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The Generalized Correlation Method for Estimation
of Time Delay

CHARLES H. KNAPP, MEMBER, IEEE, AND G. CLIFFORD CARTER, MEMBER, IEEE

Abstract—A maximum likelihood (ML) estimator is developed for
determining time delay between signals received at two spatially sepa-
rated sensors in the presence of uncorrelated noise. This ML estimator
can be realized as a pair of receiver prefilters followed by a cross
correlator. The time argument at which the correlator achieves a
maximum is the delay estimate. The ML estimator is compared with
several other proposed processors of similar form. Under certain con-
ditions the ML estimator is shown to be identical to one proposed by
Hannan and Thomson [10] and MacDonald and Schultheiss [21].

Qualitatively, the role of the prefilters is to accentuate the signal
passed to the correlator at frequencies for which the signal-to-noise
(S/N) ratio is highest and, simultaneously, to suppress the noise power.
The same type of prefiltering is provided by the generalized Eckart
filter, which maximizes the S/N ratio of the correlator output. For
low S/N ratio, the ML estimator is shown to be equivalent to Eckart
prefiltering.

INTRODUCTION

SIGNAL emanating from a remote source and moni-
tored in the presence of noise at two spatially sepa-
rated sensors can be mathematically modeled as

x1(H=8:1(0) +n,(®)
x2(f) = as, (¢ + D) + ny (1),

(1a)
(1b)

where s;(f), n,(t), and n,(t) are real, jointly stationary ran-
dom processes. Signal s, (¢) is assumed to be uncorrelated with
noise nl(t) and 1, (t)

There are many applications in which it is of interest to esti-
mate the delay D. This paper proposes a maximum likelihood
(ML) estimator and compares it with other similar techniques.
While the model of the physical phenomena presumes sta-
tionarity, the techniques to be developed herein are usually
employed in slowly varying environments where the character-
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istics of the signal and noise remain stationary only for finite
observation time 7. Further, the delay D and attenuation «
may also change slowly. The estimator is, therefore, con-
strained to operate on observations of a finite duration.

Another important consideration in estimator design is the
available amount of a priori knowledge of the signal and
noise statistics, In many problems, this information is negli-
gible. For example, in passive detection, unlike the usual
communications problems, the source spectrum is unknown
or only known approximately.

One common method of determining the time delay D and,
hence, the arrival angle relative to the sensor axis [1] is to
compute the cross correlation function

Ry, x,(N=E[x:1()x:( - 7)1, @

where E denotes expectation. The argument 7 that maxi-
mizes (2) provides an estimate of delay. Because of the finite
observation time, however, Ry, x,(’f) can only be estimated.
For example, for ergodic processes [2, p. 327], an estimate
of the cross correlation is given by

A O i

Rxlxz(f)“_'r__*-f x, () x,(t - T dt, (3)

T T

where T represents the observation interval. In order to im-
prove the accuracy of the delay estimate D, it is desirable to
prefilter x; () and x,(¢) prior to the integration in (3). As
shown in Fig. 1, x; may be filtered through H; to yield y; for
i=1, 2. The resultant y; are multiplied, integrated, and °
squared for a range of time shifts, 7, until the peak is obtained.
The time shift causing the peak is an estimate of the true
delay D. When the filters H,(f)=H,(f)=1,V[, the estimate
D is simply the abscissa value at which the cross-correlation
function peaks. This paper provides for a generalized correla-
tion through the introduction of the filters Hi(f) and Hy(f)
which, when properly selected, facilitate the estimation of
delay.

The cross correlation between x;(£) and x,(¢) is related to
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PEAK
DETECTOR

Fig. 1. Received waveforms filtered, delayed, multiplied, and inte-
grated for a variety of delays until peak output is obtained,

the cross power spectral density function by the well-known
Fourier transform relationship

Rx,xi('f):J‘n lex,(f)ejmﬁdfv )

When x, () and x,(¢) have been filtered as depicted in Fig. 1,
then the cross power spectrum between the filter outputs is
given by [3,p. 399] '

Gy, y, () =H () HF(f) Gx,x,(f), (%)

where # denotes the complex conjugate. Therefore, the
generalized correlation between x4 (f) and x,(z) is

R, 0= [ 4(1)Gay, (DT e, (63)
where '
Vo) = Hy (1) HECP) (6b)

and denotes the general frequency weighting.

In practice, only an estimate Gy, x, (f) of Gy, x,(f) canbe
obtained from finite observations of x1(f) and x,(f). Con-
sequently, the integral

89,0 [ o0 Gur, (e af (60)

is evaluated and used for estimating delay. Indeed, depending
on the particular form of Yz(f) and the a priori information,
it may also be necessary to estimate Y (f) in (62)-(6b). For
example, when the role of the prefilters is to accentuate the
signal passed to the correlator at those frequencies at which
the signal-to-noise (S/N) ratio is highest, then Y (f) can be
expected to be a function of signal and noise spectra which
must either be known & priori or estimated.

The selection of Y (f) to optimize certain performance
criteria has been studied by several investigators. (See, for
example, [4]-[12].) This paper will derive the ML estimator
for delay D in the mathematical model (1a) and (1b), given
signal and noise spectra. The results will be shown to be
equivalent to (6a)-(6¢) with an appropriate ¥(f). This
weighting turns out to be equivalent to that proposed in
[12] and under simplifying assumptions to that proposed
in [21]. The development presented here does not presume
initially that the estimator has the form (6¢). Rather, it is
shown that the ML estimator may be realized by choosing 7
that maximizes (6¢) with proper weighting, Yg([f), and proper
estimate, Gy, x,(f). The weighting Vg(f) yielding the ML
estimate will be compared to other weightings that have been
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proposed. Under certain conditions the ML estimator is
shown to be equivalent to other processors.

PROCESSOR INTERPRETATION

It is informative to examine the effect of processor weight-
ings on the shape of Ry, , (7) under ideal conditions. For
models of the form of (1), the cross correlation of x;(#) and
x2(t) is ;

Rxlx, (n= aRs, s, (r-D) +Rnlu, (™. 7
The Fourier transform of (?) gives the cross power spectrum
Gy, (N =Gy 5, (Ne?™® +G, 4 (1), ®)

If ny(2) and n,(¢) are uncorrelated (Gp, »,(f) =0), the cross
power spectrum between x,;(f) and x,(f) is a scaled signal
power spectrum times a complex exponential, Since multi-
plication in one domain is a convolution in the transformed
domain (see, for example, [13]), it follows for Gﬂ. n, (f)=0
that :

Rx,x,(""):aR;,x,(T) ® &(z- D), ‘

where ® denotes convolution. =

One interpretation of (9) is that the delta function has been
spread or “smeared” by the Fourier transform of the signal
spectrum. If §;(#) is a white nois¢ source, then its Fourier
transform is a delta function and no spreading takes place.
An important property of autocorrelation functions is that
Rgs(1) <R(0). Equality will hold for certain 7 for periodic
functions (see, for example, [3, pp. 323-326]). However,
for most practical applications, equality does not hold for
7+#0, and the true cross correlation (9) will peak at D re-
gardless of whether or not it is spread out. The spreading
simply acts to broaden the peak. For a single delay this-
may not be a serious problem. However, when the sigrial
has multiple delays, the true cross correlation is given by

Rx, *a (f) R Rslsl ne Z(x;a('i' - D;).
i

©

(10)

In this case, the convelution with R; g (7) can spread one
delta function into another, thereby making it impossible to
distinguish peaks or delay times. Under ideal conditions
where: Vf, Gy, x,(£) =Gy, x,(f), Vg(£) should be chosen
to ensure a large sharp peak in R,, yz(r) rather than a broad
one in order to ensure good time-delay resolution. However,
sharp peaks are more sensitivé to errors introduced by finite
observation time, particularly in cases of low S/N ratio. Thus,
as with other spectral estimation. problems, the choice of
Y¢(f) is a compromise between good resolution and stability.

The preceding discussion sets the background for the role
that Y (f) is to play. Now the five generalizations of the
cross-correlation function listed in Table I will be examined
individually.
The Roth Processor

The weighting proposed by Roth [9],

1

¢'R(f)=—"‘“—"lexl(f)

(a1
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[where the subscript R is to distinguish the choice of ¥¢(f)],
yields'

R(R)
Ryly’a

o-| Zus m D et g, (12)

Gy, x,(f)

Equation (12) estimates the impulse response of the optimum
linear (Wiener-Hopf) filter

Gx,xz(f)’
Gx,x,(f)

which “best” approximates the mapping of x; (#) to X2 (@) (see,
for example, [14], [15]). If n,(¢) # 0, as is generally the case
for (1), then

Hp(f)= (13)

lex,(f)=Gs,sl(f)+Gn,n,(f), (14)
and
i Gy, s, (f
Rﬁf}a,('r) =8(r- D) _[ T sa(f)l+l((?,,),, o
- e 12717 gf, (15)

Therefore, except when Gnm(f ) equals any constant (in-
cluding zero) times Gj, s (f), the delta function will again be
spread out. The Roth processor has the desirable effect of
suppressing those frequency regions where Gn, n, (f) is large
and é‘:,lxz(f) is more likely to be in error.

The Smoothed Coherence Transform (SCOT)

Errors in 6’,‘1 x,(f) may be due to frequency bands where
Gp,n,(f) is large, as well as bands where Gp, n, (f) is large.
One is, therefore, uncertain whether to fom Yr(f)=
1/Gy, x,(f) or Yr(f) = 1/Gx, «,(f); hence, the SCOT [11]

. selects

Us(f) = 1NVGx, x, () Gx,x,(f)- (16)
This weighting gives the SCOT
ﬁ,(,.f}y‘(’f)':f "Y\xlx,(f)e”"fr df, 17
where the coherence estimate?
Gx,x,(f) (18)

5 A
(XA D e ¢ TR ()

For H,(f)=1/V/Cx,x, () and H(f) =1/ Gx,x, (/) the
SCOT can be interpreted through Fig. 1 as prewhitening filters
followed by a cross correlation. When Gy x, (f) = Gx,x, (f);

1As discussed earlier, ¥ (f) may have to be estimated for this proces-
sor and those which follow, because of a lack of a priori information.
In this case, (11) must be modified by replacing Gx,x,(f) with
Gx t Xy (f } .

2A more standard coherence estimate is formed when the auto
spectra must also be estimated, as is usually the case.
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the SCOT is equivalent to the Roth processor. If n;(£)# 0
and n,(f) # 0, the SCOT exhibits the same spreading as the
Roth processor. This broadening persists because of an
apparent inability to adequately prewhiten the cross power
spectrum.

The Phase Transform (PHAT)

To avoid the spreading evident above, the PHAT uses the
weighting [16]

1
W G (19
which yields
2] = 6:: X

For the modél (1) with ugcor.related noise (i.e.,Gn, n, (f) =0),
IGx,xz(f)i=aGsls, (f). (21
Ideally, when Gy x, (f) = Gx, x, (f);

Gax,4) _jo(r) = giansD
G, (1)

has unit magnitude and

(22)

R{P), (r)=8(t - D). (23)

The PHAT was developed purely as an ad hoc technique.
Notice that, for models of the form of (1) with uncorrelated
noises, the PHAT (20), ideally, does not suffer the spreading
t’lg.at other processors do. In practice, however, when
lex!(f)#kalxz(f), 8(f)+# 2nfD and the estimate of
R$P), (r) will not be a delta function. Another apparent
defect of the PHAT is that it weights 6,,1 x,(f) as the inverse
of Gy, 5, (f). Thus, errors are accentuated where signal power
is smallest. In particular, if Gy x, (f)=0 in some frequency
band, then the phase 6(f) is undefined in that band and the
estimate of the phase is erratic, being-uniformly distributed
in the interval [-m, 7] rad. For models of the form of (1),
this behavior suggests that V,(f) be additionally weighted
to compensate for the presence or absence of signal power,
The SCOT is one method of assigning weight according to
signal and noise characteristics. Two remaining processors
also assign weights or filtering according to S/N ratio: the
Eckart filter [5] and the ML estimator or Hannan-Thomson
(HT) processor [12].

The Eckart Filter

The Eckart filter derives its name from work in this area
done in [5]. Derivations in [7], [8], [17], and [18] are
outlined here briefly for completeness. The Eckart filter
maximizes the deflection criterion, i.e., the ratio of the change
in mean correlator output due to signal present to the stan-
dard deviation of correlator output due to noise alone. For
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long averaging time T, the deflection has been shown [8] to
be .

L [I Hy(f) Hi(f) Gs,5,(f) ﬂff]2

d?=

j I Ha (12 G, (F) G, (1)

H

(24)

where L is a constant proportional to T, and G, s (f) is the
cross power spectrum between s, (f) and s, (7). For the model
(1), Gs,s,(f)=0aGy s (f) exp (j2nfD). Application of
Schwartz’s inequality to (24) indicates that

Hy(f) HE(f) = Yg(f) e 2™P (25)
maximizes d 2 where
GS &
. L (26)

G (L) Cyn ()

Notice that the weighting (26), referred to as the Eckart
filter, possesses some of the qualities of the SCOT. In par-
ticular, it acts to suppress frequency bands of high noise,
as does the SCOT. Also note that the Eckart filter unlike
the PHAT attaches zero weight to bands where Gy s (f)=0.
In practice, the Eckart filter requires knowledge or estima-
tion of the signal and noise spectra. For (1), when a =1 this
can be accomplished by letting

VE(f) = 1Gx, %, (N {Gx 2, ()~ 16x, x,(NI]
(G2, () = 1G5, (DN}

The first five processors in Table I can be justified on the
basis of reasonable performance criteria, whether heuristic or
mathematical.

In the next section, the ML estimator of the parameter D
is derived. It is shown to be identical to that proposed.by
Hannan and Thomson [12]. s

@27

The HT Processor

To make the model (1) mathematically tractable, it is
necessary to assume that s, (¢), 7, (2), and n,(¢) are Gaussian.
Denote the Fourier coefficients of x;(#) as in [3, eq. (3.8)]
by 7

1 [T )
Xik)=— f x () e7¥wa gy, (28a)
T g
where
w = 2-7-{.
iy T .

Note that the linear transformation X;(k) is Gaussian since
x;(#) is Gaussian. Further, from [3, eq. (3.13)], as T
and K — oo such that Kwj, = w is constant
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TABLE I
CANDIDATE PROCESSORS
Weight
Processor Name w(f)=H(f) HI ) Text Reference
Cross Correlation 1 [2]-[4],[19]
Roth Impulse
. Response UGx,x, f) [9]
scoT 1NGx x, (f) Gx,x,(f) [11], [16]
PHAT UG, x, (N [16]
Eckart Gy, 5,(NNGn n () Gnn, (N (51,171, (8]
[y12(N)I? (718
ML or HT
: G e, (OITL - 122 (D] 1221
Xi(w)= T]im TX;(k) (28b)
=J- xi(He T dt, (28c¢)

where X; is the Fourier transform of x;(#). A more complete
discussion on Fourier transforms and their convergence is
given in [3, p. 381], [4, pp. 23-25], [19, ch. 1], and [20,
p. 11]. From [21], it follows for T large compared to |D|
plus the correlation time of Ry g (7), that

%lex!(kwd): k=i
E[X, (k) X3 (D] = 0, kel (29)
Now let the vector
X(k) = [X,(), X2 ()] ', (30)

where ' denotes transpose. Define the power spectral density

- matrix @ such that

X (k) XT(k) X1(k) X2'(k)
Xz (k) X1 (k) X2 (k) X7 (k)
o4 Gx,x,(kwA) Gx,x,(k“—’A)
) T ':G;,xz (k“JA) Gx,x, (k‘-"A)

E[X(k) X*'(K)] =E[ ] (31a)

] (31b)

é% Ox(kwn). (31c)

Properties of @, (kw, ) can be used to prove

0< 1'Yx,x,(k""A)'z <1, Vkwy

[4, p. 467]. The vectors X(k), k=-N,-N+1,---,N are, as
a consequence of (29), uncorrelated Gaussian (hence, indepen-
dent) random variables. More explicitly, the probability for
X=X(-N), X(-N+1),++, X(N), given the power spectral
density matrix Q@ (or the delay, attenuation, and spectral
characteristics of the signal and noises necessary to determine

Qis
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p(X|1Q)=p(X|a, Gsls,’G_nlnl’Gn,n,s Gnln‘,:D)

=cexp(-+J1) (32)
where
L= 3 XM 05 (ko) XU T (33)
K=-N
and c is a function of |Qx(kwa)l [15, p. 185]. Replacing
X(k) by % X(kwy) from (28),
E X*(kwa) 05" (kwp) X(kwa) = (34)

K=-N

For ML estimation (see, for example, [4] or [15]), it is
desired to choose D to maximize p(X|Q, D).

In general, the parameter D affects both ¢ and J, in (32).
However, under certain simplifying assumptions, ¢ is constant
or is only weakly related to the delay. Specifically, from (1)
and (31), suppressing the frequency argument kwa ,

[Qx| = (Gs, 5, t Gn,ni)(azcs, s, TGn,n,)
AG,n, +0Gsa, 87 *P)
i (Ggln, taGy s €

which is independent of D if Gp 4,
uncorrelated).
For large T, (34) becomes

+j2nfD )
3

(35)

=0 (i.e., the noises are

ne[ 2O (36)
From (31),
[ lex, €] 'lexz(f)]
_G: x Gx x
0:l(f)= ) Gaalf) (373)

lex, (f) zex,(f) ' |Gx1x2(f)|2
1
- re(DP]
) UGx,xl(f); 'G.xlx, (f)/{Gx,x1 (f)'GJt:,xz )
”G:Ix,(f)f {Gx,xl N Gx,x,(f)} ) lfo,x,(f) ’
(37b)

which will exist provided |y, (F)I* # 1;i.e., x1(#) and x2(2)
cannot be obtained perfectly from one another by linear
filtering [14], or equivalently for the model (1) that observa-
tion noise is present.

When Gy, n, (£) =0,

Gx,xl(f)=G.r,xl(f)+Gn,n,(f)a (38)
Gx,xz(f)=agcx,si(f)+annz(f): (39)
Gx,x,(f) =aGs, 5, (f) ez, (40)

and it follows that

Tr= f X (OO AXN A =Ta + . (41)
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where

_ (T [1Rr | 1Xa(P |, 1
’ .[,, [Gx,x,(f)+6x,x2(f)] TGRS

(42a)

1y= [ ararpar, (42b)

aGs s, (1) i
Gy, x, () Gx,x, (N1 - 17122(AP]
(42c)

In order to relate these results to [12] and interpret how to
implement the ML estimation technique, note that for x,(r)
and x, (¢) real, A*(f) = A(=f). Then (42b) can be rewritten as

AN =X(N X3

=" anars | acnar 2 apar. @)

Letting TGy x,(f) & X,(f) X5(f), (43) and (42c) can be
rewritten as

., ™ 1 l712(N)I?
/2 ZTL., G D G T - (O

-e/2mID gf., (44)

Notice that the ML estimator for D will minimize J; =
J, +J3, but the selection of D has no effect on J,. Thus,
D should maximize -J3. Equivalently, when X, (f) X3(f)
is viewed as 7' times the estimated cross power spectrum,
Tlexz(f), the ML estimator selects as the estimate of
delay the value of 7 at which

RED) ()= f Gy, Vs

|Gx xQ(f )
3 lY12(N)I? janfr
| T R
achieves a peak.
The weighting in (6),
2
Vur(f) = 1 . [v12(F)I (45b)

|lex2(f)| [1 =3 |')'12(f)|2] '

where (as required for Q3 to exist) |v;2(f)I* # 1, achieves
the ML estimator. When |Gy, x,(f)l and |v(F)? are
known, this is exactly the proper weighting. When the terms
in (45b) are unknown, they can be estimated via technigues
of [22]. Substituting estimated weighting for true weighting
is entirely a heuristic procedure whereby the ML estimator
can approximately be achieved in practice.

Note that, like the HT processor, the PHAT computes a
type of transformation on

)
Gy, x, (NI
However, the HT processor, like the SCOT, weights the phase

=exp [j0 (N)].
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From [4,p.379],
10y 1
Iv1* L’

where L, is a proportionality constant dependent on how the
data are processed. Thus,

var [0 (F)] = (462)

1
j2mfr
Tk df. (46b)

13 T
Rgl?}'z(r)gz-[u e10Ch) .

var [
Comparison of (46b) and (20) with (21) reveals that the ML
estimator is the PHAT inversely weighted according to the
variability of the phase estimates.

In interpreting the similarity of the HT processor to the
other processors listed in Table I, it can be shown that if
Gn,n,(F)=Gn,n,(f)=Grn(f) is equal to a constant times
Gy ls l( f), then the last five processors in Table I are the
same except for a constant, but the cross-correlation pro-
cessor (Y(f)=1, Vf) is a delta function smeared out by
the Fourier transform of the signal (noise) power spectrum.

Interpretation of Low S/N Ratio of ML Estimator

Good delay estimation is most difficult to achieve in the
case of low S/N ratios. In order to compare estimates under

oo

 var [ﬁ] =
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identical to the Eckart filter. Similarly, for low S/N ratio,
V) = 1N G, (DI G, (). 49)
Therefore,ifa =1,
Gs,s5,(f)
o 19} o ! 50
™ S e Tl ac
Furthermore, for Gy, n, (f) = Gn,n,(f) = Gan(f),
Gs, 5, (f) [G.? s (f)r
ot Bk Rl T IR I St
Yur(f) = Gon(F) [¥s ()] G () Vo (f)-
(50b)

Thus, under low S/N ratio approximations with &= 1, both
the Eckart and HT prefilters can be interpreted either as
SCOT prewhitening filters with additional S/N ratio weight-
ing or PHAT prewhitening filters with additional S/N ratio
squared weighting,.

VARIANCE OF DELAY ESTIMATORS

It can be shown, by extending a result from [21], that the
variance of the time-delay estimate in the neighborhood of
the true delay for general weighting function Y(f) is given by

f WP @AY G, 2. (F) G, (D1 - 17(IP] df

(51

7 f @Gy, x, (NIV(F) 1

low S/N ratio conditions, let@= 1. Then,

The variance of the HT processor (substituting from (45b)

1
Yur(f) = Gon )
o G, (F) s
{ [Gs, ¥ )+ Gnl n, N E(;.sl.!r1 N+ Gn,nz (N - G?, 5 (N}
Grre (1)
Gn,n,(f)'anni(f) ] (47b)

T Gexll). Gea D)
[l  omn (D) G ()

which agrees with [21, eq. (28)] if in (47b) Gy » ()=

Gn,n,(f).
For low S/N ratio,
G0 () oy g Sunt) ey
Gnln,(f) ann,(f)
it follows that
G
Yur(f) = 5s,(/) =Ye(f). (48)

Gnlnl(f) ann,(f)

]

and using the definition of coherence) is

var[D] = {21 f @af P Iy (P11 - 1y (O] dFF.

(52)
In particular, the HT processor achieves the Cramér-Rao lower
bound (see Appendix). It should be pointed out that (51)
and (52) evaluate the local variation of the time-delay esti-
mate and thus do not account for ambiguous peaks which
may arise when the averaging time is not large enough for
the given signal and noise characteristics. Indeed, when
T is not sufficiently large, local variation may be a poor
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ambiguous peaks must be considered [21, p. 40], [23],
[24, p. 41]. Further, (51) and (52) predict system perfor-
mance when signal and noise spectral characteristics are
known; for T sufficiently large, these spectra can be esti-
mated accurately. However, in general, (51) and (52) must
be modified to account for estimation errors; alternatively,
system performance can be evaluated by computer simula-
tion. Empirical verification of expressions for variance has
not been undertaken by simulation, because to do so with-
out special purpose correlator hardware would be computa-
tionally prohibitive. For example, for a given Gs,s,(f)s
Gn,a,(f)s Gn,n,(f), @, and averaging time T, an estimated
generalized cross-correlation function can be computed, from
which only one number (the delay estimate) can be extracted.
To empirically evaluate the statistics of the delay estimate
(which would be valid only for these particular signal and
noise spectra) many such trials would need to be conducted.
We have conducted one such trial (with T large) and verified
that useful delay estimates can be obtained by inserting esti-
mates |Gy x,(f)| and 17 12(f)I? in place of the true values.
(This might have been expected since the estimated optimum
weighting will converge to the true weighting as T-oe, In
practice, T may be limited by the stationary properties of the
data and (52) may be an overly optimistic prediction of sys-
tem performance when signal and noise spectra are unknown.)

CONCLUSIONS AND DIScussION

The HT processor has been shown to be an ML estimator for
time delay under usual conditions. Under a low S/N ratio
restriction, the HT processor is equivalent to Eckart prefilter-
ing and cross correlation. These processors have been com-
pared with four other candidate processors to demonstrate
the interrelation of all six estimation techniques. The deriva-
tion of the ML delay estimator, together with its relation to
various ad hoc techniques of intuitive appeal, suggests the
practical significance of HT processing for determination of
delay and, thence, bearing. Finally, interpretation of the
results leads one to believe that, if the coherence is slowly
changing as a function of time, the ML estimation of the
source bearing will still be a cross correlator preceded by
prefilters that must also vary according to time-varying esti-
mates of coherence.

APPENDIX
Cramér-Rao Lower Bound on Variance of Delay Estimators
The Cramér-Rao lower bound is given [15, p. 72] by

-1
2
%% T mp (10,7 (AD
; aTz T=D.

The only part of the log density which depends on 7, the
hypothesized delay, is J5 of (44). More explicitly,

02 -1
—E_TE(? J:‘,).

a!
E{an In p(X1Q, r)} 42)

If Gx,x,(f) = |Gx,x1(f)|erj2ﬂfp, then since EI&;:I.%:3 (= -

Gx, x,(f), we have

=N ol pumtirs) |y ()
E(2 Js) T-fu ) [1 - l7(NP] @

"

(A4)

Hence the minimum variance is

1y (HI?

minimum var (D) = [TJ: (nf)? - 1ve(HF)

But this is the variance which the HT processor achieves
[see (52)].
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Signa'i Analysis by Homomorphic Prediction

ALAN V, OPPENHEIM, SENIOR MEMBER, 1EEE, GARY E. KOPEC, STUDENT MEMBER, IEEE,
AND JOSE M. TRIBOLET, STUDENT MEMBER, IEEE

Abstract-Two commonly used signal analysis techniques are linear
prediction and homomorphic filtering. Each has particular advantages
and limitations. This paper considers several ways of combining these
methods to capitalize on the advantages of both. The resulting tech-
niques, referred to collectively as homomorphic prediction, are poten-
tially useful for pole-zero modeling and inverse filtering of mixed phase
signals. Two of these techniques are illusirated by means of synthetic
examples.

INTRODUCTION

WO classes of signal processing techniques which have

~ been applied to a variety of problems are homomorphic

filtering or cepstral analysis [1], [2] and linear predic-

tion or predictive deconvolution [3]-[5]. Separately, each

has particular advantages and limitations. It appears possible,

however, to combine them into new methods of analysis

which embody the advantages of both. In this paper we dis-
cuss several ways of doing this.

Linear prediction is directed primarily at modeling a signal as
the response of an all-pole system. Its chief advantage over
other identification methods is that for signals well matched to
the model it provides an accurate representation with a small
number of easily calculated parameters. However, in situa-
tions where spectral zeros are important linear prediction is
less satisfactory. Furthermore, it assumes that the signal is
either minimum phase or maximum phase, but not mixed

phase. Thus, for example, linear prediction has been highly

successful for speech coding [3], [5], [6] since an all-pole

Manuscript received April 3, 1975; revised September 30, 1975 and
February 3, 1976. This work was supported in part by the Advanced
Research Projects Agency monitored by the ONR under Contract
N00014-75-C-0951 and in part by the National Science Foundation
under Grant ENG71-02319-A02. The work of G. Kopec was supported
by the Fannie and John Hertz Foundation. The work of J. Tribolet
was supported by the Instituto de Alta Cultura, Portugal.

The authors are with the Department of Electrical Engineering and
Computer Science, Research Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, MA 02139,

minimum phase representation is often adequate for this pur-
pose. It has also been applied in the analysis of seismic data,
although limited by the fact that such data often involve a
significant mixed phase component.

Homomorphic filtering was developed as a general method
of separating signals which have been nonadditively combined.
It has been used in speech analysis to estimate vocal tract
transfer characteristics [7]-[9] and is currently being evalu-
ated in seismic data processing as a way of isolating the impulse
response of the earth’s crust from the source function [10]-
[12]. Unlike linear prediction, homomorphic analysis is not a
parametric technique and does not presuppose a specific
model. Therefore, it is effective on a wide class of signals,
including those which are mixed phase and those characterized
by both poles and zeros. However, the absence of an under-
lying model also means that homomorphic analysis does not
exploit as much structure in a signal as does linear prediction.
Thus, it may be far less efficient than an appropriate para-
metric technique when dealing with highly structured data.

The basic strategy for combining linear prediction with
cepstral analysis is to use homomorphic processing to trans-
form a general signal into one or more other signals whose
structures are consistent with the assumptions of linear predic-
tion. In this way the generality of homomorphic analysis is
combined with the efficiency of linear prediction. In the next
section we briefly review some of the properties of homo-
morphic analysis that suggest this approach. We then discuss
several specific ways of combining the two techniques.

HOMOMORPHIC SIGNAL PROCESSING

Homomorphic signal processing is based on the transforma-
tion of a signal x(n) as depicted in Fig. 1. Letting X(z) and
X(z) denote the z transforms of X(n) and x(n), the system
D[] is defined by the relation

R@)=log X(z) )

where the complex logarithm of X(z) is appropriately defined



