
Abstract-- In this paper new particle swarm optimization 
(NPSO) technique is being used to solve non-convex economic 
load dispatch (ELD) problems. Unlike classical particle swarm 
optimization (PSO) method the NPSO remembers both best and 
worst visited position of the particles which helps in exploring the 
search space effectively. Some nonlinear characteristics of the 
generators such as ramp rate limits, valve point effects and non 
linear cost functions are considered. The local random search is 
also being combined to expedite the solution finding. The 
technique has been applied to three generator test system for 
various cost functions. The optimum values of parameters 
selected were obtained and verified. The NPSO was found 
efficient in terms of convergence rate and optimal cost for 
Economic Dispatch problem. 

Index Terms—Economic load dispatch, ramp rate limit, 
particle swarm optimization. 

I.  INTRODUCTION

lectric power industry is changing rapidly and the 
traditional monopolistic environment is moving to a 
competitive power supply market. Determining the 

operating strategies to meet the demand for electricity for a 
specific planning horizon is one of the most important 
concerns under the current commercial pressure [1]. A major 
challenge for all power utilities is not only to satisfy the 
consumer demand for power, but to do so at minimal cost.  
Any given power system can be comprised of multiple 
generating stations, each of which has its own characteristic 
operating parameters. The cost of operating these generators 
does not usually correlate proportionally with their outputs; 
therefore the challenge for power utilities is to try to balance 
the total load among generators that are running as efficiently 
as possible. 
 In a typical power system multiple generators having unique 
cost-per hour characteristics are used to meet the total 
consumer demand. The things become complex when utilities 
try to account for the transmission loss and seasonal changes 
[2]. The objective is to minimize the total cost of generation 
(including fuel cost, emission cost, operating/maintenance 
cost plus network losses cost) meeting various operational 
constraints. The generators are to be coordinated in such a 
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way that lowest cost generators are used as much as possible 
and expensive generators are to be operated when demand 
increases[3].

The ELD problem has been solved by many traditional 
techniques. The ramp rate limits inclusion makes the problem 
different from the static Economic load dispatch [4], [5], [6]. 
Dynamic Economic Dispatch problem is also introduced and 
solved by discretization of the entire dispatch period into a 
number of small time periods. To achieve the overall cost  
reduction, static economic dispatch (ED) in each time period 
is solved subject to the power balance constraint at that time 
and the additional time dependent dynamic constraints [7], 
[8], [9], [10]. 

Economic load dispatch is the fundamental optimization 
problem in power system and it must include ramp rate limits, 
prohibited operating zones, valve point effects and multi fuel 
options to make a complete economic dispatch 
problem[11][12]. In this paper the new particle swarm 
optimization technique is being applied to the generator 
system having non smooth characteristics of cost. The 
technique remembers the previously visited best and worst 
positions of the swarm particles that help in expediting the 
search process. The local random search is also being included 
to speed up the search and explore the search space 
effectively. The technique was applied on 3-bus system to 
demonstrate the effectiveness of the technique. The coding 
was done in turbo C++ and PSO was implemented for 
economic dispatch problems. 

II.  OVERVIEW OF NEW PARTICLE SWARM OPTIMIZATION

Natural creatures sometime behave as a Swarm. One of the 
main streams of artificial life researches is to examine how 
natural creatures behave as a Swarm and reconfigure the 
Swarm models inside the computer. Dr. Eberhart and 
Kennedy develop PSO, based on analogy of the Swarm of 
birds and fish school. Each individual exchanges previous 
experiences among themselves [13]. PSO as an optimization 
tool provides a population based search procedure in which 
individuals called particles change their position with time. In 
a PSO system, particles fly around in a multi dimensional 
search space. During flight each particles adjust its position 
according its own experience and the experience of the 
neighboring particles, making use of the best position 
encountered by itself and its neighbors. 

In the multidimensional space where the optimal solution is 
sought, each particle in the swarm is moved toward the 
optimal point by adding a velocity with its position. The 

Economic Load Dispatch Solutions using New 
Particle Swarm Intelligence 

Yajvender Pal Verma and Ashwani Kumar 

E

Fifteenth National Power Systems Conference (NPSC), IIT Bombay, December 2008

220



velocity of a particle is influenced by three components, 
namely, inertial, cognitive, and social. The inertial component 
simulates the inertial behavior of the bird to fly in the previous 
direction. The cognitive component models the memory of the 
bird about its previous best position, and the social component 
models the memory of the bird about the best position among 
the particles .The particles move around the multidimensional 
search space until they find the optimal solution. The modified 
velocity of each agent can be calculated using the current 
velocity and the distance from Pbest and Gbest as given 
below.  
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Using the above equation, a certain velocity, which gradually 
gets close to Pbest and Gbest, can be calculated. The current 
position (searching point in the solution space), each 
individual moves from the current position to the next one by 
the modified velocity in (1) using the following equation:  
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where,
   t               Iteration count, 

t
ijV             Dimension i of the velocity of particle       

j at iteration t,
t
ijX             Dimension i of the position of particle j

                   at iteration t,
w                 Inertia weight, 
C1, C2      Acceleration coefficients, 

t
ijPbest      Dimension i of the own best position 

                   of particle j until iteration t,
t
iGbest     Dimension i of the best particle in the 

                  swarm at iteration t,
ND              Dimension of the optimization problem  
                  (Number of decision variables), 

 Npar           Number of particles in the swarm, 
r1,r2 Two separately generated uniformly  
                  distributed random numbers in the range  
             [0, 1]. 

The following weighting function is usually utilized:  
IterItermaxminmaxmax (3)

where,
max, min initial and final weights, 

Iter max          maximum iteration number     
Iter           current iteration number.   

A new variation in the classical PSO is achieved by splitting 
the cognitive component of the classical PSO into two 
different components [19]. The first component can be called 
good experience component. That is, the bird has a memory 

about its previously visited best position. This component is 
exactly the same as the cognitive component of the basic PSO. 
The second component is given the name bad experience 
component. The bad experience component helps the particle 
to remember its previously visited worst position. To calculate 
the new velocity, the bad experience of the particle is also 
taken into consideration. This gives the new model of the PSO 
as below. The new velocity update equation is given by: 
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  C1g        Acceleration coefficient, which
               accelerates the particle toward its best 
               position,

C1b       Acceleration coefficient, which
            accelerates the particle away from its  worst 
            position, 

t
ijPworst  Dimension i of the own worst position 

              of particle j until iteration t,
 r1,r2,r3    Three separately generated uniformly  
               distributed random numbers in the  
               range [0, 1]. 

The positions are updated using (2). The inclusion of the 
worst experience component in the behavior of the particle 
gives additional exploration capacity to the swarm. By using 
the bad experience component, the bird (particle) can bypass 
its previous worst position and always try to occupy a better 
position. 

III.  PROBLEM FORMULATION

The basic ED becomes a nonconvex optimization problem 
if the practical operating conditions are included. The basic 
cost function used is: 
Min GN

i
GiiT PFF

1

(5)

GG N

i
iGiiGii

N

i
Gii cPbPaPF

1

2

1
)()(

 (6) 
where,
FT                Total generation cost ($/hr),  
Fi               Cost function of generator I ($/hr),
ai ,bi , ci Cost Coefficients of Generator i,
PGi               Power of Generator i (MW).
NG Number of Generators. 
 1) Active Power Balance Equation 
For power balance, an equality constraint should be satisfied. 
The total generated power should be the same as total load 
demand plus the total line loss. 
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where PLoad is the total load in the system (MW), and PLoss is 
the network loss (MW) that can be calculated by matrix loss 
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formula. However, the transmission losses considered are 
governed by the following equation: 
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where,
ijB , iB 0 , 00B are the B-matrix coefficients, Pj is the 

power in the line. 

2) Minimum And Maximum Power Limits: 
Generation output of each generator should lie between 
maximum and minimum limits. The corresponding 
inequality constraints for each generator are

max,min, GiGiGi PPP (9)
where
PGimin  and PGimax  are the minimum and maximum output 
of generator i, respectively. 

3) Generator Ramp Rate Limits 
If the generator ramp rate limits are considered, the effective 

real power operating limits are modified as follows: 
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i=1,2,…,NG
where

0
GiP   is the previous operating point of generator i. 

 DRi and URi    are the down and up ramp limit of the 
generator i, respectively. 

4.)  Valve Point Effect (VPE)
The valve opening process of multivalve steam turbines 
produces a ripple-like effect in the heat rate curve of the 
generators, and it is taken into consideration in the ED 
problem by superimposing the basic quadratic fuel-cost 
characteristics with the rectified sinusoidal component as 
follows: 
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where,
 FT total generation cost,  
Fi  cost function of generator i,
ai ,bi , ci , ei , fi     Cost Coefficients of Generator i
PGi Power of Generator i,
NG   Number of Generators.  
PGimin Minimum limit of Power  
Generation for Generator i
The objective of Economic Dispatch VPE is to 
minimize FT with the constraints from (6) to (11).  

IV.  DEVELOPMENT AND IMPLEMENTATION OF NPSO
    The objective of this paper is to solve a constrained ED 
problem using NPSO algorithm to obtain efficiently a high 
quality solution within practical power system operation. The 
NPSO was applied to mainly to determine the optimal 

generation power of each unit thus minimizing the total cost 
of generation. 
A. Particle representation:
Each individual with in the population represents a candidate 
solution for solving ED problems. The real power generations 
are used to form the swarm. The real power output PG of all 
generators is represented as the positions of the particles in the 
swarm. If NG are generators, and there are Npar particles in the 
swarm, the complete swarm is represented as a matrix as 
follows: 
Swarm=[X1,X2,..........,Xj,.....XNpar] (12) 
Where Xj is the position vector of the particle j . It represents 
one of the possible solutions for the optimization problem. 
The element Xij of Xj is the ith position component of particle 
j, and it represents the real power generation of generator i of 
the possible solution j. 

B Initialization of the Swarm:
Initial values for the swarm are assigned randomly within the 
effective real power operating limits. The initialization also 
takes in to account the real power limits and ramp rate limits. 
The velocities of the particles are initialized as follows: 
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j = 1, 2, ………… ..  , Ng 
  i = 1, 2, ……………., Npar 
Where is small positive number.  
The velocities obtained ensure the new particles within 
constraints limits. The penalty can also be imposed in case of 
violation. 

C. Initialization of the Best and Worst Positions: 
 The best position of a particle is the position, which gives the 
minimum PFT , and the best position out of all the Pbests is 
taken as Gbest. In this technique the particle’s worst position 
(Pworst) is used. In the beginning the Pbest and Pworst for all 
the particles are taken as the same as the initial positions. The 

PFT at Gbest is taken as 0
GbestF .

D  Moving the Particles:
The particles in the swarm are moved to new positions with 
the help of new velocities. The new velocities are calculated 
using (4) and the position of the particles are updated using 
(2) where ND is taken as NG. If any Xij violates the effective 
real power operating limit constraints, its value is taken as the 
limiting value. 
E. Updating the Best and Worst positions:
The particles are evaluated in the new positions by PFT. Then 
Pbest and Pworst of particle j are updated as follows:                   
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where t
TjPF  is the penalized objective function value of 
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particle j at iteration t. The best position out of all the new 
Pbests is taken as tGbest , and PFT at tGbest  is taken as t

GbestF .
F. Employing LRS Procedure:
If t

GbestF  is better than 1t
GbestF  the LRS subroutine is invoked. 

The 0Y  and 0
bestF  for the LRS are taken as tGbest  and t

GbestF ,

respectively. If Fopt obtained from LRS is better than t
GbestF ,

tGbest  and t
GbestF  are replaced with optY  and optF ,

respectively.
Local random Search (LRS)

The algorithms like GA, EP, SA, and PSO do well for small 
dimensional and less complicated problems. However, they 
fail to locate global minima for the complex multiminima 
functions. Although they locate the promising area, they fail 
to exploit the promising area to get good quality solutions 
[14], [15] With a single algorithm, it is difficult to control and 
to strike a balance between exploration of whole search space 
to locate the promising area and exploitation of the promising 
area to get global minima. Several hybrid methods have been 
proposed by combining the metaheuristic methods with simple 
local search algorithms. 

 This paper uses a simple LRS procedure, which is a 
modification of a direct search technique proposed in [16]. 
The initial search point is taken as Y0 , and the objective 
function value at Y0  is F0

best. .
The steps followed for LRS are given below: 
Step 1) The initial local search range is selected around Y0 as 
follows: 

min
0

min
min

GG PYPY      (15) 
0

maxmax
max YPPY GG            (16) 

minmax0 YYR                                (17) 

where Ymin and Ymax are the lower and upper boundaries of the 
local search region;  is the local area parameter; PGmin and 
PGmax are the vectors of power generation limits; and R0 is the 
initial local search range. The iteration count m is set to 1.
Y0

best (best search point at the beginning of LRS) and Yopt
(optimum search point) are set to Y0.

Step 2) The NL local search points are randomly generated as 
follows: 

1,11
D

mm
best

m
n NrRYY                 (18) 

n=1,2,…., NL

where r(ND,1) is a random number vector of length ND , whose 
elements are randomly generated between -1and 1. If any 
local search point violates the limits, it is forced within the 
boundaries. 

Step 3) For each local search point, the objective function 
values are calculated. Then the minimum objective function 
among all is taken as F m

best , and the corresponding Y is taken 
as Y mbest . The optimum values are updated as follows: 

If F m
best < F m-1

best  then Fopt = F mbest   and 

Yopt =Ym
best

Otherwise
Fopt = F m-1

best and Yopt =Y m-1
best

Step 4) The search range is reduced as 
11mm RR                           (19) 

where is the range reduction parameter. 
Step 5) If maximum iteration for local search (iterLRS) is not 
reached, the iteration count is incremented by one and the 
above procedure is repeated from step 2). Otherwise, Yopt  and 
Fopt are taken as the optimum results found by the LRS 
algorithm. 
F. Stopping Criterion:

There are different criteria available to stop a stochastic 
optimization algorithm. Tolerance, number of function 
evaluations, and maximum number of iterations are some 
examples and we have considered the convergence of the total 
final cost and Gbest as our stopping criteria. 

V.NUMERICAL EXAMPLES AND RESULTS

The conventional PSO and NPSO –LRS were applied to a 
system of 3-units to verify the feasibility and efficiency of the 
methods. In the case study taken, the ramp rate limits and 
valve point effects have also been considered. The solutions 
were obtained by considering different parameters and for 
different number of iterations. The B-coefficient matrix of 
power system networks was used to find the transmission line 
loss and satisfy the transmission capacity constraints. The 
software was developed in C++ and compiled using the 
Borland C++ Version 4.5 compiler and Turbo C++ IDE. 

Case Study 
Example: Three-unit System: The data of 3-bus system 

considered have been used for deciding power generation on 
various generators and total cost of generation by taking 
maximum and minimum power limits of generation, ramp rate 
limits, cost coefficients, load demand and various constraints 
of the system [16]. Initially the powers for two generators are 
chosen randomly and then using basic equations of ELD, the 
generation for the third generator is calculated which satisfies 
all the constraints. The NPSO is applied and losses are 
calculated from the B-matrix coefficients using (8). 
The Values of some of the other constants used are as below: 
Beta=0.4 C1g = 1.6 C2 = 2
Alpha=0.05     C1b = 0.4       C1 = 2 
Wmax=0.9 Wmin=0.4 Absiln = .001 
Rand1 = 0.5 Rand2 = 0.5 
NPSO code is user friendly in which the values of various 
parameters are entered by the user. Various cases of 
parameters variation such as (random numbers, load demand, 
VPE etc) have been considered and their effects on the output 
were studied and summarized below: 

1. Variation in random numbers (r1, r2, and r3):
    The values for random numbers do not have much effect on 
the total cost for the system but the Gbest increases with 
increase in the value for random numbers Table I. To 
demonstrate the effect of these random numbers on total cost 
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and Gbest the load demand taken considered is 400 MW for 
IEEE 30-bus system data. This helps in choosing the 
appropriate values of random numbers for optimization in 
PSO method.

TABLE I
GBEST VARIATION WITH DIFFERENT RANDOM NUMBERS

r1  r2 r3 Total 
Cost
($/hr) 

Gbest

0.1 0.2 0.1 4844.2 71.9634 

0.5 0.5 0.5 4844.2 89.9635 

0.9 0.9 0.9 4844.2 89.9635 

2. PSO and NPSO_LRS for different load demands:
     The conventional PSO was applied to 3-bus data [16] and 
generation pattern, Gbest and total cost were obtained Table 
II. The demand on the system was varied and generation 
pattern of generators and total operating cost given by 
quadratic function (6) were calculated. 

TABLE II 
GENERATION PATTERN, GBEST AND TOTAL COST WITH LOAD DEMAND BY 

PSO
Pd
(MW)

PLoss
(MW)

P1
(MW)

P2
(MW)

P3
(MW)

Cost ($/hr) Gbest 
(MW)

600 18 50 100 468 6222.6250 50 

700 21 50 100 571 7195.5459 50 

800 24 124 100 600 8130.1123 100 

900 27 200 127 600 9078.3594 127 

The NPSO with Local random Search (LRS) was applied to 
3-bus system with the same variation in load for some 
standard parameters taken and some modified results were 
obtained both for total cost and Gbest. Table III. 

TABLE III 
GENERATION PATTERN, GBEST AND TOTAL COST WITH  LOAD DEMAND BY NPSO-LRS

Pd
(M
W)

PLoss
(MW)

P1
(MW)

P2
(MW)

P3
(MW)

Total Cost 
($/hr) 

Gbest
(MW)

600 18.72 50 100 468.71 6219.3330 50 
700 22.98 50 100 572.98 7114.8384 50 
800 23.94 123.94 100 600 8129.5752 100 
900 28.49 50 278.491 600 9010.4843 50 

Considering both best and worst positions along with LRS 
have helped in reducing the total cost of generation. A 
graphical comparison has been shown in Figure 1. 

Cost Comparison between PSO and 
NPSOLRS
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Fig.1. VARIATION OF COST WITH LOAD DEMAND FOR PSO AND NPSO METHOD

3. NPSO with Valve Point Effect.
The practical ED problem takes in to account the VPE and 
other constraints hence valve point effect was also introduced 
and cost function was modified equation (11).The losses were 
calculated using B-coefficient matrix for each iteration and 
generation for all generators was obtained for different 
number of iterations. The numbers of trials were carried out 
and the following patterns of generation for various generators 
were obtained Table IV.  It was found that the convergence of 
the method is fast and solution converges in less than 20 
iteration.  

TABLE IV 
GENERATION PATTERN, GBEST AND TOTAL COST WITH LOAD DEMAND BY 
PSO

Pd
(MW)

PLoss
(MW)

P1
(MW)

P2
(MW)

P3
(MW)

Total Cost 
($/hr) 

Gbest
(MW)

600 18.7148 50 100 468.7 6463.333 50 

700 22.9875 50 100 572.9 7431.838 50 

800 23.9414 123.9 100 600 8290.575 100 

900 28.4908 50 278.4 600 9209.484 50 

The programs were run for different number of iterations and 
a comparison of total generation cost is being tabulated in 
Table V below for a load demand of 900 MW on three bus 
system taken.  

TABLE V 
CONVERGENCE COMPARISON OF DIFFERENT METHODS

Itr.No  Total Cost($/hr) 
           PSO         NPSO NPSOVPE 

5 9235.45 9456.98 9702.67 
10 9110.03 9289.56 9521.28 
15 9104.89 9124.41 9346.56 
20 8982.35 9010.48 9209.485 
25 8912.07 9010.48 9209.485 
30 8843.07 9010.48 9209.485 

 The NPSO is found to be converging fast as compared to the 
conventional PSO method. A graphical representation of their 
convergence trend is also being shown below in the figure2. 
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Covergence of Different Methods
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Fig.2 Convergence comparison of different methods 

The PSO was also applied to IEEE 30 bus data and a 
generation schedule (table VI) and costs were obtained as 
shown below. The PSO was found converging fast as 
compared to GA. The cost obtained by PSO for a load of 
250MW is 721.675 $/hr. The cost obtained using GA [18] was 
807.51 $/hr for standard load on the system. 

                                    TABLE VI
GENERATION SCHEDULE FOR SIX GENERATORS SYSTEM

Gen. no GA (MW) PSO (MW) 
1 171.04 105.5 
2 49.32 60 
3 22.39 30 
4 26.37 25 
5 12.51 17 
6 12.22 20 

V. CONCLUSIONS

This paper presents PSO and NPSO with local random 
search to solve ELD problems. The superior features such as 
stable convergence characteristics and good computation 
efficiency have been demonstrated by its application to 3-bus 
system. The non-linear characteristics such as valve point 
effects, ramp rate limits, and equality and inequality 
constraints have been considered for practical generation 
operation. The convergence for nonconvex characteristics of 
generators depends upon parameter selection, which is 
obtained by suitable experiments. A comparison has also been 
given to select the random numbers for fast convergence and 
optimum solution. The NPSO-LRS converges fast as 
compared to other conventional methods as well as PSO used 
and optimal value of Gbest is being obtained. Since the system 
is dynamic in nature, losses are being considered at each 
update for position and velocity and calculated considering the 
equality constraints and iteration is stopped after new 
positions start lying between a certain ranges. 
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