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Abstract

Active contours are very widely used in computer vision
problems. Their usage has a typical problem, that of bunch-
ing together of curve points. This becomes apparent espe-
cially when we use active contours for tracking leading to
instability in curve evolution. In this paper, we propose an
additional tangential term to stabilise the evolution while at
the same time ensuring that the curve shape is not changed.
The proposed method is simple and the computational over-
head is minimal, while the results are good.

1. Introduction

Active contours are very widely used in computer vision
tasks like tracking and segmentation. A flurry of research
was sparked off by the original paper of Kass and Witkin [9]
which still continues. Active contours are simply connected
closed curves which move so as to minimise some energy
functionals. The minimisation yields the curve evolution
equations and depending on the numerical implementation,
contours have been classified as parametric active contour
or geometric active contour. As their name suggests, para-
metric active contours are implemented using parametric
curves like splines [12] or finite element method [4] in a
Lagrangian framework and these were the initial choices
for implementation. On the other hand, geometric active
contours are implemented in an Eulerian framework using
the level set methods [17] [19]. An interesting paper which
links these two approaches is [20].

It is out of scope of this article to review the entire active
contour literature, however we mention a few of the impor-
tant works. The initial energy functional defined by Kass
et al. [9] was based on image gradients while Ronfard [16]
extended it to region based energy functionals. They used
parametric contours for implementation. Malladi [11] in-

troduced the level set method into the computer vision com-
munity. Another landmark paper is [2] which converted the
initial gradient problem into that of finding a geodesic path
in a Riemannian space defined by the image. They have
used the level set method for implementation. Some of the
other important works are [3] [5] [6] [14] [21].

The advantages and disadvantages of both these meth-
ods are well documented [7]. Briefly, the level set method
representation allows topological change but has the disad-
vantage of being slow; converse is the case with parametric
representation. In applications like tracking, which is our
primary interest, topological changes seldom occur. There-
fore we concentrate on parametric active contours only in
this paper. We use a spline based implementation similar to
that of [12].

In the next section, we describe the problem and discuss
a few solutions which have been proposed in literature. Af-
ter that, we describe our solution and finally we present the
results and conclusions.

2. Notation

We first describe the notation used in this paper. A curve
is denoted by C(p, t), where p is the curve parameter and
t is the artificial time parameter. Thus t parameterises a
family of curves while p parameterises a single member of
this family. The initial curve is C(p, 0) and the family of
curves is obtained by evolving C(p, 0) as per some curve
evolution equation. The local tangent and inward normal
are denoted by t and n respectively. The curvature is de-
noted by κ and the arc length parameter by s. The quantity
g = |Cp|, is interpreted as the speed of a particle on the
curve. This quantity is a measure of the parameterisation of
the contour.

The force at each point on the curve can be resolved into
two components: one along the local tangent and one along
the normal denoted by α and β, respectively. This is written



as:
∂C

∂t
= α(p, t)t + β(p, t)n. (1)

Given this equation, g varies as follows [13] [10]:

∂g

∂t
= −gκβ +

∂α

∂p
, (2)

It is seen from the above equation that the curve speed
function depends on both the components. On the other
hand, it has been shown by researchers [10] that only the
normal component of the force β influences the shape of
the curve. The tangential component α reparameterises the
curve. Based on this fact, most researches have concen-
trated on constructing energy functions and paid attention
to the normal term to speed up the convergence, increase
the capture range etc. No specific efforts were made to
give some shape to the tangential term or at best it got con-
structed as a side effect. This did not pose any problems
as many researchers used level sets to evolve the curves.
However, there were some problems with the Lagrangian
implementation which is discussed next. We also discuss a
few common solutions as well as some works which had a
different approach.

3. Problems with Curve Evolution

3.1 Difficulties with Discrete curves

A well known problem with the parametric representa-
tion of curves is that during evolution the points on the
curve bunch close together at certain regions and they space
out elsewhere. This increases error in numerical approxi-
mation of curves measures like tangent and curvature. In
a spline implementation, although the tangents and nor-
mals are computed analytically and non uniform spacing
of points is not a problem, in regions where the points come
close together the control points also bunch together. This
may lead to formation of discontinuities in the curve. Sub-
sequently the normal gets highly ill-defined, leading to for-
mation of small local loops and these loops blow up in size
and ultimately the curve degenerates. In regions where the
points space out, the segmentation will of course be much
poorer. This problem which is disturbing in segmentation
problems, becomes intolerable in tracking. Therefore our
aim in this work is to maintain a uniform spacing of points.

As an example, we show two frames from a tracking se-
quence of a hand. We use the final curve of the previous
frame as the initialisation for the current frame. Figure1(a)
shows the curve just after initialisation. The points on the
curve are nearly equidistant. We use a minor modification
of the region competition model [21] for tracking (this is
explained in the next section). After four frames, as marked
in figure (1(b)), the points accumulated in two regions are

marked by red circles. In the very next frame, in figure
(1(c)), we notice that small loops have formed in these re-
gions. These loops keep blowing up and the curve becomes
unstable. The occurence of degeneracy depends partly on
the motion direction. In the example shown, as the hand
moves from the right to left, the points accumulate to the
right and vice versa. Of course, the exact number of frames
between initialisation and loop formation depends on dif-
ferent image sequences.

3.2 Few Solutions

In this section, we present a few possible approaches de-
scribed in the literature to tackle this problem and discuss
their limitations.

1. Reinitialisation of curve can be done either after a fixed
number of frames or when the distance between suc-
cessive control points falls below a certain threshold.
As proposed in [12], this can be done by minimising
the least squared distance between the current curve
and the new curve while penalising the distance be-
tween the control points. However, this is not a very
good solution because the shape of the curve would
change during the re-positioning of the control points.
The computation is also increased in checking the dis-
tances in each frame after every iteration.

2. Another ad-hoc solution is inserting or deleting points
from the curve when the distance between them ex-
ceeds or falls below a certain threshold. This again is
not a very good solution; the thresholds have to be set
manually and in general is a naive procedure.

3. In a spline based implementation; we could also con-
trol the curve by deleting or inserting control points.
Although algorithms exist for such a procedure; this
solution is not natural, is specific to splines and is com-
putationally expensive. Also, if we were to use the
control points to represent the shape space, these op-
erations would change the dimensions of the feature
space.

The above methods are rather ad-hoc in the sense that
they are methods to adjust Euclidean distance between
points after they space out and do not actually try to pre-
vent this phenomenon from occuring. Some better methods
to obtain a more uniform point spacing have been proposed
in [7] [8] [13]. We however postpone the discussion of these
methods to the next section. This would enable us to com-
pare immediately our method with these approaches.
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(a) Frame 26 (b) Frame 30 (c) Frame 31

4. Proposed Method

We first qualitatively describe the cause for the bunch-
ing of the points on the curve and the control points. As
mentioned previously, β controls the shape while α con-
trols the parameterisation. It might be thought that if we set
the tangential component α to zero; the curve would retain
its parameterisation and be well behaved. It is seen from
equation (2) that g depends on both the components of the
force. Therefore, while reconstructing the curve with a dis-
crete set of points the spacing between the points varies in
an unpredictable manner. This leads to uneven spacing of
points at certain portions of the curve and the consequent
problems described in the earlier section.

In our approach we ensure curve stability by using a very
simple equation to control g. It is a well known fact that
the arc length is the desired parameterisation to describe the
curve. This is an intrinsic description of the curve. Also, we
note that when the curve is parameterised by its arc length,
the curve speed function quantity g becomes equal to 1. We
make use of this simple fact to control the curve. Though
arc length parameterisation is most desirable; it cannot al-
ways be achieved in practice. This is because of the repre-
sentation used. For example, when we use closed periodic
B Splines to represent a curve, the parameter range is Nb,
the number of basis functions. Obviously, it cannot be guar-
anteed that the length of the curve would always be equal to
this or even close to this. Therefore, the next practical com-
promise would be to have g to be a constant K.

It is then natural to use equation (2) to force the curve
towards the parameterisation which would make g = K.
The left hand side of this equation predicts how g changes
given β and α. We know the normal component β; this is
obtained from minimising the energy function defined on

the curve. Equation 2 can be rewritten as:

∂α

∂p
=

∂g

∂t
+ gκβ, (3)

Let us set:
∂g

∂t
= K − g. (4)

Qualitatively, at each point we try to find α by pushing g
at that point to the constant K. We can set K by simply
averaging it over the curve in the first frame. We obtain α
by substituting equation (4) in equation (3) and then numer-
ically solving the resulting PDE:

∂α

∂p
=

∂g

∂t
= K − g + gκβ. (5)

After solving for α(p, t), we use the values in equation(1).
This simple term gives very good stabilisation of the curve
as we shall see in the next section on results.

It is interesting to compare the proposed energy term
with that proposed in [7], [8] and [13] . In [7] the tangential
energy term (for maintaining uniform parameterisation) is
shown to be:

α =
∂g

∂p
. (6)

When the normal force component β has a smaller mag-
nitude compared to the tangential part; the above force is
equivalent to the diffusion of g along the curve as time pro-
gresses. The above assumption may not be strictly valid in
regions of high curvature. The term proposed in this paper
is better because it directly addresses the issue at hand. We
do not make any assumptions in our work. In fact, we use
β while computing α at each point.

In [13], the authors have proposed two terms for calcu-
lating α. In the first term, which is a non local term, α is
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obtained by solving the following ODE:

∂α

∂s
= κβ− < κβ > +(

L

g
− 1)ω,

where < . > denotes averaging over the curve and ω =
k1 + k2 < κβ >, k1 and k2 are two constants. The authors
have shown that this term leads asymptotically to a uniform
parameterisation. Note that there are two unknown param-
eters to be fixed here.

In the second method, α is obtained by letting α = ∂sθ,
where θ = ln( g

L ). The rationale behind this term is that
it is obtained as the tangential component of the solution
of the intrinsic heat equation. The normal component of
the solution is the mean curvature motion. However, it is
well known that mean curvature motion is too slow in prac-
tice for convergence [18]. Therefore researchers speed up
convergence by adding a normal term. Hence, we feel that
the term might not perform so well in practice. One draw-
back of both these methods stable numerical implemention
requires updation of g, curvature and tangent angle after
α is calculated; only then are the curve points updated.
In our method we can directly apply the calculated α in
equation(1). Finally, in [8], the authors obtain the internal
energy term by minimising the following:

E =
∫ M

0

(g2 − c)2dp, (7)

where M depends on the representation used and c is pro-
portional to the length of the curve. However, the above
term will also cause a shrinkage of the curve. Therefore,
although there may be a stabilisation of the curve, there is
also a change in the shape of the curve because of the nor-
mal component. This is not at all a desirable side effect. In
our method, there is no feedback term like this and hence
we expect better results. The biggest disadvantage we feel
in the non local term of [13] and [8] is that both require cal-
culation of length of the curve or practically speaking, its
numerical approximation. This can only be done by using a
large number of points to approximate the curve. Therefore,
the dimensions of various matrices will increase resulting in
higher computation time. Our proposed method is free of
such constraints.

As mentioned in the beginning of this paper, we have
used the proposed term to stabilise the curve applied to
tracking using the Region Competition model. We describe
the tracking algorithm next.

4.1 Tracking Algorithm

We have used the region competition model [21] for
tracking. This model was proposed for segmentation of an
object in an image I using the statistical properties of the

object. The idea is to move a point on the curve C in ei-
ther inward or outward normal direction depending on the
image properties of the point on the curve I(C). We build
histograms of the target and the background. These are de-
noted by pT and pB respectively. An image point lying
on the curve is denoted by I(C). Therefore, the probabil-
ity of this pixel belonging to the target and the background
is pT (I(C)) and pB(I(C)). The curve evolution equation
then is as follows [21]:

∂C

∂t
= µκn + log

[
pB(I(C))
pT (I(C))

]
n. (8)

The interpretation of the above equation is as follows;
if the probability that the curve point belongs to the back-
ground is higher than the probability that it is a part of the
target then the point moves in the inward direction and vice
versa. This means that the initialisation is such that the
curve should at least partially cover the target. This is a very
common assumption in tracking. We have used histograms
because they are simple and fast. We ignore the bins of the
histogram where the probability values are too low.

We extend the same model for tracking. We use the con-
verged contour in the previous frame as the initialisation
of the contour in the next image. We use histograms to
model the target and background feature distributions in the
RGB colour space. We generate the target histogram offline
manually and generate the background dynamically. The B
Spline curve lies entirely within the convex hull of its con-
trol points and we assume that the target lies mostly within
the region enclosed by the spline curve. Computing the con-
vex hull is computationally expensive. We therefore find the
biggest rectangular bounding box enclosing the curve and
sample the image randomly outside this box.

5. Results

In this work, we have used B Splines [15] for implemen-
tation. The advantages of cubic splines and especially cubic
B-Splines is well documented in literature [1]. Of course,
other representations can also be used as the method pro-
posed is quite independent of the choice of representation.
We discretised equation(5) simply by using backward dif-
ferences as follows.

We observed that a initial smooth contour degenerates
when there is a rapid motion of the target or there is a
rapid shape change or a combination of both. We first im-
plemented the proposed method on the same sequence as
shown in figure 1 for the purpose of comparison. In this se-
quence the shape change is slow but the object moves fast.
Not only at frame 31(figure 2(a)) is the curve stabilised but
also remains so till frame 40, figure (2(b)).

We next take a more difficult sequence where there is a
combination of shape change and motion. Figures 2(c) and
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(a) Frame 31 (b) Frame 40 (c) Frame 76 (d) Frame 120

2(d) shows one such sequence. We again note that the curve
remains stable despite this combination of motion and shape
change.

6 Conclusions and Future Work

Parametric active contours are simple to implement and
much faster than level set methods; however their stability is
always suspect. In this paper, we presented a simple method
to stabilise parametric active contours.

Now that we have a stable contour controlling algorithm
under even fast motion and shape change, we apply this
for the purpose of tracking of deformable or articulated ob-
ject. Tracking using contours is definitely slower than us-
ing simple geometric shapes like rectangular boxes or el-
lipse; however the advantage of tracking using contours is
that these give the vital information about shape very natu-
rally. These again can be used for applications like gesture
recognition or activity recognition where shape information
is used. Contours provide a natural way of incorporating
shape priors into tracking. We plan to further investigate in
this regard.
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