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Abstract—When performing speaker diarization on recordings
from meetings, multiple microphones of different qualities are usu-
ally available and distributed around the meeting room. Although
several approaches have been proposed in recent years to take ad-
vantage of multiple microphones, they are either too computation-
ally expensive and not easily scalable or they cannot outperform
the simpler case of using the best single microphone. In this paper,
the use of classic acoustic beamforming techniques is proposed to-
gether with several novel algorithms to create a complete frontend
for speaker diarization in the meeting room domain. New tech-
niques we are presenting include blind reference-channel selection,
two-step time delay of arrival (TDOA) Viterbi postprocessing, and
a dynamic output signal weighting algorithm, together with using
such TDOA values in the diarization to complement the acoustic
information. Tests on speaker diarization show a 25% relative im-
provement on the test set compared to using a single most cen-
trally located microphone. Additional experimental results show
improvements using these techniques in a speech recognition task.

Index Terms—Acoustic beamforming, meeting processing,
speaker diarization, speaker segmentation and clustering.

I. INTRODUCTION

POSSIBLY the most noticeable difference when performing
speaker diarization in the meetings environment versus

other domains (like broadcast news or telephone speech) is
the availability, at times, of multiple microphone channels,
synchronously recording what occurs in the meeting. Their
varied locations, quantity, and wide range of signal quality
has made it difficult to come up with automatic ways to take
advantage of these multiple channels for speech-related tasks
such as speaker diarization.

In the system developed by Macquarie University [1] and
the TNO/AMI (augmented multiparty interaction) systems [2],
[3], either the most centrally located microphone (known a
priori) or a randomly selected single microphone was used
for speaker diarization. This approach was designed to pre-
vent low-quality microphones from affecting the results. Such
approaches ignore the potential advantage of using multiple
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microphones—making use of the alternate microphone chan-
nels to create an improved signal as the interaction moves
from one speaker to another. Several alternatives have been
proposed to analyze and switch channels dynamically as the
meeting progresses. At Carnegie Mellon University (CMU)
[4], this is done before any speaker diarization processing by
using a combination of energy and signal-to-noise metrics.
However, this approach creates a patchwork-type signal which
could interfere with the speaker diarization algorithms. In an
alternative presented in an initial LIA implementation [5], all
channels were processed in parallel, and the best segments
from each channel were selected at the output. This tech-
nique is computationally expensive as full speaker diarization
processing must be performed for every channel. Later, the
Laboratoire Informatique d’Avignon (LIA) proposed [6], [7]
a weighted sum of all channels into a single channel prior to
performing diarization. However, this approach does not take
into account the fact that the signals may be misaligned due
to the propagation time of speech through the air or hardware
timing issues, resulting in a summed signal that contains echoes
and usually performs worse than the best single channel.

To take advantage of the multiple microphones available in a
typical meeting room, we previously proposed [8], [9] the use
of microphone array beamforming for speech/acoustic enhance-
ment (see [10] and [11]). Although the task at hand differs from
the classic due to some of the assumptions in the beamforming
theory, it was found to be beneficial to use it as a starting-point
for taking advantage of the multiple distant microphones.

In this paper, we propose a full acoustic beamforming fron-
tend, based on weighted-delay&sum techniques [10], aimed
at creating a single enhanced signal from an unknown number
of multiple microphone channels. This system is designed for
recordings made in meetings in which several speakers and
other sources of interference are present. Several new algo-
rithms are proposed to adapt the general beamforming theory
to this particular domain. Algorithms proposed include the
automatic selection of the reference channel, the computation
of the -best channel delays, postprocessing techniques to
select the optimum delay values (including a noise thresholding
and a two-step selection algorithm via Viterbi decoding), and
a dynamic channel-weight estimation to reduce the negative
impact of low-quality channels.

The system presented here was used as part of ICSI’s submis-
sion to the Spring 2006 Rich Transcription evaluation (RT06s)
organized by NIST [12], both in the speaker diarization and in
the speech recognition systems. Additionally, the software is
currently available as open-source [13].

Section II describes the modules used in the acoustic beam-
forming system. Then, we present experimental results showing
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Fig. 1. Weighted-delay&sum block diagram.

the improvements gained by using the new system within the
task of speaker diarization, and finally, we present results for
the task of speech recognition.

II. MULTICHANNEL ACOUSTIC BEAMFORMING

SYSTEM IMPLEMENTATION

The acoustic beamforming system is based on the
weighted-delay&sum microphone array theory, which is
a generalization of the well-known weighted-delay&sum
beamforming technique [14], [15]. The signal output is
expressed as the weighted sum of the different channels as
follows:

TDOA (1)

where is the relative weight for microphone (out of
microphones) at instant , with the sum of all weights equals

to 1, is the signal for each channel, and TDOA
(time delay of arrival) is the relative delay between each channel
and the reference channel, in order to obtain all signals aligned
with each other at each instant . In practice, TDOA
is estimated via cross-correlation techniques once every several
acoustic frames. In the implementation presented here, it cor-
responds to once every 250 ms, using generalized cross corre-
lation with phase transform (GCC-PHAT) as proposed in [16]
and [17] and described below. We will refer to these as “acoustic
segments,” and we will refer to the (usually larger) set of frames
used to estimate the cross correlation measure the “analysis
window.”

The weighted-delay&sum technique was selected for use in
the meetings domain given the following set of constraints:

• unknown locations of the microphones in the meeting
room;

• nonuniform microphone settings (gain, recording offsets,
etc.);

• unknown location and number of speakers in the room (due
to this constraint, any techniques based on known source
locations are unsuitable);

• unknown number of microphones in the meeting room (the
system should be able to handle from two to micro-
phone channels).

Fig. 1 shows the different blocks involved in the proposed
weighted-delay&sum process. The process can be split into four
main blocks. First, signal enhancement via Wiener filtering is
performed on each individual channel to reduce the noise. Next,
the information extraction block is in charge of estimating which
channel to use as the reference channel, an overall weighting
factor for the output signal, the skew present in the ICSI meet-
ings, and the -best TDOA values at each analysis segment.
Third, a selection of the appropriate TDOA delays between sig-
nals is obtained in order to optimally align the channels before
the sum. Finally, the signals are aligned and summed. The output
of the system is composed of the acoustic signal and a vector of
TDOA values, which can be used as extra information about a
speaker’s position. A more detailed description of each block
follows.

A. Individual Channel Signal Enhancement

Prior to doing any multichannel beamforming, each indi-
vidual channel is Wiener filtered [18]. This aims at cleaning
the signal of corrupting noise, which is assumed to be additive
and of a stochastic nature. The implementation of Wiener
filtering is taken from the ICSI-SRI-UW system used for
automatic speech recognition (ASR) in [19], and applied to
each channel independently. This implementation performs an
internal speech/nonspeech and noise power estimation for each
channel independently, ignoring any multichannel properties
or microphone locations. The use of such filtering improves
the beamforming as it increases the quality of the signal, even
though it introduces a small phase nonlinearity given that the
filter is not of linear phase. Alternative multichannel Wiener
filters were not considered but could further improve results
by taking advantage of redundancies in the different input
channels.

B. Meeting Information Extraction Block

The algorithms in this block extract information from the
input signals to be used further on in the process to construct
the output signal. It is composed of four algorithms—refer-
ence channel estimation, overall channels weighting factor,
ICSI meetings skew estimation, and the TDOA -best delays
estimation.
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1) Reference Channel Estimation: This algorithm attempts
to automatically find the most centrally located and best
quality channel to be used as the reference channel in further
processing. It is important for this channel to be the best
representative of the acoustics in the meeting, as the correct
estimation of the delays of each of the channels depends on the
reference chosen.

In the meetings used for the Rich Transcription evaluations
[20], there is one microphone that is selected as the most cen-
trally located microphone. This microphone channel is used in
the single distant microphone (SDM) task. The SDM channel
is chosen given the room layout and the prior knowledge of
the microphone types. This module presented here ignores that
channel chosen for the SDM condition and selects one micro-
phone automatically based only on the acoustics. This is in-
tended for system robustness in cases where absolutely no in-
formation is available on the room layout or microphone place-
ments.

In order to find the reference channel, we use a metric based
on a time-average of the cross-correlation between each channel

and all of the others , , computed on
segments of 1 s, as

(2)

where is the total number of channels/microphones and
indicates the number of 1-s blocks used in the average. The

indicates a standard cross-correlation measure be-
tween channels and for each block . The channel with the
highest average cross-correlation was chosen as the reference
channel. An alternative signal-to-noise (SNR) metric was ana-
lyzed and the results were not conclusive as to which method
performed better in all cases. The cross-correlation metric was
chosen as it matches the algorithm search for maximum corre-
lation values and because it is simple to implement.

2) Overall Channels Weighting Factor: For practical rea-
sons, speech processing applications use acoustic data that was
sampled with a limited number of bits (e.g., 16 bits per sample)
providing a certain amount of dynamic range, which is often not
fully used because the recorded signals are of low amplitude.
When summing up several input signals, we are increasing the
resolution in the resulting signal, and thus we must try to take
advantage of as much of the output resolution as possible. The
overall channel weighting factor is used to normalize the input
signals to match the file’s available dynamic range. It is useful
for low-amplitude input signals since the beamformed output
has greater resolution and therefore can be scaled appropriately
to minimize the quantization errors generated by scaling it to
the output sampling requirements.

There are several methods in signal processing for finding the
maximum value of a signal in order to perform amplitude nor-
malization. These include: compute the absolute maximum am-
plitude, the root mean square (rms) value, or other variations of
it, over the entire recording. It was observed in meetings data
that the signals may contain low-energy areas (silence regions)
with short average durations, and high-energy areas (impulsive
noises like door slams, or laughs), with even shorter duration.

Using the absolute maximum or rms would “saturate” the nor-
malizing factor to the highest possible value or bias it according
to the amount of silence in the meeting. So instead, we chose a
windowed maximum averaging to try to increase the likelihood
that every window contains some speech. In each window, the
maximum value is found, and these max values are averaged
over the entire recording. The weighting factor was obtained di-
rectly from this average.

3) ICSI Meetings Skew Estimation: This module was cre-
ated to deal with the meetings that come from the ICSI Meeting
Corpus, some of which have an error in the synchronization
of the channels. This was originally detected and reported in
[21], indicating that the hardware used for the recordings was
found not to keep an exact synchronization between the different
channels, resulting in a skew between channels of multiples of
2.64 ms. It is not possible to know beforehand the amount of
skew of each of the channels as the room setup did not follow a
consistent ordering regarding the connections to the hardware
being used. Therefore, we need to automatically detect such
skew so that it does not affect the beamforming.

The artificially generated skew does not affect the general
processing of the channels by an ASR system as it does not need
exact time alignment between the channels—utterance bound-
aries always include a silence “guard” region, and the usual
parametrizations (10–20 ms long) cover small time differences.

It does pose a problem, though, when computing the delays
between channels, as it introduces an artificial delay between
channel pairs, which forces us to use a larger analysis window
for the ICSI meetings than with other meetings in order to com-
pute the delays accurately. This increases the chance of delay
estimation error. This module is therefore used to estimate the
skew between each channel and the reference channel (in the
case of ICSI meetings) and use it as a constant bias in the rest
of the delay processing.

In order to estimate the bias, an average cross-correlation
metric was put in place in order to obtain the average (across
time) delay between each channel and the reference channel for
a set of long acoustic windows (around 20 s), evenly distributed
along the meeting.

4) TDOA -Best Delays Estimation: The computation of the
TDOA between each of the channels and the reference channel
is computed in segments of 250 ms. This allows the beam-
forming to quickly modify its beam steering whenever the active
speaker changes. In this implementation, the TDOA was com-
puted over a window of 500 ms (called the analysis window),
which covers the current analysis segment and the next. The
size of the analysis window and of the segment size constitute
a tradeoff. A large analysis window or segment window leads
to a reduction in the resolution of changes in the TDOA. On
the other hand, using a small analysis window reduces the ro-
bustness of the estimation. The reduction of the segment size
also increases the computational cost of the system, while not
increasing the quality of the output signal. The selection of the
scroll and analysis window sizes was done empirically given
some development data and no exhaustive study was performed
to fine-tune these values.

In order to compute the TDOA between the reference
channel and any other channel for any given segment, it is
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usual to estimate it as the delay that maximizes the cross-cor-
relation between the two segments. In current beamforming
systems, the use of the cross-correlation in its classical form

is avoided as it is very
sensitive to noise and reverberation. To improve robustness
against these problems, it is common practice to use the
GCC-PHAT. Such variation to the standard cross-correlation
proposes an amplitude normalization in the frequency domain,
maintaining the phase information, which conveys the delay
information between the signals.

Given two signals and , the GCC-PHAT is com-
puted with

(3)

where and are the Fourier transforms of the two
signals, indicates the inverse Fourier transformation,
denotes the complex conjugate, and is the modulus. The re-
sulting is the correlation function between signals

and . All possible values range from 0 to 1 given the fre-
quency domain amplitude normalization performed.

The TDOA for these two microphones ( and ) is estimated
as

TDOA (4)

which we noted with subscript 1 (first-best) to differentiate it
from further computed values.

Although the maximum value of corresponds to
the estimated TDOA for that particular segment and micro-
phones pair, it does not always “point” at the correct speaker
during that segment. In the system proposed here, the top
relative maxima of are computed instead (we use

around 4), and several postprocessing techniques are used to
“stabilize” and choose the appropriate delay before aligning the
signals for the sum. Therefore, for each analysis segment, we
obtain a vector TDOA for microphone with ,

with its corresponding correlation values GCC-PHAT
with .

We could isolate three cases where it was considered not
appropriate to use the absolute maximum (first-best) from

. On the one hand, the maximum can be due to
spurious noises or events not related to the active speaker, and
the active speaker is actually represented by another local max-
imum of the cross-correlation. On the other hand, when two or
more speakers are speaking simultaneously, each speaker will
be represented by a different maximum in the cross-correlation
function, but the absolute maximum might not be constantly
assigned to the same speaker resulting in artificial speaker
switching. Finally, when the segment that has been processed
is entirely filled with nonspeech acoustic data (either noise
or random acoustic events) the function obtains
maximum values randomly over all possible delays, making
it not suitable for beamforming. In this case, no source delay
information can be extracted from the signal, and the delays
ought to be totally discarded and substituted by others in the
surrounding time frames, as will be seen in Section III.

C. TDOA Values Selection/Post-Processing

Once the TDOA values of all channels across all meeting have
been computed, it is desirable to apply a TDOA postprocessing
to obtain the set of delay values to be applied to each of the
signals when performing the weighted-delay&sum as proposed
in (1). We implemented two filtering steps, a noisy TDOA de-
tection and elimination (TDOA continuity enhancement), and
1-best TDOA selection from the -best vector.

1) Noisy TDOA Thresholding: This first proposed filtering
step is intended to detect those TDOA values that are not re-
liable. A TDOA value does not show any useful information
when it is computed over a silence (or mainly silence) region or
when the SNR of either of the signals being compared is low,
making them very dissimilar. The first problem could be ad-
dressed by using a speech/nonspeech detector prior to any fur-
ther processing, but prior experimentation indicated that further
errors were introduced due to the detector. The selected algo-
rithm applies a simple continuity filter on the TDOA values for
each segment based on their GCC-PHAT values by using a
noise threshold in the following way:

TDOA

TDOA if GCC-PHAT
TDOA if GCC-PHAT

(5)

where is defined as the minimum correlation value below
which it can be assumed that the correlation is returning feasible
results. It is set independently in every meeting as the correlation
values are dependent not only on the signal quality but also on
the microphone distribution in the different meeting rooms. In
order to find an appropriate value for it, the histogram of the
distribution of correlation values needs to be evaluated for each
meeting. In our implementation, a threshold was selected at the
value which filters out the lowest 10% of the cross-correlation
frames, using the histogram for all cross-correlation values from
all microphones in each meeting.

Experimentation showed that the final performance did not
decrease when computing a threshold over the distribution of
all correlation values together, compared to individual threshold
values computed for each channel independently, which would
impose a higher computational burden on the system.

2) Dual-Step Viterbi Postprocessing: This second postpro-
cessing technique applied to the computed delays is used to se-
lect the appropriate delay to be used among the -best GCC-
PHAT values computed previously. The aim here is to maximize
speaker continuity avoiding constant delay switching in the case
of multiple speakers, and to filter out undesired beam steering
towards spurious noises present in the room.

As seen in Fig. 2, a two-step Viterbi decoding of the
-best TDOA is proposed. The first step consists of a local

(single-channel) decoding where the two-best delays are chosen
from the -best delays computed for that channel at every
segment. The second decoding step considers all combinations
of two-best delays across all channels, and selects the final
single TDOA value that is most consistent across all channels.
For each step, one needs to define the topology of the state
sequence used in the Viterbi decoding and the emission and
transition weights to be used. The use of a two-step algorithm
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Fig. 2. Weighted-delay&sum double-Viterbi delays selection.

is due in part to computational constraints since an exhaustive
search over all possible combinations of all -best values for
all channels would easily become computationally prohibitive.

Both steps choose the most probable (and second most prob-
able) sequence of hidden states where each one is related to
the TDOA values computed for one segment. In the first step,
the set of possible states at each segment is given by the
computed -best values. Each possible state has an emission
probability-like value for each processed segment. This value
is equal to the GCC-PHAT value for channel , with

. No prior scaling or normalization is required as
the GCC-PHAT values range from 0 to 1 (given the amplitude
normalization performed on the frequency domain in its defini-
tion).

The transition weight between two states in step 1 is taken as
decreasing linearly with the distance between its delays. Given
two nodes, and at segments and , respectively, the
transition weight for a given channel is defined as

TDOA TDOA
(6)

where

TDOA TDOA

This way, all transition weights are locally bounded between 0
and 1, assigning a 0 weight to the furthest away delays pair. This
implies that only TDOA values will be considered at each
segment.

This first Viterbi step aims at finding the two best TDOA
values (from the computed -best) that represent the meeting’s
speakers at any given time. By doing so, it is believed that
the system will be able to choose the most appropriate/stable
TDOA value for that segment and a secondary delay, which
may come from interfering events, e.g., other speakers or the
same speaker’s echoes. The TDOA values can be any two (not
allowing the paths to collapse) of the -best TDOA values
computed previously by the system, and are chosen exclusively
based on their distance to surrounding TDOA values and their
GCC-PHAT values.

The second-pass Viterbi decoding finds the best possible path
given the set of hidden states generated by all possible combi-
nations of delays from the two-best delays obtained earlier for
each channel. Given a vector of dimension (same
as the number of channels for which TDOA values are com-
puted) which is the th combination of possible indexes from
the two-best TDOA values for each channel (obtained in step
1), it is expanded as where
each element , with combinations pos-
sible.

One can rewrite GCC-PHAT , the GCC-PHAT value
associated with the -best TDOA value for channel
at segment , which will take values . Then, the emission
probability-like values are obtained as the product of the indi-
vidual GCC-PHAT values of each considered TDOA combina-
tion at segment as

GCC-PHAT (7)

which can be considered to be the extension of the individual
channel emission probability-like values to the case of multiple
TDOA values, where we consider that the different dimensions
are independent from each other (interpreted as independence
of the TDOA values obtained for each channel at segment , not
their relationship with each other in space along time).

The transition weights are computed in a similar way as in
the first step, but in this case they introduce a new dimension
to the computation, as now a vector of possible TDOA values
needs to be taken into account. As was done with the emission
probability-like values, the total distance is considered to be the
sum of the individual distances from each element. Assuming
TDOA is the TDOA value for the -best element
in channel for segment , the transition weights between two
TDOA combinations for all microphones are determined by

TDOA TDOA

(8)

where now

TDOA TDOA

This second processing step considers the relationship in space
present between all channels, as they are presumably steering
to the same position. By performing a decoding over time, it
selects the TDOA vector elements according to their distance to
nearby vectors.

In both cases, the transition weights are modified (raised to
a power) to emphasize their effect in the decision of the best
path. This is similar to the use of word-transition-penalties in an
ASR systems. It will be shown in the experiments section that a
weight of 25 for both cases appears to optimize the diarization
error rate on the development set.
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Fig. 3. Two-speaker TDOA Viterbi decoding postprocessing example. (a) Microphones and sound sources layout. (b) Mono-channel 1 first step. (c) Multichannel
second step.

To illustrate how the two-step Viterbi decoding works on the
TDOA values, let us consider the example in Fig. 3(a). This ex-
ample shows a situation where four microphones (channels 1–3
and a reference) are used in a room where two speakers ( and

) are talking to each other, with some overlap speech regions.
There is also one or more noisy events of short
duration and room noise in general. Both are represented by a
“noise” source. Given one of the microphones as a reference, the
delay to each of the other microphones is computed, resulting in
delays from speech coming from either speaker
or from any of the noisy events with .

For a particular segment in the meeting, the -best TDOA
values from the GCC-PHAT cross correlation function are
computed. The first Viterbi step determines, for each individual
channel, the two-best paths across time for the entire meeting.
Fig. 3(b) shows a possible Viterbi trellis for the first step for
channel 1, where each column represents the -best TDOA
values computed for one segment. In this example, four seg-
ments were considered where the two speakers are overlapping
each other, along with some noisy events. For any given seg-
ment, the Viterbi algorithm finds the two-best paths (forced
not to overlap with each other) according to the distance of the
delays to those in the neighboring segments (transition weights)
and to their cross-correlation values (emission probability-like
values).

In this example, the third computed segment contains a
noisy event that is well detected by channel 1 and the reference
channel, and therefore it appears as the first in the -best
list. The benefit of using Viterbi decoding is that we avoid se-
lecting this event since its delay differs too much from the best
neighboring delays and the fact that both speakers also appear
with high correlation. On the other hand, the first and second
segments contain the delays for the true speakers in the first
and second-best positions, although switched in the segments.
This example illustrates a possible case where they cannot be
correctly ordered and therefore there is a quick speaker change
in the first- and second-best delay paths in that segment.

The second step Viterbi decoding adds an extra layer of ro-
bustness for the selection of the appropriate delays by consid-
ering all the possible delay combinations from all channels.
Fig. 3(c) shows the trellis formed by considering, for each seg-
ment (in columns), all possible combinations of two-best de-
lays with dimension 3 (in this example ).
For example, the state labeled as indicates the combi-
nation of the first-best delay obtained for the first and third mi-
crophones, together with the second-best delay on the second
microphone.

In this step, only the best path is selected according to the
overall combined distances and correlation values among all
possible combinations. In this example, the algorithm is capable
of solving the order mismatch from the previous step, selecting
the delays relative to speaker 1 for all the segments. This is
done by maximizing the transition and emission probability-like
values between states using Viterbi. In this step, the transition
weights are higher for combinations whose TDOA delays are
closer in space to each other, i.e., from the same acoustic source,
and therefore selecting them ensures steering continuity.

In order to evaluate the correction of the selected TDOA
values, there are some alternatives, depending on wether we
want to make them independent from the signal itself or not.
One alternative is to use the resulting signal’s SNR. Another
alternative is to compute the diarization error rate (DER) by
performing speaker diarization using only the TDOA values.

In conclusion, this newly-introduced two-step Viterbi post-
processing technique aims at finding a good tradeoff between re-
liability (cross-correlation) and stability (distance between con-
tiguous delays). The second of these is perferred since the aim
is to obtain an improved signal, avoiding quick changes in the
beamforming between acoustic events.

D. Output Signal Generation

Once all information is computed from the input signals, and
the optimum TDOA values have been selected, it is time to
output the enhanced signal and any accompanying information
to be used by the subsequent systems. In this module, several



ANGUERA et al.: ACOUSTIC BEAMFORMING FOR SPEAKER DIARIZATION OF MEETINGS 2017

algorithms were used to account for the differences between the
standard linear microphone array theory and the usual charac-
teristics of meeting room recordings.

1) Automatic Channel Weight Adaptation: In the typical for-
mulation of the weighted-delay&sum processing, the additive
noise components on each of the channels are expected to be
random processes with very similar power density distributions.
This allows the noise on each channel to be statistically can-
celed and the relevant signal enhanced when the delay-adjusted
channels are summed. In standard beamforming systems, this
noise cancellation is achieved through the use of identical mi-
crophones placed only a few inches apart one from each other.

In meeting rooms, it is assumed that all of the distant micro-
phones form a microphone array. However, by having different
types of microphones, there is a change in the characteristics of
the signal being recorded, and therefore a change in the power
density distributions of the resulting additive noises. Also when
two microphones are far from each other, the speech they record
will be affected by noise of a different nature, due to the room’s
impulse response, and will have different amplitudes depending
on the position of the speaker talking.

This issue is addressed by automatically weighting each
channel in the weighted-delay&sum processing in a continuous
way during the meeting. This is inspired by the fact that the
different channels will have different signal qualities depending
on their relative distance to the person speaking, which may
change continually during a recording.

The weight for channel at segment is computed
in the following way:

otherwise
(9)

where is the adaptation ratio, which was empirically set to
, is the segment being processed, and is the

average of the cross-correlation between channel and all other
channels having all been previously delayed using the selected
TDOA value for that channel.

2) Automatic Adaptive Channel Elimination: In some cases,
the signal of one of the channels at a particular segment is itself
of such low quality that its use in the sum would only degrade
the overall quality. This usually happens when the quality of
the microphone is poor compared to the others (for example
the PDA microphones in the ICSI meeting room recordings as
explained in [22]).

In the weighted-delay&sum processing, all available micro-
phones in the room are used, and a dynamic selection and elim-
ination of the microphones that could harm the overall signal
quality at every particular segment is performed. The previously
defined is used to determine the channel quality. If

, then . After checking all the
channels for possible elimination, the weights are recomputed
so they sum to 1.

3) Channels Sum and Output: Once the output weight has
been determined for each channel at a particular segment, all
the signals are summed to form the output “enhanced” signal.
This output signal needs to be guaranteed acoustic continuity
at all times. The theoretical weighted-delay&sum equation as

Fig. 4. Multichannel delayed-signal sum using a triangular window.

shown in (1), would cause discontinuities in the signal at the
segment boundaries due to the mismatch between the signals at
the edges.

Therefore, a triangular window is used to smooth and re-
duce the discontinuity between any two segments, as seen in
Fig. 4. At every segment, the triangular filter smooths the de-
layed signal using that segment’s chosen TDOA value with the
signals delayed using the TDOA values from the previous seg-
ment. By using the triangular window, the system obtains a con-
stant total value without discontinuities. The actual implemen-
tation is as follows:

TDOA

TDOA (10)

where is the segment sample length, is the segment being
processed, and is the sample within segment being processed.

In the standard implementation, the analysis window over-
laps 50% with the segment window as well as the triangular
windows used, although it is not necessary for all to use the
same overlap values. After all samples from both overlapping
windows are summed, the overall weighting factor computed
earlier is applied to ensure that the dynamic range of the
weighted-delay&summed signal is optimally matched with
the available dynamic range of the output file. The resulting
enhanced signal is written to a regular pulse-code modulation
(PCM) file, 16 KHz and 16 bits, which can be processed by
any standard speech processing algorithm. In this paper, it was
primarily used for the task of speaker diarization, and also some
experiments were performed on ASR.

In addition to the acoustic signal, the proposed beamforming
system also obtains accurate estimates of the TDOA values for
each segment in the meeting. These TDOA values themselves
are used to improve speaker diarization performance, as seen in
the experiments below.
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E. Use of TDOA Values for Speaker Diarization

As explained in [23] and [24], the speaker diarization system
in use here is based on an agglomerative clustering technique. It
initially splits the data into clusters (where must be greater
than the number of speakers, and then iteratively merges the
clusters (according to the BIC metric described by [25] and
later modified by [26]) until a stopping criterion is met. The
system uses an ergodic hidden Markov model (HMM) where
each state in the HMM is one of the clusters, and each cluster
is modeled via a Gaussian mixture model (GMM) of varying
complexity. Several algorithms are used in order to attempt to
obtain the optimal model complexity and to optimally train each
of the models.

When applied to the multiple distant microphone (MDM)
data, the acoustic features are extracted from the enhanced
signal using 19 Mel cepstral frequency coefficients (MFCCs)
(without any derivatives), and the TDOA values are used
without modification.

In order to use the TDOA values to improve diarization, we
use a separate set of GMMs to model the TDOA features. The
acoustic and TDOA streams share the same speaker clustering
information, but each set of GMMs are trained on the data
coming from the two separate streams. The combination of
both contributions is done at the likelihood level and used in
the Viterbi decoding and in the Bayesian information criterion
(BIC) computation steps as a weighted sum of each of the
individual log likelihood values. The relative stream weights
are obtained automatically by using an adaptive algorithm
based on the BIC values as described in [27].

III. EXPERIMENTS

The acoustic beamforming system presented in this paper was
created for use in the speaker diarization task for the meetings
environment. In this section, we present experiments to show
the usefulness of the techniques introduced in this work with
respect to the speaker diarization task, and we also present some
comparative results for a speech recognition task.

All databases used in these experiments come from the
NIST RT evaluations from 2004 to 2006: 34 meeting excerpts
in total. In all cases, only the conference room domain data
was used (where a conference is considered to be a meeting
where multiple participants interact around a meeting table).
Data from RT2004 and RT2005 were used for development
(22 multichannel meetings plus four monochannel meetings),
and data from RT2006 was used for testing (eight multichannel
meetings). The excerpts were recorded in various physical
layouts, using different types of microphones, and included
data from ICSI, NIST, LDC, CMU, and others.

The evaluation metrics used are the standard NIST DER for
speaker diarization and word error rate (WER) for speech recog-
nition. The DER is the percentage of time that the system mis-
assigns speech (either between speakers or speech/nonspeech)
and includes the regions where two (or more) speakers speak
simultaneously causing overlapping speech. The WER is the
percentage of erroneous words in a transcript. In the case of
speech recognition, the reference transcriptions were created
manually using the signals recorded from each of the meeting
participant’s headset microphone. For the diarization experi-

TABLE I
DER COMPARISON ON THE DEVELOPMENT SET FOR

EACH OF THE PROPOSED ALGORITHMS

TABLE II
DER COMPARISON ON THE EVALUATION SET FOR

EACH OF THE PROPOSED ALGORITHMS

ments, forced alignments were computed using these transcrip-
tions in order to obtain the reference speaker information. All
DER results are computed taking into account errors in the over-
lapping speech regions.

A. Speaker Diarization Experiments

We performed two sets of experiments. First, the acoustic
beamforming algorithms were tested using only the multi-
channel meetings. The baseline system for the experiments
presented in this first set of experiments is the full system as
used in the RT06s evaluation [23] (this includes the beam-
forming, as explained here, a speech/nonspeech module and a
single-channel speaker diarization module). Using this baseline
system, we then modify just the key beamforming algorithms
presented in this work to show their effect in isolation. These
tests only take into account the acoustic data output from the
beamforming (i.e., no TDOA values were used).

A second set of experiments uses all of RT meetings available
(both single-channel and multichannel), an improved speaker
diarization module and a speech/nonspeech module for each
signal to show how the acoustic beamforming improves results
compared to using the most centrally located microphone in the
meeting (defined by NIST as the SDM channel). These diariza-
tion tests use both the acoustic data and the TDOA values to
improve diarization as shown in [28].

Tables I and II summarize the results for the first set of tests,
comparing a full beamforming system (labelled RT06s baseline)
with a system where some of the proposed algorithms have been
removed, while keeping all other modules constant. For each
system, the DER is computed for the development and eval-
uation sets as well as the absolute DER percentage variation
and the percentage variation versus the baseline system .
So, a negative value indicates an improvement over the base-
line system, which means that the use of the technique lowered
the performance of the baseline system (i.e., not using the tech-
nique may represent a potential improvement). In the test results
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in Table II, the last column shows the measured significance pa-
rameter for each system compared to the baseline. Such a
test is essentially a t-test which applies the matched pairs sen-
tence-segment word error (MAPSSWE) test introduced by [29]
and implemented by NIST in [30]. In Diarization, we defined
each segment to have 0.5 s. For a significance level of 5% the
differences are considered significant when

1) Meeting Information Extraction Tests: The first compar-
ison corresponds to the selection of the reference channel to use
in the TDOA calculation by taking into account prior informa-
tion—using the SDM channels as defined by NIST for each ex-
cerpt. By using automatic selection of the reference channel (as
is done in the baseline system) the results are slightly worse. Al-
though the DER of the development set is almost equal to the
hand-picked reference channel, the performance on the eval set
shows a relative improvement in DER of 1.87%. We consider
that it is still preferable and more robust to use the automatic se-
lection of the reference channel, as it then becomes possible to
use this system in areas other than the RT evaluation data, where
there might not be any prior information on which microphone
to select as the reference. Furthermore, on the test set the sig-
nificance test shows that such difference between systems is not
significant enough .

2) TDOA Values Selection Tests: The following three sys-
tems correspond to algorithms in the postprocessing module,
which includes the noise thresholding and the TDOA values
stability algorithms. When comparing the full RT06s baseline
system with a system that does not use any of the postprocessing
algorithms, we obtained mixed results depending on the data
set. For the development set, the postprocessing algorithms im-
prove results by 8.3% relative, while on the evaluation set, per-
formance is 2.9% worse. In order to fully study such differences,
we examine the effects of not using either the noise thresholding
algorithm or the the TDOA continuity algorithm.

On the one hand, the noise thresholding algorithm acts as
a simple speech/nonspeech detector at the beamforming level.
Initial tests were performed to try using a more sophisticated
detector, but in the end, it was not used, as the scores were
about 10% worse, and it just complicated the system. When
studying the effect of not using noise thresholding, we observed
that in both the development (6.3% relative) and the evalua-
tion sets (2.0% relative), there was a gain in performance. The
noise threshold percentage was initially set to 10% (without per-
forming any optimization experiments), which accounted for all
outliers which we wanted to eliminate. For some cases, a higher
value of 20% did give slightly better performance, and values
lower than 10% did not show as much improvement.

The final implementation of the noise threshold takes into
account the histogram of the GCC-PHAT values on the current
meeting rather than setting a fixed threshold as reported in [8].
This is done to attempt to compensate for noisy meetings (like
some LDC recordings in the NIST RT datasets), where the best
threshold is not the same as in the less noisy recordings.

On the other hand, the TDOA continuity algorithm is com-
pared to not performing any continuity processing. The use of
this algorithm did not improve performance on the development
set, but showed a 3% relative improvement for the test set. In
order to process the double Viterbi TDOA decoding, the in-

ternal weight variables were both set to 25 in the RT06s base-
line system. Further testing performed after the RT06s evalu-
ation showed that setting the first weight to 15 improved the
development set results, but worsened the evaluation results. A
homogeneous value of 25 seems to be a safe selection for both
datasets. For a more complete study of the variation of this pa-
rameter, refer to [24].

Another parameter that needs adjusting in the continuity al-
gorithm, is the number of -best values to be considered by the
algorithm when selecting the optimum TDOA value. The first
Viterbi step does a local selection within each channel from the

-best possible TDOA values to the two-best, which then are
considered by the second Viterbi in a global decoding using all
of the TDOA values from all channels. The number of possible
initial TDOA values is a parameter that describes how many
possible peaks in the GCC-PHAT function have to be consid-
ered by the first Viterbi. The selection of the optimal number of
initial -best values needs to account for concurrent acoustic
events while avoiding false peaks in the GCC-PHAT function.
The default value for was set to 4 in the RT06s system based
on tests performed on development data and based on the DER
and an SNR measure.

Overall, the two individual TDOA selection algorithms each
improve performance independently. For the development set,
the combinantion of the two techniques shows an improvement
that is larger than the sum of individual improvements. In the
evaluation set, each individual algorithm performs well in isola-
tion while the combined performance is worse. The significance
test of this system compared to the baseline is passed on both de-
velopment and test cases ( in development,
in test). A per-meeting basis analysis should be performed in
order to assess particular cases where these algorithms do not
perform well together.

3) Output Signal Generation Tests: The final two results
show tests performed when not using the algorithms related to
output signal generation. When no channel weights are used, a

constant weight is applied to all channels. The DER im-
proves by 1.8% relative by using the relative channel weights
on the development set and by 4.7% relative on the evaluation
set. So it appears that this algorithm is beneficial to the system
and it does not impose a significant computational burden on the
system.

Experiments with eliminating frames of data from the “bad”
channels show that the DER does not change for the develop-
ment set, but improves by 4.1% relative for the evaluation set.
We believe this is due to the dependency of this algorithm on the
relative quality of microphones in each recording setup. When
all microphones are of a similar quality, none of them loses
frames, and therefore the results should be the to the system
where the algorithm was not used. Both algorithms passed the
significance test on the test data.

4) Overall Acoustic Beamforming Tests: Now that we have
examined the usefulness of each of the individual algorithms
involved in the generation of an enhanced output signal, we will
attempt to assess how well the beamforming system can take
advantage of the multiplicity of recording channels in a meeting
environment. To do this, we will use both the MFCC and TDOA
values, comparing the output of the speaker diarization system
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Fig. 5. Using a single microphone versus multiple microphones combined via
acoustic beamforming on meetings.

for the multiple distant microphone condition (MDM+TDOA),
with that of the most centrally located single distant microphone
(SDM, as defined by NIST) condition.

In Fig. 5, we see improvements of 41.15% and 25.45% rela-
tive on the development and test sets, respectively. This is due to
several factors: the improved quality of the beamformed signal,
which also propagates to the speech/nonspeech module, and the
use of the TDOA values from the beamforming adds additional
information about the current speaker’s position in the room.
Both these issues are the result from applying the beamforming
algorithm presented in this paper to the diarization task: the en-
hanced acoustic signal and the information about speakers po-
sitions brought by the TDOA values (which is otherwise lost
when collapsing all channels acoustic data into one).

In order to isolate the improvements resulting from using the
enhanced acoustic signal and from inserting the TDOA values in
the speaker diarization module, we will be applying the system
used to compute Fig. 5 to the development set. Using only the
acoustic features for diarization (no TDOA values), we obtained
a 19.04% DER. This shows a similar, incremental improvement
coming from the beamformed signal (first) and adding to it the
information from the TDOA in diarization (second).

On other data sets, we observe different behavior. Namely,
adding TDOA values results in a much larger improvement than
just using the MFCC features computed from the beamformed
signal alone. This is due to the heterogeneity of the acoustic
channels which are to be beamformed. In some meeting setups,
although TDOA values can be well estimated, the signal quality
of some channels can degrade the overall acoustic output. Adap-
tive weighting and channel elimination algorithms help to al-
ways obtain an output signal which is of more quality than any
of the individual ones, although in some cases this improvement
might be minimal. For more comparisons and experiments, refer
to [24].

In order to study the significance of these results, we apply
the test described before on the test data. We obtain a signif-
icance factor comparing the SDM system with the
MDM+TDOA system and a comparing the MDM with
the MDM+TDOA systems, indicating both are very significant
results and not due to randomicities.

TABLE III
WER USING THE RT06S ASR SYSTEM INCLUDING THE BEAMFORMER

B. Speech Recognition Experiments

The beamforming system developed for the speaker diariza-
tion task was also used to obtain an enhanced signal for the ASR
systems that ICSI and SRI presented at the RT NIST evaluations.
For RT05s, the same beamforming system was used for ASR
and for speaker diarization. As explained in [31], evaluating on
the RT04s eval set, and excluding the CMU mono-channel meet-
ings, the new beamforming outperformed the previous version
of the ICSI beamforming system by 2.8% absolute (from 42.9%
word error rate to 40.1%). The previous beamforming system in
use at ICSI was based on delay&sum of full speech segments
(obtained from a speaker segmentation algorithm).

For the RT06s system, the beamforming module was tuned
separately from the diarization module to optimize for WER,
leading to a system which was more robust than the RT05s
beamforming system. Although acoustic beamforming attempts
to optimize the enhanced signal’s SNR, the use of the enhanced
signal in these two systems behaves slightly differently because
the two systems are evaluated using different metrics, one based
on time alignment and the other on word accuracy. In fact, in
[24], it is shown that SNR and DER behave differently, and
therefore optimizing the beamforming system with one metric
does not necessarily improve performance on the other metric.
In fact, separate tuning was not found to be crucial, as only
about 2% relative improvement on WER was gained compared
to using a common beamforming system.

As seen in [32], and reproduced in Table III, the RT05s and
RT06s datasets were used to evaluate the RT06s ASR system.
In both datasets, there is an improvement of almost 2% ab-
solute improvement over SDM by using beamforming in the
MDM condition. These two ASR systems are identical except
that the system for MDM uses the weighted-delay&sum algo-
rithm, along with some minor tuning parameters which were
optimized for each condition.

This improvement becomes much larger between the MDM
and ADM cases, where the improvement is exclusively due to
the fact that the acoustic beamforming was performed using
many more microphones (in the ADM case).

The Multiple Mark III microphone arrays (MM3a) were
available for the RT06s evaluation data on lecture rooms.
Tests performed comparing results with other state-of-the-art
beamforming systems showed that the proposed beamformer
performed very well.

IV. CONCLUSION

When performing speaker diarization on recording from the
meetings domain, we often have recordings available from mul-
tiple microphones. There have been several approaches in re-
cent years trying to take advantage of this information. How-
ever, these approaches have had only limited success compared
to using only a single, most centrally located, microphone. In

Rajbabu Velmurugan




ANGUERA et al.: ACOUSTIC BEAMFORMING FOR SPEAKER DIARIZATION OF MEETINGS 2021

this paper, we present an approach, based on popular acoustic
beamforming techniques, to obtain a single enhanced signal and
speaker-position information from a number of microphones.
We have proposed several novel algorithms to obtain improved
signal quality, under most conditions, for the task of speaker
diarization. Additionally, we have shown improvements due to
the use of between-channel delay values as a form of spacial
information for the diarization task. Tests performed on NIST
rich transcription data showed a significant reduction in error
for the diarization task compared to using just a single micro-
phone. In addition, tests using the same beamforming system in
a speech recognition task also showed improvements over pre-
vious beamforming implementations. We believe that the pro-
posed use of acoustic beamforming for speaker diarization is an
important step towards the goal of filling the performance gap
between meetings data and broadcast news data in the task of
speaker diarization.
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