
Looking at Big Data through Graph Signal
Processing

Yashswi Jain, Krishna Subramani

Electrical Engineering
Indian Institute of Technology Bombay, India

EE771 - Recent Topics in Analytical Signal Processing

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Motivation

Analysis and processing of very large datasets, or ‘Big Data’
poses a significant challenge.

If Knowledge is power and Data is knowledge then Data is
power! Need an efficient way to channelise this power.

Given the enormous volume of the data, analysis is often com-
putationally demanding.

This computational bottleneck can be efficiently dealt with by
finding and exploiting some ‘inherent structure’ in the data.

Graphs are an efficient way of representing ‘Distributed’ data.
Hence, our motivation.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

The Problem

Consider a weather dataset comprising of daily temperature
readings for 400 days from 30 weather stations in Brazil. We
intend to compress the given data.

For GSP, the given data needs to modelled as a graph. A
graph representing the above data will ideally comprise of
12000 nodes.

This would mean a 12000× 12000 adjacency matrix. Any
matrix manipulation involving such a huge matrix is a
computational nightmare.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Spectral Decomposition is needed to obtain the Graph Fourier
transform(GFT), from which compression can be achieved by
retaining the dominant spectral components.

This involves finding the eigen values and augmented eigen
vector matrix of the Laplacian.

Because of the huge size of the adjacency matrix, these are
computationally expensive as we shall see later!

Where is the light at the end of this tunnel?

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Spectral Decomposition is needed to obtain the Graph Fourier
transform(GFT), from which compression can be achieved by
retaining the dominant spectral components.

This involves finding the eigen values and augmented eigen
vector matrix of the Laplacian.

Because of the huge size of the adjacency matrix, these are
computationally expensive as we shall see later!

Where is the light at the end of this tunnel?

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

The Proposed Solution

In order to make the problem computationally efficient, we
factor the graph into two smaller components,

1 A graph depicting the sensor grid comprising of 30 nodes.
2 A directed time series comprising of 400 nodes.

The two graphs are shown below.

(a) Time series graph, (b) Sensor network graph, [1]

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Challenges

The paper [1] is our base reference. It lays the foundation of data
compression using discrete GSP.

We believe that the paper has left the following crucial aspects unan-
swered:

The most crucial step of any big data analysis is data
pre-processing. The compression can be severely affected in
presence of outliers and redundancies since all such points
distort the spectrum.

The paper says nothing about handling outliers, redundancies
and missing data points.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

The paper does not talk about how the weight matrices of the
factor graphs are generated. Moreover, the time series is
directed as well, which adds to the complexity.

For a directed graph, the Laplacian will not be symmetric.
Therefore, Inverse GFT will now involve obtaining the inverse
of the augmented eigen vector matrix instead of simple
transposition.

The results obtained in the literature could not be reproduced
due to the lack of a definitive algorithm for compression and
unavailability of the dataset that has been actually used in [1]
as a benchmark to validate our performance.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Solution Sketch

Obtaining the Dataset: The weather dataset has been
obtained from Kaggle1. The dataset obtained wasn’t sanitised.

Outlier removal : We have obtained the box plots to identify
outliers and clip them.

Box plot and corresponding sensor data

1Dataset Link
Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

https://www.kaggle.com/guispadaccia/brazil-weather-data-from-2010-to-2017

Data Imputation: The missing values has been imputed with
the neighbouring values in the time series for a given station.

Obtaining the weight matrices: The weight for the directed
time series has been taken to be 1 for the connected nodes,
and for the sensor graph, the weights are given by the formula

Wi ,j = Ke−
|di−dj |
dmax

Heat map of Laplacian Matrix

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Product Graphs

We can factorize our graph as a ‘strong product’ of two
smaller graphs, a sensor network graph and a time series
graph[2] as shown below,

Let L1 ∈ RN1×N1 be the graph Laplacian for the sensor
network where N1 = 30, and let L2 ∈ RN2×N2 be the graph
Laplacian for the time series network where N2 = 400.

Strong Product of graphs, [1]

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Formulating the product graph and its components

The Laplacian of the product graph can be written as:

L⊕ = L1 ⊕ L2 = L1 ⊗ L2 + L1 ⊗ IN2 + L2 ⊗ IN1 , (1)

where ⊕ is the Strong Kronecker product, and ⊗ is the Matrix
Kronecker product.

The spectral decomposition of the product graph can be
obtained in the following way:

L⊕ = V ×
(
Λ1 ⊗ Λ2 + Λ1 ⊗ IN2 + IN1 ⊗ Λ2

)
× V−1,

where Λ1,Λ2 are the individual graph laplacian eigenvalue
matrices, and V = V1 ⊗ V2 is the Kronecker product of the
individual graph Laplacian augmented eigenvector matrices.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Hence the inverse of the augmented eigen vector matrix for
the product graph can be obtained as follow:

V−1 = (V1 ⊗ V2)−1 = V−1
1 ⊗ V−1

2 ,

Note: Instead of taking the inverse of a 12000× 12000 matrix,
the inverse operation is reduced to taking the inverse of a
400× 400 matrix and a 30× 30 matrix; this will significantly
reduce the computation period as we shall see later.

Obtaining the GFT f̂ of the graph signal f ∈ R12000 now
reduces to:

f̂ = (V−1
1 ⊗ V−1

2).f ,

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

The last step towards compression is throwing away the GFT
components whose absolute values are lesser than a certain
threshold and take the inverse GFT. The inverse can be taken
as shown:

f̃ = (V1 ⊗ V2).˜̂f ,

where ˜̂f is the truncated GFT of the given graph signal and f̃
is the reconstructed graph signal.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Observations and Inferences

The most interesting thing we observed was the improvement
in the reconstruction error by performing data imputation.

Mean Squared Error without data imputation
Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Observations and Inferences

The most interesting thing we observed was the improvement
in the reconstruction error by performing data imputation.

Mean Squared Error with data imputation
Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

The improvement of the MSE performance with data
imputation is ≈ 5% for 20% of data compression i.e. 80% is
being used for data reconstruction.

This improvement is indeed expected since missing values act
as noise in the given data therefore leading to spectrum
distortion.

In the absence of suitable imputation technique, this missing
data will be ignored leading to increased MSE.

We are achieving an MSE of ≈ 10% when 45% of the data is
used for reconstruction i.e. achieving a compression of 55%.

With 80% of the data being discarded the MSE is ≈ 25%.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Another thing that we observed was the drastic reduction in
time for the algorithm to run.

Recall V−1 = V−1
1 ⊗ V−1

2 ,

Inverse of Factors Inverse of Product

≈ 0.09 minutes ≈ 0.75 minutes

This gain of ≈ 8 in runtime essentially proves the point that
we are trying to make. This gain will be even more significant
for larger sizes.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Contrary to our expectations, the outlier removal technique
does not improve the performance. The MSE increases
overall. We are not able to explain why this happens.

Mean Squared Error without data clipping

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Contrary to our expectations, the outlier removal technique
does not improve the performance. The MSE increases
overall. We are not able to explain why this happens.

Mean Squared Error with data clipping

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

Obtaining the Product Graphs

In the problem discussed so far, we assumed implicitly that
the overall graph can be written as the strong product.

Recall Eq.1,

L⊕ = L1 ⊕ L2 = L1 ⊗ L2 + L1 ⊗ IN2 + L2 ⊗ IN1 .

What do we do if we instead have access to the larger
Laplacian L⊕, and we want to ‘factorize’ it to obtain the
product graphs L1,L2?

Using Linear Algebra and simple matrix manipulations, we
show that the problem of estimating the products ultimately
boils down to finding a lower rank representation of the larger
matrix.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

We want to find the matrix which solves the following
optimization problem,

min
B,C
‖A− B ⊕ C‖F , (2)

where A ∼ L⊕ i.e Laplacian of the product graph and B ∼ L1

,C ∼ L2 are the factored laplacians, ⊕ is the Strong Kronecker
product, and F is the Frobenius norm.

Let us consider a simpler problem,

min
B,C
‖A− B ⊗ C‖F , (3)

where ⊗ is the Matrix Kronecker product.

We will show the solution to the above for small matrices A,B
where A ∈ R4×4 and B,C ∈ R2×2

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

‖A− B ⊗ C‖F =

∥∥∥∥∥∥∥∥∥∥


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

−
[
b11 b12

b21 b22

]
⊗

[
c11 c12

c21 c22

]∥∥∥∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥∥∥∥∥


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

−

b11c11 b11c12 b12c11 b12c12

b11c21 b11c22 b12c21 b12c22

b21c11 b21c12 b22c11 b22c12

b21c21 b21c22 b22c21 b22c22


∥∥∥∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥∥∥∥∥


a11 a12 a21 a22

a13 a14 a23 a24

a31 a32 a41 a42

a33 a34 a43 a44

−

b11c11 b11c12 b11c21 b11c22

b12c11 b12c12 b12c21 b12c22

b21c11 b21c12 b21c21 b21c22

b22c11 b22c12 b22c21 b22c22


∥∥∥∥∥∥∥∥∥∥
F

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

=

∥∥∥∥∥∥∥∥∥∥


a11 a12 a21 a22

a13 a14 a23 a24

a31 a32 a41 a42

a33 a34 a43 a44

−

b11

b12

b21

b22

[c11 c12 c21 c22

]
∥∥∥∥∥∥∥∥∥∥
F

=
∥∥∥Ã− b̃c̃T

∥∥∥
F

We have thus reduced minB,C‖A− B ⊕ C‖F to the problem,

min
b̃,c̃

∥∥∥Ã− b̃c̃T
∥∥∥
F
,

which is the optimal rank-1 estimate of the matrix Ã which
can be obtained using the SVD of Ã.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

The Kronecker strong product in Eq. 1 however involves three
terms. Using the manipulations on the previous page, we can
recast the optimization problem minB,C‖A− B ⊕ C‖F as,

min
u1,v1,u2,v2,u3,v3

∥∥∥Ã− u1v
T
1 − u2v

T
2 − u3v

T
3

∥∥∥
F
, (4)

which is like finding the best rank-3 estimate of Ã.

A major computational issue with our analysis is that finding
the factors again involves the computation of the SVD of the
large matrix. However, the problem can be simplified if we
assume a structural property like sparsity about the matrix.

Our analysis here is inspired from [3]. A detailed analysis has
been provided in [4].

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

References I

[1] A. Sandryhaila and J. M. Moura, “Big data analysis with signal processing on
graphs,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 80–90, 2014.

[2] R. Hammack, W. Imrich, and S. Klavžar, Handbook of product graphs.
CRC press, 2011.

[3] C. Van Loan, “The kronecker product svd,” 2009.

[4] C. F. Van Loan and N. Pitsianis, “Approximation with kronecker products,” in
Linear algebra for large scale and real-time applications, pp. 293–314, Springer,
1993.

Yashswi Jain, Krishna Subramani Looking at Big Data through Graph Signal Processing

