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ABSTRACT
Kernel based tracking based on the mean shift algorithm is by
far the most popular blob tracking algorithm due to its sim-
plicity and speed of convergence. There are however well
known limitations with the kernel based tracking approach.
Scale or bandwidth of the kernel and orientation are impor-
tant considerations which have not yet had a satisfactory so-
lution. On the other hand, active contours have been used
in tracking but have not been very widely accepted because
of the inherent speed limitations. We propose a simple yet
effective strategy to combine these two radically different ap-
proaches wherein each tracker feeds the relevant information
to the other. As a result, a better target lock is obtained for
the mean shift while the number of iterations to delineate the
shape is reduced drastically.

1. INTRODUCTION

Tracking is a very active area in computer vision research. In
this paper we focus on “blob” and “active contour” based ap-
proaches. In blob based approaches, the object is assumed
to lie within some regular geometric shape like an ellipse or
a rectangle. Currently, the most popular blob based tracking
algorithm is the kernel tracker based on the mean shift algo-
rithm [1]. This tracker is very simple to implement, does not
depend on motion models and is fast so as to permit real-time
tracking. However, there are some well known drawbacks as-
sociated with this tracker [2] [3] which is discussed in the next
section.

Tracking by itself is not an isolated problem and the tracker
output should include as much meaningful information as pos-
sible about the target. Blob based tracker give no informa-
tion regarding the object shape. However, it is known that
shape or the object boundary information is also important
in vision. Contour based trackers give this additional infor-
mation of the object shape which is not possible with blob
tracker without further processing. Active contours are sim-
ply connected closed contours. Energy functionals are de-
fined on the contour. Curve evolution equations are obtained
by minimising the energy functionals. Contour energy func-

tionals can be defined either over the region enclosed within
the region or on its boundary or of course as a combination of
both. A few important edge based approaches are [4] [5] [6].
Again, [7] [8] [9] are some of the region based approaches.
From implementation point of view, active contours can be
categorised as geometric or parametric active contours [10].
Geometric active contours are implemented using level sets.

Active contours are inherently slow, especially when us-
ing the level set framework [11]. Therefore, in our work we
use parametric active contours. Specifically, we use cubic
B splines [12] for representing contours similar to the work
of [13]. Though a parametric representation cannot handle
merging and splitting of contours without special techniques
and which is possible using level sets, we assume that the
target does not split. We use a simple variant of the region
competition algorithm [8] for tracking. Details are presented
in section 3.

Our contribution in this paper is to present a meaningful
approach whereby these two divergent tracking approaches,
each with its own advantages and disadvantages, reinforce
each other advantageously. Specifically, we reduce the num-
ber of iterations required for the contour tracker for faster con-
vergence using the mean shift and use the contour to derive a
meaningful bandwidth matrix for the kernel tracker so that
deforming shape can be tracked even during changing orien-
tation. In the next section we briefly describe the current lim-
itations of the kernel tracker. In the third section, we discuss
the proposed method. Finally we present the implementation
details and discuss the results.

2. OVERVIEW OF THE MEAN SHIFT TRACKER

Mean shift [14] is a well known method for finding modes
for non-parametric densities. Given Xi, i = 1, .., N samples
from a d dimensional space, the multivariate density estimator
at X is given by,

f(X) =
1

N
ΣN

i=1
KH(X − Xi), (1)

where KH(X) = |H|−
1

2 K(H− 1

2 X). K is called the kernel,
H is a symmetric positive definite matrix. K obeys certain



properties as described in [14]. For a radially symmetric ker-
nel, K(X) = ck( ||X||2

h
), where k is a positive function with

appropriate constraint called the kernel and c is a normalisa-
tion constant. Typically, the profile used is the Epanechnikov.
The kernel obtained using this profile gives more weightage
to the points nearer to X. The bandwidth matrix H deter-
mines the neighbourhood over which the kernel is nonzero.
Hence this matrix controls the effect of data points. If this
matrix is taken to be a diagonal matrix with constant element
h2

I, where I is an identity matrix, then the symmetric ker-
nel effectively takes the shape of a circle of radius h. If H

has unequal diagonal elements, then the shape is that of an el-
lipse with the axes lying along the reference axes. In the most
general form, H would represent an oriented ellipsoid. The
gradient of the density estimator is shown to be proportional
to the mean shift vector [14]. Effectively, we reach the local
mode of the estimated density function by repeatedly finding
the mean shift and moving in the same direction.

For tracking [1], the target is represented by a histogram
of features, usually the colour values, lying within an ellipti-
cal region. Let the photometric feature of interest be u. This is
usually the RGB or gray-scale value. This could be any other
feature of interest. Then, assuming that the target is repre-
sented by an ellipse centred at the origin, the target histogram
is defined by,

p(u) = CΣN

i=1
k(||

Xi

h
||2)δ[I(Xi) − u], (2)

where Xi denote the points lying within the ellipse, δ is the
delta function and C is some normalisation constant. It can
be seen that the points near the centre are weighted more and
the points at the boundary contribute nothing to the density
estimate. Tracking is done by minimising the Bhattacharya
distance between the model histogram, and a target histogram
initialised at some position in the image. It has been shown
in [1] that under the assumption that the target appearance
has not varied too much, this minimisation is equivalent to
the mean shift operation performed with the kernel density
estimate being weighted by the ratio of model and target his-
tograms.

In the original formulation, the bandwidth matrix was taken
to be a diagonal matrix with unequal diagonal elements. As
mentioned previously, this means that the axes of the ellipse
are directed along the coordinate axes. Therefore, should the
object undergo rotation, the ellipse will not provide a good
fit. Another issue is the updating of the scale or bandwidth
during tracking. In the original work, bandwidth was updated
heuristically. These are the two issues we address in this pa-
per.

There some approaches in literature for updating the scale
[2] [3]. These are data driven approaches for segmentation
and use what is known as the sample point estimator as com-
pared to the traditional balloon estimator. We also use the
data to determine the bandwidth matrix but use the balloon

estimator which is described next.

3. PROBLEMS OF ACTIVE CONTOURS IN
TRACKING

As mentioned earlier, active contours have been traditionally
classified into geometric and parametric contours based on
the implementation technique used. Geometric contours are
implemented in a Eulerian framework using level sets. Para-
metric contours use polyline, spline or Fourier descriptors for
implementation. We have used cubic B Splines for our work
as these are much faster than level sets and because of their
design advantages. Although recently, there have been some
works which have used contours for tracking [15], these are
mostly based on level set implementation and the convergence
time required is quite unrealistic for practical use. Splines of-
fer a much faster alternative.

A typical problem is observed with the usage of paramet-
ric contours for segmentation and tracking. Contour points
space at some positions and crowd about at other places. For
a spline implementation, this leads to formation of small lo-
cal loops which after evolution blow up in size and the curve
degenerates. This is primarily due to the curve reparameter-
isation as noted in [16] [17]. In the same work, the authors
have proposed an ODE for the tangential term to control pa-
rameterisation of the curve. We use the same term in this
work to stabilise the contour.

4. PROPOSED METHOD

We propose a combination of the active contour and mean
shift approaches to overcome the shortcomings of each method.
The nearest work to our approach is [18]. In that work, the
authors have used level sets for curve evolution. They use
the mean shift algorithm to move the target ellipse and use
this to initialise the curve. The authors claim that this would
reduce the number of iterations required for the curve to con-
verge. While this is true, this method would not work well in
cases when the object undergoes orientation and size changes
because the ellipse fit would not be accurate as explained pre-
viously. As has been noted in [19], the ellipse tends to “float”
around when the target size is larger compared to the ellipse.
Using the original method of updating of the bandwidth, the
authors have also noted a tendency of the ellipse to shrink in
which case the previous problem becomes accentuated. In our
method, we propose to adjust the ellipse parameters using in-
formation form the converged curve. As we shall see in the
next section on results, this considerably enhances the lock of
the mean shift tracker while reducing the iterations required
for the contour tracker while better adapting to changes in
shape. We next describe our approach in greater detail.

Let us denote the contour at time t by C(t). For the
contour based tracking, we use a simple modification of the
region competition model [8]. We use the final converged



contour in the current frame as the initialisation for the next
frame. The curve evolution equation is,

∂C

∂t
= µκ + log

[

pB(I(C))

pT (I(C))

]

n, (3)

where image point lying on the curve is denoted by I(C) and
µ is the weight of the curve regularisation term, pB and pT

are the background and target histograms, respectively. As
explained in the previous section, we use a tangential stabil-
ising term proposed in [16]. Therefore, the curve evolution
equation assumes the general form, ∂C

∂t
= α(p, t)t+β(p, t)n,

where n, t are the local normal and tangent on the curve re-
spectively and β corresponds to the term on the RHS of equa-
tion 3.

Given a converged curve in the current frame, we fit an el-
lipse to the curve points. This can be done on a least squares
criterion or some clustering algorithm [20]. This is an impor-
tant information which we use to initialise the ellipse of the
mean shift. We have used the curve points to fit the best el-
lipse; however, interior points of the curve can also be used
though this would be computationally more expensive with
no significant improvement in results. We use the algorithm
proposed in [20] for this purpose. This algorithm is quite fast
and gives good fit. We therefore get the parameters and orien-
tation of the best fit ellipse. It is important to note that though
this operation is seemingly simple, yet this provides a very
effective feedback from the contour tracker to the mean shift
tracker. This information is very vital for keeping the mean
shift tracker locked on to the target. The directions of the
axes of this ellipse correspond to the eigen vectors of H and
the length of the axes correspond the the eigenvalues.

For the mean shift tracking, we use a similar histogram
based target distribution as in [14] with a modification. We
consider only those points within the ellipse which also lie
within the converged final curve. The reason for this is that
since the ellipse may extend beyond the curve for irregularly
shaped targets; the tracker may use the background pixels
for building the histogram. Since the implicit assumption in
tracking is that the object does not change too rapidly in either
shape or photometric features; this is a much more reliable
description of the object than ellipses directed along the axes.
Again, this is another simple yet highly effective technique
for implicitly encoding the spatial extent of the target.

After initialising the ellipse and building the histogram,
we use the mean shift to move the ellipse toward the target in
the next frame. After the ellipse has converged to the new lo-
cation in the target, we translate the curve by the same values.
Curve evolution then happens as per equation 3 till conver-
gence. Unlike [18], we do not use the ellipse to initialise the
snake in the next frame.

It is to be noted that though both the trackers use his-
togram to model the target, in general one has to build dif-
ferent histograms for the two trackers. The reason is that the
kernel modulation gives decreasing weight to pixels as the

distance from the centre increases. Such a target description
will obviously give poor delineation if used with the contour
tracker. The above of course is not valid if we use a uniform
kernel.

5. RESULTS

We show the results using the contour tracker, mean shift
tracker and the combined tracker. We have used tracking se-
quences of 500 frames. For the combined tracker, we find that
we can reduce the number of iterations by almost half and
get the same object detail as with a regular contour tracker.
Figure 1 shows the output of the different trackers. Figure
1(a) shows the initialisations for the contour and mean shift
tracker. Figures 1(b),(c) and (d) show the outputs of the mean
shift tracker, contour tracker and the combined trackers re-
spectively after 50 frames. It can be seen in figure 1(b) that
the convergence of the mean shift tracker is not very good.
For the combined tracker, we applied about half the number
of iterations required for the unmodified contour tracker and
get similar results.

(a) Initialisation (b) Mean Shift Tracker

(c) Contour Tracker (d) Combined Tracker

Fig. 1. Tracking Sequence with the different Trackers.(a) Ini-
tialisation (b) Mean Shift Tracker output in pink (c) Contour
Tracker output in blue (d) Combined tracker output showing
the bounding curve only. Only contour tracking takes about
double the number of iterations.

Figure 2 shows another tracking example. In this exam-
ple we again see the effectiveness of the proposed method as
compared to the mean shift tracker. The mean shift part of the
combined tracker is able to maintain accuracy despite change
in orientation of the object. The plain mean shift tracker un-
able to get a good fit and is liable to get distracted. It is how-
ever to be noted that the original mean shift tracker can be



(a) Initialisation (b) Mean Shift Tracker

(c) Contour Tracker (d) Combined Tracker
Fig. 2. Tracking in presence of orientation change with differ-
ent trackers.(a) Initialisation (b) Mean Shift Tracker output in
pink. (c) Contour Tracker output in blue. Note that object is
not completely segmented despite higher iterations. (d) Com-
bined tracker output showing both the ellipse and the curve.

implemented so as to obtain frame rate tracking. Here, the
tracking rate is definitely slower than that.

6. DISCUSSION

In this paper, we have presented a simple yet highly effec-
tive method for determining the bandwidth matrix used in the
mean shift algorithm. We have combined the active contours
tracker with the mean shift tracker for this purpose and we
obtain vital information regarding the bandwidth matrix from
the converged contour. On the other hand, we need much
lesser number of iterations for the snake to converge. Admit-
tedly, the tracking slower than the original mean shift algo-
rithm but this combined method could be used for non real-
time applications where the object shape is of interest. We
have used simple histograms as target descriptors and this
would lead to the tracker getting distracted in more compli-
cated scenarios. Our future work will be concentrated in this
direction.
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