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Abstract

In this paper, we consider the problem of compositing a

scene from multiple images. Multiple images, for example,

can be obtained by varying the exposure of the camera, by

changing the object at focus, or by simply sampling a video

sequence at arbitrary time instants. We develop this prob-

lem in an optimization framework and then adopt a vari-

ational approach to derive a generalized algorithm which

will be able to solve diverse applications depending on the

nature of the input images. Our approach has distinct ad-

vantages over the existing digital compositing techniques,

such as alpha matting and alpha blending, which require

an explicit preparation of the matte while there is no such

requirement in the proposed technique. We demonstrate the

usefulness of our approach through results from diverse ap-

plications in computer vision.

1. Introduction

Digital compositing is a modern technique used

extensively in applications where multiple input im-

ages contribute to generating the desired output image

([2],[19],[26]). Compositing is presently performed using

mattes which fetch desired elements from each of the input

images. Alpha matting and alpha blending are the com-

monly known approaches in which such mattes are em-

ployed. The matte is prepared separately, often manually,

and is stored as a separate channel in each of the input im-

ages along with the intensity channel(s). The major over-

head in these approaches is the preparation of the mattes

using various tools by a skilled user.

Matte can be calculated from an image using a Bayesian

approach [6], using iterative energy minimization with the

help of Markov random field [11], by extending blue screen

matting using some knowledge about boundary location

[23], by solving Poisson equations with the help of user

given boundary information [27], or by optimization ap-

proach based on belief propagation involving segmentation
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[29]. In video matting, matte is generated from a video se-

quence by learning the statistics of the fore(back)ground

[1], by motion cue [5] or by separating the object layers

through defocus [17].

In alpha blending, a parameter α which represents the

matte information weighs each of the input images appro-

priately to produce the desired output image [25]. Let f be

the desired output image and gm, where 0 ≤ m ≤ K be the

K input images. The prepared matte is given by αm(x, y).
The alpha blending, which requires explicit computation of

αm, performs the following operation:

f(x, y) =

K
∑

m=1

αm(x, y)gm(x, y),

K
∑

m=1

αm(x, y) = 1. (1)

In this paper, we adopt a matte-less approach for scene

compositing which does not require explicit computation

of the mattes. We pose digital compositing as an uncon-

strained optimization problem involving selection of locally

high contrast pixels yet maintaining a certain smoothness

over the neighborhood. We adopt a variational approach

to solve the optimization problem and derive a generalized

algorithm for solving the digital compositing problem.

It is interesting to note that the problem of composit-

ing has always been considered as an art, rather than en-

gineering. Although the industry has made use of various

technologies such as blue screen photography, rotoscoping,

polyfill (polygon filling) method, etc., very little effort has

gone into automating the entire process of compositing ex-

cept those cited earlier. Some recent trends include sep-

aration of object layers [28] or video object planes from

different input videos for matte preparation [18]. However

such methods would require explicit computation of struc-

ture from motion and the accuracy of the matte depends on

the accuracy with which the layers can be separated. Our

method does not suffer from such a problem. We do not re-

quire computation of image statistics like those in ([1], [6])

or scene modeling as in ([11],[27]) notwithstanding the fact

that the proposed method is a data dependent process.

We apply our algorithm to solve diverse applications re-

lated to digital compositing in computer vision such as high

dynamic range (HDR) imaging problem, recovering pinhole



equivalent image from multiple defocused images, genera-

tion of random texture from multiple different texture im-

ages and motion trail generation from a video sequence. We

show that excellent compositing can be done in all cases us-

ing the same algorithm.

2. Proposed Algorithm

In this section, we develop an algorithm which performs

compositing on multiple input images of the scene. Let the

algorithm take K images as input. Let gm(x, y) be the in-

tensity value of the pixel at location (x, y) of the mth image,

where 1 ≤ m ≤ K. Let f(x, y) be the unknown image to

be constructed from gm(x, y).

2.1. Possible Formulations

General compositing problem can be formulated as

f(x, y) =
K

∑

m=1

wm(x, y)gm(x, y) (2)

where wm(x, y) is our representation for weighting func-

tion which replaces αm(x, y) in alpha blending. As a sim-

ple case, we can model wm(x, y) as

wm(x, y) =

{

1 for m = k (some index)

0 otherwise
(3)

Here our objective is to select a value for a pixel from a spe-

cific observation and it is a pixel-based approach. This ap-

proach is carried out by many artists in computer graphics.

In some cases, this approach is carried out automatically,

when this becomes a problem of combinatorial optimiza-

tion. Some specific tasks in this paper require pixel-wise

compositing as will be shown later in sub-sections 3.1-3.3.

Alternatively, we can select wm(x, y) using a region

based approach as

wm(x, y) =

{

1 for (x, y) ǫ Rm

0 otherwise
(4)

where, Rm is the distinct region to be selected from the mth

input image. The layer based approach explained in section

1 uses such a matte. Application defined in subsection 3.4

requires such a matte.

2.2. Matte-less, Variational Approach

To illustrate and to motivate, we consider the HDR

problem. We require multiple, differently exposed images

gm(x, y) as the input images. We want to design an algo-

rithm to produce the desired HDR-like image f(x, y) which

is similar to the corresponding HDR image generated using

standard HDR techniques ([16],[21],[22]). We shall now

design our weighting function wm(x, y) with regard to this

application. We want the selected pixel to have a high lo-

cal contrast, yet blending smoothly across different regions

while compositing from different images. Therefore we re-

quire a variational approach to solve this. The basic formu-

lation of this problem can be designed as

f(x, y) = arg minf

[
∫

x

∫

y

{(

f(x, y) −

K
∑

m=1

wm(x, y)Wm

(

gm(x, y)
)

)2

+ λ

(

f2
x + f2

y

)}

dxdy

]

(5)

where λ is a regularization parameter which appropriately

weighs the smoothness term (f2
x + f2

y ), applied everywhere

and Wm is the warping function which compensates for the

motion of camera corresponding to the m th input image

[32]. If we assume that the warping has already been car-

ried out (note that this may require camera calibration) and

incorporated into the input images gm(x, y), the basic for-

mulation of the problem can be given as

f(x, y) = arg minf

[
∫

x

∫

y

{(

f(x, y) −

K
∑

m=1

wm(x, y)gm(x, y)

)2

+ λ

(

f2
x + f2

y

)}

dxdy

]

(6)

Our main objective in the development of this algorithm

is to model the weighting function wm(x, y) which weighs

each of the pixels of the input images gm(x, y) in such a

way so that it is amenable to an iterative solution, avoiding

a combinatorial search, while wm is still a data dependent

term.

One easy way to model wm(x, y) is to pick one pixel

from K images corresponding to the pixel location (x, y)
using Equation (3) or (4). So, wm(x, y) takes one of the

two values in {0, 1} at any location (x, y). This leads us

to a combinatorial problem and the variational framework

has no proper solution. This cannot be solved using the

Euler-Lagrange formulation which offers an iterative solu-

tion. Hence, we relax the condition on the weighting func-

tion wm(x, y) allowing it to take real values in the range

[0, 1] subject to the constraint

K
∑

m=1

wm(x, y) = 1. (7)

We propose a weighting function which would optimally

weigh pixels of each of the K images so that the unknown

image f(x, y) is very close to the desired image with uni-

form illumination or contrast. The new weighting function

is as shown below.

wm(x, y) =
Bm(x, y)

A(x, y)
(8)



where

Bm(x, y) =
(

C + σ2
m(x, y)

)(

f(x, y) − gm(x, y)
)2

(9)

A(x, y) =

K
∑

n=1

Bn(x, y) (10)

where σ2
m(x, y) is the local variance around the pixel loca-

tion (x, y) in the mth image, C is a real number meant to

vary the influence of σ2
m(x, y) on the weighting function as

well as to prevent the condition of wm being zero in all im-

ages at homogeneous regions, and (f(x, y) − gm(x, y))2 is

a measure of how the composited image is different from

the mth observation at a given location. The division by

the sum over all the input images is done to ensure that the

weights assigned to K images sum to unity for a given pixel

(x, y). Similar weighting functions have been employed in

colorization [15] and image segmentation ([24],[31]).

The choice of the above weighting function wm stems

from the fact that if the pixel in a particular observation

has a high local variance σ2
m, then it should have a higher

weight while compositing. Similarly, we want to emphasize

selection of the over-exposed view at an under-illuminated

pixel or the under-exposed view at an over-illuminated re-

gion. This is achieved through the choice of the second term

(f − gm)2. The composited image would be away from be-

ing over- or under-exposed. This particular choice of the

weighting function has an additional mathematical justifi-

cation. If the K input images correspond to the same scene

with different noisy (assumed Gaussian) observations, then

the solution would be an optimal noise smoothing filter.

This optimization problem is solved using calculus of

variations using the corresponding Euler-Lagrange equation

[12]. The iterative discretized version of the solution is as

shown below.

fp+1(i, j) = f
p
(i, j) −

1

λ

[{

fp(i, j) −

K
∑

m=1

Bp
m(i, j)gm(i, j)

Ap(i, j)

}{

1 −

K
∑

m=1

gm(i, j)

(

Ap(i, j)Dp
m(i, j) − Bp

m(i, j)Ep(i, j)

(Ap(i, j))2

)}]

(11)

where

Dm(i, j) = 2
[

(C + σ2
m(i, j))(f(i, j) − gm(i, j))

]

(12)

E(i, j) =

K
∑

n=1

Dn(i, j). (13)

The suffix ’p’ denotes the value of the variable at the pth it-

eration and f denotes the average value of f over its nearest

4-connected neighborhood.

3. Applications

In this section, we shall see how the algorithm we just

developed can be applied to various applications. No mod-

ification of the proposed algorithm is required for any of

these suggested applications. We start with the HDR appli-

cation considering which the algorithm was developed.

3.1. HDR Imaging Problem

HDR imaging technique produces an image which has

a higher dynamic range from multiple differently exposed

low dynamic range (LDR) images ([16],[21],[22]). The

HDR image, generated using traditional approaches, will be

able to represent objects in both the brightly and poorly il-

luminated regions in the scene equally well. The problems

with these approaches are that the generated HDR image

can be displayed using specialized displays only and it usu-

ally occupies a larger memory. Also, it requires the cam-

era response function (CRF) to be computed from the input

images [9] and, therefore, it is computationally expensive.

HDR image can be displayed in conventional displays such

as monitors after performing a process called tone mapping

[14].

Our algorithm generates the output image which has the

same dynamic range as that of the input images. This im-

age will still be able to represent objects in both the brightly

and poorly illuminated regions equally well in spite of its

limited dynamic range. The proposed method implicitly re-

places the over- or under-exposed regions by their appro-

priately exposed views. Further, the image generated using

this approach neither requires the computation of CRF nor

needs a specialized hardware to display it. This image re-

quires less storage space compared to HDR image due to

its limited dynamic range. Further, our method does not

require any knowledge about the camera exposure settings.

3.2. Generation of Pin-hole Image

Depth from defocus ([3],[7]) is an active area of research

where two or more different observations are used to re-

cover the dense depth map. One can use a suitable restora-

tion technique (by measuring the relative defocus) [20] to

recover the corresponding pin-hole image. On the other

hand, if one is given a large number of such defocused ob-

servations along with individual camera parameter settings,

the corresponding depth recovery technique is called depth

from focus [13]. We show that the proposed technique can

be used to combine these observations to obtain the pin-hole

equivalent image very efficiently.

Consider multiple defocused images of a scene with each

image having different parts of the scene in focus. Our algo-

rithm can combine these images to produce an image which

has all parts of the scene in focus. The choice of wm in

Equation (8) will enable us to pick up the pixel intensity at

a point from that particular observation where the point is



in focus so that it has the maximum local contrast.

3.3. Random Texture Generation

In certain applications, such as template preparation in

textile industry, it is often desired to combine different ex-

isting textures to generate a new random texture. Our algo-

rithm can also be employed to generate a randomly textured

image from multiple different textures. The nature of the

output image texture is controlled by varying the parame-

ter C in Equation (9). This varies the influence of the local

variance σ2
m(x, y) on the output image texture. The com-

posited image will have the appearance of having picked up

small regions from different constituent textures in a repeti-

tive manner while picking locally high contrast pixels from

the constituent images.

3.4. Motion Trail Generation

Motion trail generation from a video sequence is widely

used in motion based video indexing and retrieval [4], in

video authentication [30] and in static representation of

moving objects in standard comics.

Consider the motion of an object in a video sequence.

We want to represent the motion trail of the object in a sin-

gle image. Our algorithm does this task very well by com-

positing several frames of the video sequence. We assume

that the motion warping has already been carried out for the

input frames if the camera is also in motion. This was al-

ready shown in Equations (5),(6). For a static region, the

method will perform simple noise filtering. Whenever an

object of interest is in motion, the corresponding edges (pix-

els with high local contrast) move along a motion and they

get copied at a regular interval in the composited image.

4. Experimental Results

We have experimented on the suitability of the proposed

algorithm on a number of practical applications. For rea-

sons of brevity we show experimental results for only four

specific applications that are highly relevant currently. We

have used exactly the same computer code in all applica-

tions while maintaining the same value of the regulariza-

tion parameter λ (used 10 in this study). Typical value of

the parameter C used in our study is 100.

4.1. HDR Problem

In Figure 1(a-e), we show five different observations of a

scene having a large variation in illumination. Each obser-

vation corresponds to different exposure settings (progres-

sively more from (a) to (e)). Figure 1(f) shows the result of

compositing after applying Equation (11). One can observe

that the final output LDR image is uniformly illuminated

and has similar characteristics of an HDR image. We call

this output image as HDR-like image. Another example is

shown in Figure 2 and the inference is quite similar.

(a) (b)

(c) (d)

(e) (f)

Figure 1. (a-e) Differently exposed images given as input, and (f)

composited HDR-like image. Data Courtesy: Erik Reinhard, Uni-

versity of Bristol.

(a) (b)

(c) (d)

(e) (f)

Figure 2. (a-e) Differently exposed input images of another scene,

and (f) composited HDR-like image. Data Courtesy: CAVE Lab,

Columbia University.



4.2. Generation of Pin-hole Image

The images in Figures 3(a-c) (synthesized using Povray)

of the scene have three objects (a ball, a cuboid, and a cylin-

der). Each of these input images have one of the objects in

focus. These images are composited by our algorithm in

Equation (11) and finally we get an image in Figure 3(d)

in which all the three objects are in focus (pin-hole equiva-

lent). In Figures 4(a-c), we have three defocused images of

(a) (b)

(c) (d)

Figure 3. Input images with (a) front object (ball) in focus, (b)

middle object (cuboid) in focus, (c) back object (cylinder) in focus,

and (d) composited output image with all objects in focus.

a real world scene as the input images. The scene consists

of planer surfaces at three distinct distances. Different layer

in the scene is focused in each of the input images in 4(a-c).

Our algorithm in Equation (11) works on these images and

generates an output image in which all parts of the scene are

properly in focus as shown in Figure 4(d).

(a) (b)

(c) (d)

Figure 4. (a-c) Defocused input images with different depth layer

in focus, and (d) composited pin-hole equivalent image.

4.3. Random Texture Generation

Figures 5(a-e) show a set of texture images used as input.

Figure 5(f) shows the composited output from five input im-

ages using Equation (11). One does see a certain correlation

in the composited image with each of the five input images.

In some sense, one can relate this application to the problem

of cross-dissolve [10] in graphics.

(a) (b) (c)

(d) (e) (f)

Figure 5. (a-e) Different texture images as input, and (f) compos-

ited new texture. Data Courtesy: Brodatz Texture Database.

4.4. Motion Trail Generation from a Video

(a) (b)

(c) (d)

Figure 6. (a-c) Selected frames (1,5 and 8) of a surveillance cam-

era, and (d) composited image showing motion trail.

Consider frames of a video sequence captured using a

surveillance camera. Figures 6(a-c) show selected frames of

a video sequence in which two objects (a cycle and a car) are

in motion. Eight such successive frames are used as input

images. We apply our algorithm in Equation (11) on these

eight frames, last frame being given more weight. Figure

6(d) shows the composited output image which depicts the

motion trail of both the moving objects while other parts



of the scene are left unaltered. Since the cycle is moving

slower than the car, the corresponding trail is smaller.

5. Conclusions
We have considered the problem of automatic composit-

ing of images and proposed a matte-less, variational ap-
proach by selecting an appropriate weighting function. The
novelty of the weighting function lies in the fact that it is
completely data dependent. Hence our approach does not
require any prior matte information. We have solved the
problem adopting an optimization framework and arrived
at an iterative solution. The iterative algorithm has been
applied to diverse applications in computer vision and has
been shown to perform very well in all cases. Our approach
requires neither any user intervention nor pre-processing
at any stage and is found to converge to optimal solution
within 4-5 iterations in all cases. Further, if one requires to
use a discontinuity preserving smoothness term [8], one can
easily modify Equation 5 accordingly.
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