysis for Case 1

The error probability analysis similar to [1], with the main
difference that the the codewords here are quadruply indexed
to reflect the codebook index.

W.l.o.g, assume that the transmitter sends the message pair
(w1 = 1, w2 = 1) and (s1 = 1, s2 = 1) and in addition, the
secret keys are (k1 = 1, k2 = 1). Consider the (encoding)
error event T that the encoder cannot find an appropriately
jointly typical pair, i.e. ∀r1, r2
T , {(V1(1, 1, 1, r1),V2(1, 1, 1, r2)) /∈ A(n)

ε (V1, V2|u)}.

Since R† > I(V1;V2|U), by the mutual covering lemma, [10],
P{T} ≤ δ where δ > 0 is small enough for large n. Let
us assume that (V1(1, 1, 1, 1),V2(1, 1, 1, 1)) is chosen for
tranmission, and define the event

T c , {(V1(1, 1, 1, 1),V2(1, 1, 1, 1)) ∈ A(n)
ε (V1, V2|u)}.

The decoding error probability at receiver 1 is then bounded
as

P
(n)
e,1 ≤ P{T }+ (1− P{T })[P{

⋂
s1,r1

Ec1(1, 1, s1, r1)|T c}

+
∑
w1 6=1

∑
s1,r1

P{E1(1, w1, s1, r1)|T c}] (33)

≤ P{T }+ P{Ec1(1, 1, 1, 1)|T c}

+
∑
w1 6=1

∑
s1,r1

P{E1(1, w1, s1, r1)|T c} (34)

where

Et(1, wt, st, rt) = {(vt(1, wt, st, rt),yt) ∈ A(n)
ε (Vt, Yt|u)}.

Since P{E1(1, w1, s1, r1)|T c} ≤ 2−n[I(V1;Y1|U)−ε], by using
joint typicality lemma [10], the probability of error can be
bounded as

P
(n)
e,1 ≤ δ + ε+ 2nR12nR

′
12nR

†
2−n[I(V1;Y1|U)−ε]. (35)

Thus, if R1 + R′1 + R† < I(V1;Y1|U) then, P (n)
e,1 < ε0 for

sufficiently large n. Similar calculations for receiver 2 shows
that if R2 +R′2 +R† < I(V2;Y2|U), then P (n)

e,2 → 0.

B. Equivocation for Case 2

Replacing W1 ← W̃1 in the expression (4), and by similar
steps as in (5) – (19), along with Markov chain W̃1 →
(V1,V2,U) → Y2 which holds for all K2 = k2, we get
in place of (19),

H(W̃1|Y2, k2) ≥H(W̃1,V1|V2,U, k2)

− I(V1;Y2|V2,U, k2)− nε′3 (36)

Expansion of the first term gives

H(W̃1,V1|V2,U, k2) = H(W̃1|V2,U, k2)

+H(V1|V2,U, W̃1, k2). (37)

Notice that

H(W̃1|V2,U, k2) = nR̃1. (38)

To compute the second term, we note that the total number
of entries in the code C1 is 2n[I(V1;Y1|U)+R′

k1
]. Conditioning

by the message W̃1 causes a reduction of possible transmitted
V1 sequences by a factor of 2nR̃1 . Furthermore, conditioning
by V2 causes a further reduction by a factor of 2I(V1;V2|U).
Note that, as in Case 1, key K2’s value plays no role. So the
remaining number of possible V1 sequences are

Ñ1 =
2n[I(V1;Y1|U)+R′

k1
]2−I(V1;V2|U)

2n[I(V1;Y1|U)−I(V1;V2|U)−ε′1]

=
2n[I(V1;Y1|U)+I(V1;Y2|V2,U)−ε′1]2−I(V1;V2|U)

2n[I(V1;Y1|U)−I(V1;V2|U)−ε′1]

Thus

H(V1|V2,U, W̃1, k2)

= log Ñ1

= nI(V1;Y2|U, V2) + nI(V1;V2|U)− I(V1;V2|U)

≥ n (I(V1;Y2|U, V2)− ε′2) (39)

where the last inequality follows by [1, Lemma 3]. From (36)
– (39), it follows that

H(W̃1|Y2,K2) =
∑
k2∈K2

P (K2 = k2)H(W̃1|Y2, k2)

≥ nR̃1 + nI(V1;Y2|U, V2)

− I(V1;Y2|V2,U, k2)− n(ε′2 + ε′3)

≥ nR̃1 − nε

where the last inequality again follows from [1, Lemma 3].
The other portion of the message of receiver 1, namely, wotp1

is secured by an OTP, and so is perfectly, and hence weakly
secure. Equivocation calculation for receiver 2 in this case is
exactly the same as in Case 1.

C. Case 3:

This is similar to Case 2 with the roles of the receivers
reversed. Hence the code structure and the achievable region
are similar to Case 2, with the roles reversed.

D. Cases 5− 7 and Other Cases:

The code construction, encoding, decoding, probability of
error analysis, and the equivocation calculation are exactly the
same in these cases as in Case 4. In Case 5 (resp. 6), the
individual rate constraint on R1 (resp. R2) also appears, and
in Case 7, both individual rate constraints and the sum-rate
constraint are active. The achievable region becomes the region
described in Theorem 1. For details, see the appendix. When
the key rate mismatch is very large, achievability schemes can
be designed using discussed techniques. We discuss these
Cases 5− 7 briefly below.



E. Case 5:

The code construction, encoding, decoding, probability of
error analysis, and the equivocation calculation are exactly the
same as this Case 4. The proposed achievable region becomes

R1 ≥ 0, R2 ≥ 0

R1 ≤ I(V1;Y1|U) + min
{
Rk1 − I(V1;Y2|V2, U)

− I(V1;V2|U), I(U ;Y1), I(U ;Y2)
}

R2 ≤ I(V2;Y2|U)− I(V2;V1|U)− I(V2;Y1|V1, U) +Rk2

R1 +R2 ≤ I(V1;Y1|U) + I(V2;Y2|U)− I(V1;V2|U)

+ min{I(U ;Y1), I(U ;Y2)} (40)

In this regime, since we have Rk1 > I(V1;V2|U) +
I(V1;Y2|V2, U), we can achieve individual rate R1 >
I(V1;Y1|U) as follows. We set aside a portion R̂k1 =
I(V1;Y2|V2, U)+I(V1;V2|U). As in Case 4, we split this into
two parts, as R′k1 = I(V1;Y2|V2, U)−ε′1 and a portion Rotpk1 =
I(V1;V2|U) + ε′1. Each section inside C1 contains exactly one
v1. This ensures that every individual v1 sequence encodes
a different tuple (w̃1, w

otp
1 ), and hence a different message,

which gives us a rate I(V1;Y1|U). Now, (unlike in Case 4),
we still have a portion of key at rate Ruk1 = Rk1 − R̂k1 > 0
which can be used to encrypt messages inside the time-sharing
sequence, and so now rates R1 > I(V1;Y1|U) are attainable
and so the individual rate constraint for receiver 1 becomes
active.

F. Case 6:

This is symmetric to Case 5 with the roles of the receivers
reversed, and hence the achievable region is obtained from the
previous case by appropriate role reversal.

G. Case 7:

Rk1 > I(V1;Y2|V2, U) + I(V1;V2|U)

Rk2 > I(V2;Y1|V1, U) + I(V2;V1|U) (41)

The code construction, encoding, decoding, error probability
analysis, and equivocation are exactly the same as in the previ-
ous cases 5, 6. Both individual rate constraints I(Vi;Yi|U) +
min{I(U ;Y1), I(U ;Y2)} for i = 1, 2 are active, as also the
sum-rate constraint. The achievable region becomes the region
described in Theorem 1.

H. Outer Bound Proofs

Consider R1 in (32). The first term inside the outer mini-
mization corresponds to the receiver 2 attempting to eaves-
drop without having decoded its own message, hence no
conditioning on V2. The second term inside the minimization
occurs when receiver 2 attempts to decode the message of
receiver 1 after decoding its own message, hence the terms
are conditioned on V2. The proof for the first term inside each
outer minimization follows closely the associated converse
proof in [4]. The proof for the second term inside each outer

minimization is more involved, and uses the technique em-
ployed in the second outer bound obtained in [1, Section IV-B],
where a genie gives receiver 1 the message and key (W2,K2),
while receiver 2 attempts to evaluate the equivocation with
(W2,K2) as side information.

We will only prove the bounds for R1. The corresponding
inequality for R2 follows by symmetry.

1) First Bound: The other receiver attempts to eavesdrop
without first decoding its own message/codeword: Unlike
in the case of achievability proofs, where we followed the
techniques in [1] with appropriate changes due to the presence
of secret keys as in [4], here we primarily follow the proof
technique in [4], with modifications appropriate to our model.
The modifications play an important role in obtaining the
second outer bound, as they are suggested by the second bound
obtained by [1].

We restate the following inequalities [4, equations (8) and
(9)] in terms of our notation where Y ← Y1 and Z ← Y2 Note
that the inequalities in [4] are themselves taken from [12, p.
314, equation (3.34) ]

For ease of reference, we (re-)derive the following equality

H(Yn
1,1)−H(Yn

2,1) =
n∑
i=1

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 )−H(Y2i|Yn

1,i+1,Y
i−1
2,1 )] (42)

To the LHS of (42) above, we add and subtract H(Y2,1,Y
n
1,2)

and get

H(Yn
1,1)−H(Yn

2,1) =

H(Yn
1,1)−H(Y2,1,Y

n
1,2) +H(Y2,1,Y

n
1,2)−H(Yn

2,1) =(
H(Y1,1|Yn

1,2) +XXXXH(Yn
1,2)
)
−
(
H(Y2,1|Yn

1,2)) +XXXXH(Yn
1,2)
)
+(

H(Yn
1,2|Y2,1) +���

�H(Y2,1)
)
−
(
���

�H(Y2,1) +H(Yn
2,2|Y2,1)

)
(43)

thus obtaining

H(Yn
1,1)−H(Yn

2,1) =(
H(Y1,1|Yn

1,2)−H(Y2,1|Yn
1,2)+

H(Yn
1,2|Y2,1)−H(Yn

2,2|Y2,1) (44)

Now, we keep the first line as it is, and consider the second
line of (44), namely

H(Yn
1,2|Y2,1)−H(Yn

2,2|Y2,1) (45)

Note that this resembles what we started with, namely, the
LHS of (42) with the changes that we have an extra condi-
tioning on Y2,1, and Yn

1,1 ← Yn
1,2 and Yn

2,1 ← Yn
2,2. So, in

analogy with (44), we can write

H(Yn
1,2|Y2,1)−H(Yn

2,2|Y2,1) =(
H(Y1,2|Yn

1,3,Y2,1)−H(Y2,2|Yn
1,3,Y2,1)+

H(Yn
1,3|Y2,2,Y2,1)−H(Yn

2,3|Y2,2,Y2,1) (46)

As before, we leave the first line as it is, and expand the second
line, namely

H(Yn
1,3|Y2,2,Y2,1)−H(Yn

2,3|Y2,2,Y2,1) (47)



We proceed iteratively.
Note that

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 )−H(Y2i|Yn

1,i+1,Y
i−1
2,1 )]

∣∣∣∣
i=1

=
(
H(Y1,1|Yn

1,2)−H(Y2,1|Yn
1,2)
)

(48)

which was the first line on the RHS of (44).
Similarly

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 )−H(Y2i|Yn

1,i+1,Y
i−1
2,1 )]

∣∣∣∣
i=2

=
(
H(Y1,2|Yn

1,3,Y2,1)−H(Y2,2|Yn
1,3,Y2,1)

)
(49)

which was the first line on the RHS of (46).
Iterating, we finally expand the RHS as

n∑
i=1

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 )−H(Y2i|Yn

1,i+1,Y
i−1
2,1 )]

to obtain

H(Yn
1,1)−H(Yn

2,1) =
n∑
i=1

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 )−H(Y2i|Yn

1,i+1,Y
i−1
2,1 )] (50)

which is the same as (42), which was to be proved.
We can also derive the following equality analogously.

H(Yn
1,1|W1,K1)−H(Yn

2,1|W1,K1) =
n∑
i=1

[H(Y1i|Yn
1,i+1,Y

i−1
2,1 ,W1,K1)

−H(Y2i|Yn
1,i+1,Y

i−1
2,1 ,W1,K1)].

We define auxiliary RVs:

Ui , (Yn
1,i+1,Y

i−1
2,1 ) (51)

We also define a time-sharing RV Q, which is independent of
everything else, and is uniform on the set {1, 2, 3, . . . , n}. With
this definition of U and Q, we further define the following RVs

U , (UQ, Q), V1 , (U,W1,K1)

X , XQ, Y , YQ, Z , ZQ

Note that the Markov chain condition U → V1 → X →
(Y1, Y2) is satisfied.

Using the above equations and the definitions of the auxil-
iary random variables, there exist real numbers t1 and t2 s.t.

1

n
H(Yn

1,1) = H(Y1|U) + t1 (52)

1

n
H(Yn

2,1) = H(Y2|U) + t1 (53)

and also
1

n
H(Yn

1,1|W1,K1) = H(Y1|V1) + t2 = H(Y1|U, V1) + t2

(54)
1

n
H(Yn

2,1|W1,K1) = H(Y2|V1) + t2 = H(Y2|U, V1) + t2

(55)

where the last equality in both equations (54) and (55) above
follows due to the Markov Chain condition U → V1 → Y1
and U → V1 → Y2 where

0 ≤ t1 ≤ min{I(U ;Y1), I(U ;Y2)} (56)
0 ≤ t2 ≤ min{I(V1;Y1), I(V1;Y2)} (57)

Since the code satisfies the information leakage constraint,
namely

nµ ≥ I(W1;Yn
2,1)

= I(W1,K1;Yn
2,1)− I(K1;Yn

2,1|W1)

= H(Yn
2,1)−H(Yn

2,1|W1,K1)

−H(K1|W1) +H(K1|Yn
2,1,W1)

≥ H(Yn
2,1)−H(Yn

2,1|W1,K1)−H(K1|W1)

∵K1⊥⊥W1= H(Yn
2,1)−H(Yn

2,1|W1,K1)−H(K1)

= H(Yn
2,1)−H(Yn

2,1|W1,K1)− nRk1
= n(H(Y2|U) + t1 −H(Y2|V1)− t2 −Rk1)
∵U→V1→Y2= n(H(Y2|U) + t1 −H(Y2|V1, U)− t2 −Rk1)

= n(I(V1;Y2|U) + t1 − t2 −Rk1) (58)

Therefore

�nµ ≥�n(I(V1;Y2|U) + t1 − t2 −Rk1)

=⇒ t1 − t2 ≤ Rk1 − I(V1;Y2|U) + µ (59)

We also have

t1 − t2 ≤ t1 ≤ min{I(U ;Y1), I(U ;Y2)} (60)

Thus, from (59) and (60), we have

t1 − t2 ≤ min{Rk1 − I(V1;Y2|U) + µ, I(U ;Y1), I(U ;Y2)}
(61)

Now

|W1| = H(W1)
W1⊥⊥K1= H(W1|K1)

= H(W1|Yn
1,1,K1) + I(W1;Yn

1,1|K1)

Fano
≤ I(W1;Yn

1,1|K1) + nεn

≤ I(W1,K1;Yn
1,1) + nεn

= H(Yn
1,1)−H(Yn

1,1|W1,K1) + nεn

= n
[
H(Y1|U) + t1 −H(Y1|V1)− t2 + εn

]
U→V1→Y1= n

[
H(Y1|U) + t1 −H(Y1|V1, U)− t2 + εn

]
= n

[
I(Y1;V1|U) + (t1 − t2) + εn

]
≤ n

[
I(Y1;V1|U) + min{Rk1 − I(V1;Y2|U) + µ,

I(U ;Y1), I(U ;Y2)}+ εn
]
(62)

Now

H(W1) = nR1 (63)



Equations (62) and (63) together imply that

�nR1 ≤�n
(
I(Y1;V1|U) + min

{
Rk1 − I(V1;Y2|U) + µ,

I(U ;Y1), I(U ;Y2)
}

+ εn

)
(64)

which gives (as µ and εn can be made arbitrarily small)

R1 ≤ I(Y1;V1|U)+

min{Rk1 − I(V1;Y2|U), I(U ;Y1), I(U ;Y2)} (65)

which is the first term inside the outer minimization in (32)
2) Second Bound: Where the other receiver decodes its own

codeword before eavesdropping: The bound is obtained by
considering that:
• a genie gives receiver 1 message-key pair (W2,K2)
• receiver 2 attempts to evaluate the equivocation with

(W2,K2) as side information
This is inspired by [1]. We rewrite the equations/inequalities
used in [4, Equations (18) and (22)] employing these insights.

Consider the inequality (note that this follows very closely
the corresponding chain of inequalities in [4] with the crucial
change of additional conditioning RVs (W2,K2)

|W1| = H(W1)

= H(W1|K1) Since W1 ⊥⊥ K1

= H(W1|K1,W2,K2) Since (W1,K1) ⊥⊥ (W2,K2)

(66)

We interpret the last equation above, (66), as a genie giving
(W2,K2) to receiver 1. We continue

H(W1) = H(W1|K1,W2,K2)

= H(W1|K1,W2,K2)−H(W1|Yn
1,1,K1,W2,K2)

+H(W1|Yn
1,1,K1,W2,K2)

= I(W1;Yn
1,1|K1,W2,K2)

+H(W1|Yn
1,1,K1,W2,K2)

≤ I(W1;Yn
1,1|K1,W2,K2) +H(W1|Yn

1,1,K1)

≤ I(W1;Yn
1,1|K1,W2,K2) + nεn by Fano

(67)
≤ I(W1,K1;Yn

1,1|W2,K2) + nεn

= H(Yn
1,1|W2,K2)−H(Yn

1,1|W1,K1,W2,K2)

+ nεn

Analogously to (52) to (53), (54) to (55) it can be shown that
there real numbers T1 and T2 s.t.

1

n
H(Yn

1,1|W2,K2) = H(Y1|V2) + T1 (68)

1

n
H(Yn

2,1|W2,K2) = H(Y2|V2) + T1 (69)

and also
1

n
H(Yn

1,1|W2,K2,W1,K1) = H(Y1|V2, V1) + T2 (70)

1

n
H(Yn

2,1|W2,K2,W1,K1) = H(Y2|V2, V1) + T2 (71)

We finally have

H(W1) ≤ n(H(Y1|V2) + T1 −H(Y1|V2, V1)− T2 + εn)

Note that, since U → V2 → X → (Y1, Y2) Markov
chain is (trivially) satisfied. So we can rewrite H(Y1|V2) =
H(Y1|V2, U) and H(Y1|V2, V1) = H(Y1|V2, V1, U) due to the
appropriate Markov chain conditions. So, now we have

H(W1) ≤ n(H(Y1|V2, U) + T1 −H(Y1|V2, V1, U)− T2 + εn)

= n(I(V1;Y1|V2, U) + T1 − T2 + εn). (72)

Now, since, H(W1) = nR1, substituting in (72), we get

�nR1 ≤�n(I(V1;Y1|V2, U) + T1 − T2 + εn). (73)

Since the information leakage condition (58) is satisfied, and
the receiver 2 attempts to evaluate the equivocation with
(W2,K2) as side information, we can write

nµ ≥ I(W1;Yn
2,1|W2,K2) (74)

= I(W1,K1;Yn
2,1|W2,K2)− I(K1;Yn

2,1|W1,W2,K2)

=
(
H(Yn

2,1|W2,K2)−H(Yn
2,1|W1,K1,W2,K2)

)
−
(
H(K1|W2,K2,W1) +H(K1|Yn

2,1,W2,K2,W1)
)

≥ H(Yn
2,1|W2,K2)−H(Yn

2,1|W1,K1,W2,K2)

−H(K1|W2,K2,W1). (75)

Now we simplify the last term in (75) above in two steps as

H(K1|W2,K2,W1) = H(K1|W1)

Since (W2,K2) ⊥⊥ (W1,K1)

= H(K1)

Since K1 ⊥⊥W1. (76)

Inequalities (75) and (76) together imply that

nµ ≥ H(Yn
2,1|W2,K2)−H(Yn

2,1|W1,K1,W2,K2)−H(K1)

= n(H(Y2|V2) + T1 −H(Y2|V2, V1)− T2 −Rk1) (77)

Applying the Markov Chain conditions gives:

�nµ ≥�n(H(Y2|V2, U) + T1 −H(Y2|V2, V1, U)− T2 − nRk1)

=⇒ µ ≥ I(V1;Y2|V2, U) + T1 − T2 − nRk1 (78)

Rearranging the above gives:

T1 − T2 ≤ Rk1 − I(V1;Y2|V2, U) + µ (79)

We also have

T1 − T2 ≤ min{I(U ;Y1), I(U ;Y2)} (80)

Inequalities (79) and (80) together give

T1 − T2 ≤ min{Rk1 − I(V1;Y2|V2, U) + µ, I(U ;Y1), I(U ;Y2)}
(81)

On substituting (81) into the inequality (73), we get

R1 ≤ I(V1;Y1|V2, U)+ (82)
min{Rk1 − I(V1;Y2|V2, U) + µ, I(U ;Y1), I(U ;Y2)}

which was to be proved.



3) Outer Bounds on Sum-Rates: Now, following [1] we
derive outer bounds on the sum-rates R1 + R2 based on the
individual rate outer bounds.

We define

41 , I(V1;Y1|U)+

min{Rk1 − I(V1;Y2|U), I(U ;Y1), I(U ;Y2)} (83)

42 , I(V2;Y2|U)+

min{Rk2 − I(V2;Y1|U), I(U ;Y1), I(U ;Y2)} (84)

Θ1 , I(V1;Y1|V2, U)+ (85)
min{Rk1 − I(V1;Y2|V2, U), I(U ;Y1), I(U ;Y2)}}

Θ2 , I(V2;Y2|V1, U)+ (86)
min{Rk2 − I(V2;Y1|V1, U), I(U ;Y1), I(U ;Y2)}}

The bounds on R1 and R2 imply the following bounds on the
sum-rate

R1 +R2 ≤ 41 +42 (87)
R1 +R2 ≤ Θ1 + Θ2 (88)
R1 +R2 ≤ min{41 + Θ2,42 + Θ1} (89)


