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Abstract—This work focuses on designing caching policies for
transient data, i.e., data which can be used to serve requests only
for a finite duration of time after which it becomes redundant.
We first characterize the fundamental limit on the performance
of caching policies for transient data and characterize the
performance of traditional caching policies like LRU for this
setting. Traditional caching policies often make decisions based
on the popularity of the data being cached. We propose a new
caching policy which uses both the popularity and the residual
life-time (time remaining before the data becomes redundant)
to make caching decisions. We show that in the setting where
data being cached is transient, our policy outperforms traditional
caching policies.

I. INTRODUCTION

The motivation for this work comes from the increasing
popularity of the Internet of Things (IoT) and the concept
of Information Centric Networking (ICN) [1]. ICN assigns a
unique name to each piece of data and consumers request for
a specific piece of data instead of requesting to communicate
with the producer of the requested data. In addition, nodes
in the network are equipped with storage capabilities and data
can be cached at intermediate nodes in the network. Since ICN
allows data to be cached close to the consumers, the benefits
of ICN over IP-based communication include a reduction in
retrieval delay, lower bandwidth consumption, and reduced
energy consumption [2].

Since many IoT applications are information-centric, the
idea of using ICN for IoT has gained traction [2]–[4]. The
benefits of using ICN for IoT have been explored in [3] where
it was found that in-networking caching leads to lower delays
and lower power consumption. In [4], it was observed that the
performance of ICN for IoT depends heavily on the caching
policies used by various nodes in the network.

In this work, we study systems consisting of multiple
sensors called producers, each of which measures a time-
varying signal, consumers, and intermediate routers as illus-
trated in Figure 1. Consumers interested in the measurements
of these sensors access them via intermediate routers which are
equipped with storage capabilities. In most IoT applications,
the measurements of the sensors are used by the consumers
to make control decisions. Since using stale measurements
can lead to sub-optimal decisions, we focus on the setting
where each request has a specific freshness requirement, i.e.,
a request received at time t for Producer i’s measurement
can only be served using a measurement collected after
time t − Fi, where Fi is the freshness requirement of the
request. The need for fresh measurements makes the data being
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Fig. 1: A system consisting of multiple sensors, a network of routers
equipped with caches and consumers.

cached transient, i.e., once fetched and stored, the data can
be used to serve requests for a specific amount of time and
becomes stale thereafter. The transient nature of data is the key
difference between caching for IoT applications as compared
to applications like Video-on-Demand.

Traditional caching policies like Least Recent Used (LRU)
and Least Frequently Used (LFU) make caching decisions
based on the popularity of the data being cached. In this work,
a consequence of the transient nature of the data being cached
is that every piece of data is characterized by two attributes,
namely, its popularity and its residual life-span, i.e., the time
remaining before the data becomes stale and can’t be used to
serve requests. Since traditional caching policies make caching
decisions purely based on the popularity of the data, they are
sub-optimal to cache transient data. In our setting where the
data being cached is transient, the data of a popular producer
about to go stale could be less useful than the data of a less
popular producer with a large residual lifetime because the
number of requests served by the latter could be larger. This
motivates the need for new caching policies, specially designed
to handle the transient nature of the data being cached. The
goal of this work is to design efficient caching strategies for
transient data.

A. Contributions

The main contributions of this work are as follows. We first
study a single cache network and show the following.

– We prove a fundamental limit on the performance of
any caching policy (Proposition 4) and characterize the
performance of traditional caching policies for caching
transient data (Propositions 1-2). We validate our theo-
retical results via simulations.
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– Next, we propose a new caching policy called Least
Useful (LU) which uses the popularity as well as the
residual life-span to make caching decisions. We provide
a theoretical characterization of the performance of the
LU policy (Proposition 5). We show that the perfor-
mance of the LU policy is close to optimal when the
popularity of the producers follows the Zipf distribution
and the freshness constraints are uniform across produc-
ers (Proposition 6).

– We show that our policy outperforms traditional caching
policies via extensive simulations.

In Section III, we extend these results to a two cache network.

B. Related Work

Caching policies for transient data have been studied in [5]–
[11]. Closest to this work, in [5], the performance of a similar
system is studied for a time-slotted setting where exactly one
request arrives at the beginning of each time-slot. We focus
on the setting where requests arrive according to a Poisson
process.

The work in [6] and [7] also focuses on the setting where
requests have hard freshness requirements. The key difference
between our work and the work in [6] and [7] is the metric
used in the two cases. In [6] and [7], for each incoming
request, the system pays a fixed convex combination of two
costs: (i) communication cost – the cost of fetching data from
the producer and (ii) freshness loss cost – cost proportional
to the time elapsed since the data was produced. Due to the
second cost, even if the data used to serve the request satisfies
the hard freshness constraint, the system still incurs a freshness
loss cost. As a result of this, in [6] and [7], even when the
cached data can be used to serve a request, the system might
prefer to fetch fresh data in order to minimize the overall
cost incurred by the system. This model is suitable for highly
time-sensitive applications that need real-time data to make
decisions.

Contrary to this, in our setting, although we have a hard
freshness constraint, for data satisfying this hard constraint,
there is zero freshness loss cost. As a result of this, when the
cached data is fresh enough to serve a request, the system
will never fetch data directly from the producers. In terms
of various other modeling differences, we assume that the
popularity of various producers is known to the caching policy,
whereas [6] and [7] try to estimate this as requests arrive.
Given this, a direct comparison between our policy and the
policy proposed in [6] and [7] is unfair.

In [8], [9], a single producer system is considered where
the producer decides when to send updates to the cache (push-
based communication). The updates sent by the producer enter
a queue and are sent to the router according to queue’s service
process. In [8] the focus is on studying the impact of various
queuing disciplines like M/M/1, M/D/1, D/M/1. In [9], the
authors evaluate the benefits of employing packet management
on the system studied in [8]. Like [8] and [9], [10] focuses
on a push-based setting where sensors send updates to the
cache. The caching problem is modeled as an optimization
problem and the objective is to minimize the time average of

the weighted sum of ages of the cached data. [11] focuses
on caching strategies for the setting where the popularity of a
content varies with its freshness. The key takeaway in [11] is
that, in the setting where popularity varies with freshness, the
optimal caching policy is to cache the most popular contents
at a given time. Our work differs from [11] because, in our
setting, the popularity of producers remains constant, however,
a measurement taken from a sensor is useful only for a finite
amount of time after it is taken.

C. Organization

The rest of the paper is organized as follows. In Section
II, we discuss a single cache system. We first characterize
the performance of traditional caching policies and an upper
bound on the performance of any policy for our setting where
requests have strict freshness requirements. We then propose
a new policy and characterize its performance. In Section III
we focus on a simple two-cache network. We present our
conclusions in Section IV.

II. SINGLE CACHE SYSTEM

A. Setting

We study a system consisting of N sensors (Figure 2), each
measuring a different time-varying signal. We refer to these
sensors as producers (since they are the source of data in the
system). These producers communicate with a router equipped
with limited storage capabilities. All entities interested in the
producers’ measurements can access them via this router.

1) Request Model: Requests for the producers’ measure-
ments arrive according to a Poisson process with rate one.
The probability of an incoming request being for Producer
i is denoted by λi. In addition, each request for Producer
i’s data has a freshness requirement Fi, i.e., a request made
for Producer i’s data at time t can only be served by a
measurement made by Producer i after time t − Fi. In this
work, the Fis are fixed and given to us. These values could be
determined based on the nature of the signal each producer is
measuring. For example, Fi is low if Producer i is measuring a
highly time-varying signal and high for slowly varying signals.
Examples of such processes that we study in the work include:

Example 1: (Multi-class model) The producers are divided
into K classes where all producers in a class have the same
λ value and freshness requirement. More specifically, the
probability of an incoming request being for Producer i in
Class k is λi = λ(k), and all requests for the data of Producer
i in Class k have a freshness requirement of Fi = F(k). If
the number of producers in Class k is denoted by Nk, the
following condition is satisfied by the λ(k)s:

K∑
k=1

Nkλ(k) = 1.

Example 2: (Zipf popularity and uniform freshness) The λis
follow the Zipf distribution, i.e.,

λi = c(β)i−β , with c(β) =

(
N∑
i=1

λi

)−1
,
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Fig. 2: A system consisting of multiple sensors, a router and
consumers. The sensors measure time-varying signals and consumers
interested in the measurements of the sensors access them via a router.
The router is equipped with storage resources to cache data.

where β > 0 is the Zipf parameter. Requests for all producers
have a freshness requirement of F units.

2) Storage Model: The router has a storage capacity of C
units where each producer’s data occupies one unit of space.
This one unit includes the value measured by the producer
as well as the time-stamp indicating the time at which this
measurement was fetched and cached.

3) Service Model: When a request for Producer i’s data
is received by the router (say at time t), it checks if it has
a fresh measurement from Producer i stored (collected after
time t−Fi). If found, the stored measurement is used to serve
the request, else, the current value measured by Producer i is
fetched by the router to serve the request. This newly fetched
data can be stored by the router to serve future requests. Note
that this work is restricted to the setting where the router does
not fetch a new measurement from a producer unless it is
required to do so to serve a request.

4) Goal: We refer to the event of an incoming request being
served by a measurement stored at the router as a hit and the
complimentary event as a miss. There are two types of misses:
(i) the requested producer’s data is not stored in the cache, and
(ii) the requested producer’s data stored in the cache does not
satisfy the corresponding freshness requirement.

time(t)
t=0 t=7 t=9 t=12

Fig. 3: An illustration of a hit and the two types of misses.

For example (Figure 3), consider the case where Producer
10 has a freshness requirement of 4 units. For a system starting
at t = 0, the first request for Producer 10 is received at t = 7.
Since this is the first request for Producer 10, this leads to a
miss of the first type, i.e., the data of the requested producer
is not present in the cache. Assume that the data fetched from
Producer 10 at t = 7 is cached and not evicted for the next
5 time-units. When the next request is received at t = 9, the
stored data satisfies the freshness requirement and therefore,
the request leads to a hit. The third request, received at t = 12

leads to a miss because the stored data is 5 units old and
therefore, leads to a miss of the second type.

The goal is to design a caching policy which determines
which producers’ measurements should be stored at the router
at each time in order to maximize the hit rate/hit ratio, i.e.,
the fraction of requests that result in hits.

B. Analysis of Traditional Caching Policies

In this section, we characterize the performance of tradi-
tional caching policies, designed for the setting where the con-
tent being cached is not transient. The motivation behind this
is to understand the limitations of traditional policies for our
setting where requests have stringent freshness requirements
and subsequently use these insights to design better caching
policies.

1) Store Most Popular (SMP): Recall that the router has a
storage capacity of C units and each producer’s data takes one
unit of storage. As the name suggests, the SMP policy caches
the C most popular contents at the router. To use this policy
in our setting where we have stringent freshness requirements,
whenever the data stored in the router is not fresh enough to
serve an incoming request, a fresh measurement is fetched
from the corresponding producer and it replaces the older
measurement of the same producer stored at the router. Refer
to Algorithm 1 for a formal definition.

Algorithm 1: STORE MOST POPULAR (SMP)
Input: The index set C of C most popular producers,

freshness requirement of producers in C
1 Initialize: tfetch

i = −∞, ∀i ∈ C
2 On request for Producer i at time t do
3 if i ∈ C then
4 if t(fetch)

i + Fi ≥ t then
5 Serve request using cached data (cache hit)
6 else
7 Fetch data and serve request (cache miss)
8 Update Producer i’s data in cache, t(fetch)

i = t

9 else
10 Fetch data and serve request (cache miss)

Proposition 1: Let hSMP be hit rate of the SMP policy. For
the request arrival process discussed in Section II-A,

hSMP =
∑
i∈C

λ2iFi
1 + λiFi

,

where C is the set of the C most popular producers.
Proof: Under the SMP policy, the router stores the C

most popular contents and there is no benefit in caching more
than one measurement of the same producer, therefore, we
reserve position i in the cache for Producer i’s data and study
C decoupled cache systems, each of which stores the data of
one producer.

To prove the lemma, we map the evolution of each one of
the C caches to corresponding M/D/1/1 queues. A request
for Producer i at time t is equivalent to an arrival to the
corresponding M/D/1/1 queue. A miss at time t is equivalent
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to a job entering the corresponding M/D/1/1 queue. This job
remains in service for the next Fi time-units, i.e., from time t
to t+Fi, during which all requests for Producer i are blocked
because the queue has a buffer of size one. At time t + Fi,
the job leaves the queue and the next request for Producer i
leads to a miss. Since the arrival process is Poisson, by PASTA
[12], the hit rate for Producer i is equivalent to the blocking
probability for the M/D/1/1 queue.

Using the Erlang-B formula [12] and the insensitivity prop-
erty [12], the hit rate for Producer i under SMP, denoted by
h
(i)
SMP = λiFi

1+λiFi
. It follows that

hSMP =
∑
i∈C

λih
(i)
SMP =

∑
i∈C

λ2iFi
1 + λiFi

,

where C is the set of the C most popular producers.
2) Least Recently Used (LRU): The next policy we study is

Least Recently Used (LRU) [13]–[16]. The key idea behind
the LRU policy is that on a miss, new content is fetched and
that cached content which has not been used for the longest
time is evicted from the cache to make space to store the
fetched content. We use the LRU policy for the setting where
requests have stringent freshness requirement by making the
following change. If a stale version of the requested producer’s
data is available in the cache, a fresh measurement is fetched
to serve the request and this new data replaces the stale data
of the requested producer in the cache. Refer to Algorithm 2
for a formal definition.

Algorithm 2: LEAST RECENTLY USED (LRU)
Input: Freshness requirement of the N producers

1 Initialize: t(fetch)
i = t(recent)

i = −∞, 1 ≤ i ≤ N ,
CLRU = ∅

2 On request for Producer i at time t do
3 if i ∈ CLRU then
4 if t(fetch)

i + Fi ≥ t then
5 Serve request using cached data (cache hit)
6 Update t(recent)

i = t
7 else
8 Fetch data and serve request (cache miss)
9 Update Producer i’s data in cache

10 Update t(fetch)
i = t, t(recent)

i = t

11 else
12 Fetch data and serve request (cache miss)
13 Update CLRU = (CLRU \ {j∗}) ∪ {i}, where

j∗ = arg min
j∈CLRU

t(recent)
j

Update t(fetch)
i = t, t(recent)

i = t

To characterize the performance of the LRU policy for the
setting where requests have stringent freshness requirements,
we modify the well known Che’s approximation [15] which
characterizes the performance for LRU in the setting without
any freshness constraints. Che’s approximation is known to
be accurate for the setting without data freshness constraints
[16]. The original Che’s approximation is as follows.

Approximation 1 (Che’s Approximation [15]): Consider
an alternative system (System II) where requests have no
freshness constraints and router has a cache of size C units.
Let h(II,i)LRU be the probability that an incoming request for
Producer i in System II leads to a hit. Then,

h
(II,i)
LRU ≈ 1− exp(−λiT (i)

C ),

where T (i)
C is the solution to

C =

N∑
j=1;j 6=i

1− exp(−λjT (i)
C ).

To provide an upper bound on the hit rate for any policy,
we characterize the performance of a more powerful system
(System I) where each router has sufficient storage capacity
to simultaneously store a measurement from all N producers,
i.e., the case when C = N .

Lemma 1: Let h(I) be the hit rate in the setting where C =
N . For the request arrival process in Section II-A,

h(I) ≤
N∑
i=1

λ2iFi
1 + λiFi

.

Proof: Since the cache size is equal to the number of
producers in system and there is no benefit in caching more
than one measurement of the same producer, we reserve
position i in the cache for Producer i’s data and study N
decoupled cache systems, each of which stores the data of
one producer.

To prove the lemma, we map the evolution of each one of
the N caches to corresponding M/D/1/1 queues. A request
for Producer i at time t is equivalent to an arrival to the
corresponding M/D/1/1 queue. A miss at time t is equivalent
to a job entering the corresponding M/D/1/1 queue. This job
remains in service for the next Fi time-units, i.e., from time t
to t+Fi, during which all requests for Producer i are blocked
because the queue has a buffer of size one. At time t + Fi,
the job leaves the queue and the next request for Producer i
leads to a miss. Since the arrival process is Poisson, by PASTA
[12], the hit rate for Producer i is equivalent to the blocking
probability for the M/D/1/1 queue.

Using the Erlang-B formula [12] and the insensitivity prop-
erty [12], the hit rate for Producer i in System I, denoted by

h(I,i) =
λiFi

1 + λiFi
.

It follows that

h(I) ≤
N∑
i=1

λih
(I,i) =

N∑
i=1

λ2iFi
1 + λiFi

.

Our next result uses Che’s approximation and Lemma 1
to characterize the performance of LRU for caching transient
data.

Proposition 2: Let h(i)LRU be the probability that an incoming
request for Producer i leads to a hit under the LRU policy. For
the request arrival process discussed in Section II-A,

h
(i)
LRU . min

{
h
(II,i)
LRU ,

λiFi
1 + λiFi

}
,
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and therefore,

hLRU =

N∑
i=1

λih
(i)
LRU .

N∑
i=1

λi min

{
h
(II,i)
LRU ,

λiFi
1 + λiFi

}
.

The approximation can be justified as follows. From the proof
of Lemma 1, we have an upper bound on the hit rate for
requests for Producer i in System I (h(I,i)) where C = N , i.e.,
the cache is large enough to store the data of all producers in
the system. For a system with a smaller cache, the hit rate is
upper bounded by the hit rate in System I.

From Approximation 1, we have an approximation for the
hit rate for Producer i in System II (h(II,i)) where there
are no freshness constraints. It can be shown by a stochastic
coupling argument that the hit rate in the presence of freshness
constraints is upper bounded by the hit rate in System II.

Since the hit rate in our system is upper bounded by the
hit rate is System I and System II, the result follows from the
bounds on the hit rate from System I and System II.

3) Random (RAND): The next policy we study is the
Random (RAND) policy [16]–[18]. On each miss, the RAND
policy fetches the requested content and caches it. As the name
suggests, to make space for the fetched content, the RAND
evicts one of the current contents of the cache, chosen uni-
formly at random. We modify the RAND policy to incorporate
data freshness constraints. Refer to Algorithm 3 for a formal
definition.

Algorithm 3: RANDOM (RAND)
Input: Freshness requirement of the N producers

1 Initialize: t(fetch)
i = −∞, 1 ≤ i ≤ N , CRAND = ∅

2 On request for Producer i at time t do
3 if i ∈ CRAND then
4 if t(fetch)

i + Fi ≥ t then
5 Serve request using cached data (cache hit)
6 else
7 Fetch data and serve request (cache miss)
8 Update Producer i’s data in cache, t(fetch)

i = t

9 else
10 Fetch data and serve request (cache miss)
11 Update CRAND = (CRAND \ {j∗}) ∪ {i}, where j∗ is

chosen uniformly at random from the set CRAND

12 Update t(fetch)
i = t

For the setting where requests have no freshness require-
ments, [16] provides the following approximation for the
performance for the RAND policy.

Approximation 2: ( [16] ) Let System II be a system where
requests have no freshness requirements and h

(II)
RAND be the

probability that an incoming request in System II leads to a
hit. Let the hit rate for Producer i be denoted by h(II,i)RAND. Then,

h
(II,i)
RAND ≈

λiτC∑
j 6=i λj + λiτC

,

where τC is the solution to

C =

N∑
j=1

h
(II,j)
RAND =

N∑
j=1

λjτC∑
i 6=j λi + λjτC

.

The total hit rate is given by

hRAND =

N∑
i=1

λih
(II,i)
RAND ≈

N∑
i=1

λ2i τC∑
j 6=i λj + λiτC

.

We use this approximation to obtain an approximation for
the performance of the RAND policy in the presence of
freshness constraints.

Proposition 3: Let h(i)RAND be the hit rate for the Producer i
under RAND policy for the request arrival process discussed
in Section II-A. Then,

h
(i)
RAND . min

{
λiτC∑

j 6=i λj + λiτC
,

λiFi
1 + λiFi

}

and hRAND =

N∑
i=1

λih
(i)
RAND, where C =

N∑
j=1

λjτC∑
i6=j λi + λjτC

.

The approximation can be justified in same manner as of
Proposition 2.

4) Accuracy of our Approximations: In this section, we
compare the analytical expressions derived in Sections II-B1,
II-B2 and II-B3 with simulations results to illustrate the accu-
racy of our theoretical performance guarantees. The simulation
results are obtained by computing the empirical hit rates over
arrival sequences consisting of 107 requests. We present results
for the following request processes.

– Two-Class Model: Five producers in Class A, N − 5
producers in Class B. All producers in Class A and
Class B have freshness requirements of FA and FB
time-units respectively. Requests arrive according to
a Poisson process. The cumulative probability of an
incoming request being for a producer in Class A and
Class B is denoted by pA and pB = 1−pA respectively.
All producers in each class are equally popular.

– Zipf Popularity: Producer popularity follows Zipf’s Law
(defined in Section II-A) with Zipf parameter β > 0. The
freshness requirement for the five most popular produc-
ers is denoted by FA and the freshness requirement for
the remaining producers is denoted by FB .

The main takeaway from these results is that the simulated
and analytically computed values are very close for LRU and
SMP for all cases considered. The percentage absolute error
for RAND is at most 10%. In Figure 4 and Figure 5, we
compare the simulation and approximation results for various
cache sizes for both request processes. The approximations for
LRU and SMP are close to the the simulation results. Although
the approximation for RAND is not as close to the simulation
results, the percentage error for both request processes is at
most 5%. The increase in the cache hit rate with increase in
cache size is very small due to the high values of pA and
β. In Figure 6 and Figure 7, we compare the simulation and
approximation results for different popularity profiles for both
request processes. The increase in the values of pA and β
assigns higher probability to popular producers, which in turn
increases the cache hit rate with pA and β. For high values of
pA and β, the performance of all policies is very close due to
the concentration of the probability mass over a few producers,
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which is also visible in Figure 4 and Figure 5. In Figure 8 and
Figure 9, we compare the simulation and approximation results
for different freshness requirements for both request processes.
The horizontal axis represents the ratio of freshness for Class
A to the freshness for Class B. The ratio being equal to one
implies that all producers have the same (uniform) freshness
requirements. As this ratio increases keeping other parameters
fixed, the cache hit rate increases. The increase in hit rate
occurs due to the increase in the number of hits for the popular
producers.
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Fig. 4: Hit rate vs cache size for the two-class model with pA = 0.9,
N = 400, FA = 5, and FB = 80.

C. Upper Bound

In this section, we characterize the fundamental limit on the
performance of any caching policy in the presence of freshness
constraints.

We prove an upper bound on the hit rate in an alternative
system (System II) where there are no freshness constraints,
i.e., Fi =∞ ∀i.
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Fig. 5: Hit rate vs cache size for Zipf popularity for β = 2 and
N = 400, FA = 5 and FB = 80.
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Fig. 6: Hit rate vs popularity for the two-class model for cache size
C = 20, N = 100, FA = 5 and FB = 80.
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Fig. 7: Hit rate vs Zipf parameter (β) for Zipf popularity for cache
size C = 20, N = 100, FA = 5 and FB = 80.
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Fig. 8: Hit rate vs freshness requirement for two-class model for
cache size C = 20, pA = 0.8, N = 100.
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Fig. 9: Hit rate vs freshness requirement for Zipf popularity for cache
size C = 20, β = 0.8, N = 100.

Lemma 2: Let h(II) be the hit rate in System II. For the
request arrival process discussed in Section II-A,

h(II) ≤
∑
i∈C

λi,

where C is the set of the C most popular producers.
Proof: Since the cache can store the data of at most C

producers, the probability of an incoming request leading to
a hit is equal to the probability of the request being for one
of the C producers whose data is cached. Let S be the set of
producers cached at a given time. It follows that

h(II) =
∑

i∈S:|S|≤C

λi ≤
∑
i∈C

λi,

where C is the set of the C most popular producers.
Proposition 4: Let hOPT be the hit rate of the optimal

caching policy for the request arrival process discussed in
Section II-A. Then,

hOPT ≤ min
{
h(I), h(II)

}
= min

{ N∑
i=1

λ2iFi
1 + λiFi

,
∑
i∈C

λi

}
,

where C is the set of the C most popular producers.
Proof: From Lemma 1, we have an upper bound on the

hit rate in System I (h(I)) where C = N , i.e., the cache is large
enough to store the data of all producers in the system. For a
system with a smaller cache, the hit rate is upper bounded by
the hit rate in System I.

From Lemma 2, we have an upper bound on the hit rate in
System II (h(II)) where there are no freshness constraints. It
can be shown by a stochastic coupling argument that the hit
rate in the presence of freshness constraints is upper bounded
by the hit rate in System II.

Using these two bounds, it follows that,

hOPT ≤ min
{
h(I), h(II)

}
= min

{ N∑
i=1

λ2iFi
1 + λiFi

,
∑
i∈C

λi

}
,

where C is the set of the C most popular producers.

D. Our Caching Policy: Least Useful

The policies discussed in Section II-B make caching deci-
sions independent of the residual lifetime of the data, where
the residual lifetime of a data is defined as the duration of time
from the current time to the time when the data will become
stale. In this section, we propose a policy called Least Useful
(LU) which takes into account the popularity as well as the
residual lifetime of each data to make caching decisions.

The key decision a caching policy makes is what to evict
from the cache to make space for freshly fetched data. The
LU policy evicts the data with the minimum expected number
of requests in its residual lifetime. This is motivated by the
fact that the data of a popular producer about to go stale could
be less useful than the data of a less popular producer with a
large residual lifetime because the number of requests served
by the latter could be larger. If the expected number of requests
in the residual lifetime of the newly fetched data is less than
the corresponding values of all data currently in the cache,
the fetched content is not stored. Refer to Algorithm 4 for a
formal definition of the LU policy.

Algorithm 4: LEAST USEFUL (LU)
Input: Freshness requirement (Fi) and popularity (λi)

of the N producers
1 Initialize t(fetch)

i = −∞, for 1 ≤ i ≤ N , CLU = ∅
2 On request for Producer i at time t do
3 if i ∈ CLU then
4 if t(fetch)

i + Fi ≥ t then
5 Serve request using cached data (cache hit)
6 else
7 Fetch data and serve request (cache miss)
8 Update Producer i’s data in cache, t(fetch)

i = t

9 else
10 Fetch data and serve request (cache miss)
11 Compute vj = λj(t

(fetch)
j + Fj − t), ∀j ∈ CLU

12 if λiFi > min
j∈CLU

vj then

13 CLU = (CLU \ {j∗}) ∪ {i} where
j∗ = arg min

j∈CLU
vj

14 t(fetch)
i = t

1) Performance Guarantees for the LU Policy: Our next
result provides a lower bound on the hit rate of the LU policy.

Proposition 5: Without loss of generality, let the producers
be indexed in decreasing order of the product of their popu-
larity and freshness constraints, i.e.,

λ1F1 ≥ λ2F2 ≥ · · · ≥ λNFN .

Let hLU be the hit rate for the LU policy and C be the cache
size. For the request arrival process discussed in Section II-A,

hLU ≥
C−1∑
i=1

λ2i F̂i

1 + λiF̂i
, where F̂i = Fi −

λCFC
λi

. (1)

Proof: Recall that the LU policy does not store more than
one measurement from the same producer. Since producers are
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indexed in decreasing order of the product of their popularity
and freshness constraint, for i < C, when Producer i’s data is
fetched, the product of its popularity and residual lifetime, i.e.,
λi × Fi is more than the popularity-residual lifetime product
of at least one of contents currently in the cache. Therefore,
for i < C, when Producer i’s data is fetched, the LU policy
stores it in the cache.

Once stored, the data for Producer i for i < C is evicted
from the cache only when its popularity-residual lifetime
product is the least among the current contents of the cache.
Since producers are indexed in decreasing order of the product
of their popularity and freshness constraint and the cache
can store the data of C producers, the minimum popularity-
residual lifetime product among the cached data at any time
is upper bounded by λCFC . Recall that tfetch

i is the time at
which the latest measurement was fetched from Producer i.
Therefore, if the data of Producer i where i < C is evicted at
time t, it follows that

λi(t
fetch
i + Fi − t) ≤ λCFC =⇒ t− tfetch

i ≥ Fi −
λCFC
λi

.

Therefore, once fetched and cached, the data of Producer i for

i < C stays in the cache for at least Fi −
λCFC
λi

units.

The result then follows using arguments similar to those in
the proof of Lemma 1.

Our next result shows the closeness of the performance of
proposed caching policy with the optimal caching policy for
the setting where the popularity of various producers follows
the Zipf distribution.

Proposition 6: Let N be the number of producers in a
system and C(N) = ω(1)1 be the cache size at the router.
Let Fi = F ∀i (i.e. uniform freshness across producers) and
the popularity of the producers follows the Zipf distribution
with parameter β > 1. For a given ε > 0, there exists N large
enough such that

hLU ≥ (1− ε)hOPT,

where hLU and hOPT are the hit rates of the LU and the optimal
policy respectively.

Proof: For Producer i, from (1),

h
(i)
LU ≥

λiF

1 + λiF

(
1− (C/i)−β

)
=

λ1F
iβCβ

(
Cβ − iβ

)
1 + λ1F

iβ

. (2)

Define α ,
log(1+C( ε2 )

1/β)
logC . It follows that ∃N large enough,

such that, for α < 1. For Producer i where 1 ≤ i < Cα, from
(2),

h
(i)
LU ≥

λ1F
iβCβ

(
1− ε

2

)
Cβ

1 + λ1F
iβ

=
(

1− ε

2

)
h
(i)
OPT.

1If f(n) = ω(g(n)) then limn→∞
f(n)
g(n)

= ∞.

hOPT =

Cα−1∑
i=1

λih
(i)
OPT +

N∑
i=Cα

λih
(i)
OPT

=

Cα−1∑
i=1

λih
(i)
OPT +O

(
1

(Cα)β−1

)
.

Also,
∑Cα−1
i=1 λih

(i)
OPT = Θ

(
λ1h

(1)
OPT

)
. It follows that

hOPT =

(
Cα−1∑
i=1

λih
(i)
OPT

)(
1 +O

(
1

(Cα)β−1

))

≤

(
Cα−1∑
i=1

λih
(i)
LU(

1− ε
2

))(1 +O

(
1

(Cα)β−1

))

≤ 1(
1− ε

2

) ( N∑
i=1

λih
(i)
LU

)
︸ ︷︷ ︸

hLU

(
1 +O

(
1

(Cα)β−1

))

=⇒
(
1− ε

2

)
1 +O

(
1

(Cα)β−1

)hOPT ≤ hLU.

For N large enough,

(
1− ε

2

)
1 +O

(
1

(Cα)β−1

) ≥ 1− ε,

=⇒ hLU ≥ (1− ε)hOPT.

E. Simulation Results

In this section, we compare the performance of the proposed
policy (LU) with policies described in Section II-B. We also
compare the performance of the LU policy with the upper
bound proved in Section II-C. The simulation results are
obtained by computing the empirical hit rates over arrival
sequences consisting of 105 requests, averaged over 100
iterations. For all the data points reported in this section, the
standard deviation is within 2% of the reported average values.
We present results for the following request processes.

– Three-Class Model: C producers in Class A, C pro-
ducers in Class B and N − 2C producers in Class
D, where C is cache size. All producers in Class A,
Class B, and Class D have freshness requirements of
FA, FB and FD time-units respectively. Each request is
generated according to an i.i.d. process. The cumulative
probability of an incoming request being for a producer
in Class A, Class B, and Class D is given by pA, pB , and
pD respectively. All producers in each class are equally
popular.

– Zipf Popularity: Producer popularity follows Zipf’s Law
(defined in Section II-A) with Zipf parameter β > 0. We
divide the producers in three classes, i.e., Class A, Class
B and Class D. All producers in Class A, Class B and
Class D have freshness requirements of FA, FB and FD
respectively with FA = FD and FB = γ × FA, where
γ is a constant > 1.
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Fig. 10: Hit rate for three class model with pA = 0.4, FA = 5,
γ = 100, N = 400. The LU policy outperforms the LRU, RAND and
SMP policies for all cases considered. Note that the arrival process
changes with the value of the cache size. Therefore, the performance
of all the polices deteriorates as the cache size increases.

The key takeaway from the results is that for all cases
considered, LU outperforms the traditional policies and its
performance is close to the upper bound obtained in Proposi-
tion 4. In Figure 10 and Figure 11, we plot the performance
of various caching policies with the upper bound for the two
request processes as a function of cache size. In Figure 10, the
deterioration in performance of all policies with cache size is
due to the change in the arrival process with cache size for
Three-Class model. In Figure 11 we observe that the cache hit
rate increase with the cache size. In Figure 12 and Figure 13,
we plot the performance of caching policies with the upper
bound for different popularity profiles for the two request
processes. The cache hit rate increases with the cumulative
probability of Class A producers and the Zipf parameter, β.
For high values of β, all policies perform well (Figure 7). In
Figure 14 and Figure 15, we compare the performance of the
caching policies with the upper bound for different freshness
requirements for the two request process. When the freshness
requirement is uniform across producers, Figure 14 and Figure
15 show that SMP outperforms LRU and RAND.

III. EXTENSION TO A SIMPLE CACHE NETWORK

In this section we focus on a simple cache network shown
in Figure 16. The consumer and producers are connected via
Routers 1 and 2. All request arrive at R1. The request arrival
process is identical to the single cache setting discussed in
Section II. If there is a miss at R1, the request is forwarded
to R2. Router R2 has direct access to the producers. If miss
occurs at R2 as well, fresh data is fetched from the producers
to serve the request. Let the cache sizes at R1 and R2 be C1

and C2 respectively.
In this section, we refer to the event of an incoming request

being served by a measurement stored at any one of the routers
in the network as a hit and the complementary event as a miss.
The goal is to design caching policies to maximize the hit rate.
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Fig. 11: Hit rate for Zipf popularity for β = 0.8, FA = 5, γ = 100,
N = 400. The LU policy outperforms the LRU, RAND and SMP
policies for all values considered. The performance of all four polices
improves as the cache size increases.
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Fig. 12: Hit rate for three class model for C = 20, FA = 5, γ = 100,
N = 100. The LU policy outperforms the LRU, RAND and SMP
policies for all values considered.

A. Traditional Caching Policies

In this section, we characterize the performance of tradi-
tional caching policies for the Tandem network.

1) Store Most Popular (SMP): The hit rate at a node is
calculated by extending the results for the single cache setting
discussed in Section II-B1.

Proposition 7: Let hSMP be hit rate of the SMP policy, then

hSMP =
∑

i∈C1∪C2

λ2iFi
1 + λiFi

.

where Ci is the set of Ci most popular producers.
2) Least Recently Used: In [18], an approximation for

the hit rate under the LRU policy for multiple caches was
presented for the setting where requests had no freshness
constraints. Next, we extend this approximation to our setting.

Proposition 8: Let h(i)LRU(j) be hit rate at router Rj for
Producer i for the Tandem network.
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Fig. 13: Hit rate for Zipf popularity for C = 20, FA = 5, γ = 100,
N = 100. The LU policy outperforms the LRU, RAND and SMP
policies for all values considered. The performance of all four polices
improves as β increases.
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Fig. 14: Hit rate for three class model for C = 20, pA = 0.4,
N = 100. The LU policy outperforms the LRU, RAND and SMP
policies for all value considered. The performance of the SMP policy
improves as the freshness requirements for all sensors approach the
same value.

(i) h
(i)
LRU(1) ≈ min

{
h̃
(i)
LRU(1), λiFi

1+λiFi

}
, where h̃

(i)
LRU(1) =

1 − e−λiT
(i)
C1 and T

(i)
C1

is the solution to C1 =∑N
j=1;j 6=i h̃

(j)
LRU(1).

(ii) h
(i)
LRU(2) ≈ min

{
h̃
(i)
LRU(2),

λLRU
i (2)Fi

1+λLRU
i (2)Fi

}
, where

λLRU
i (2) = λi(1− h(i)LRU(1)),

h̃
(i)
LRU(2) = 1 − e

−λLRU
i (2)max

{
0,
(
min

{
Fi,T

(i)
C2

}
−T (i)

C1

)}
,

and T (i)
C2

is the solution to C2 =
∑N
j=1;j 6=i h̃

(j)
LRU(2).

Let hLRU be the hit rate of LRU policy for the Tandem network.

hLRU ≈
N∑
i=1

λih
(i)
LRU(1) + λLRU

i (2)h
(i)
LRU(2).

This approximation uses ideas from [18] and is justified as
follows. Consider the event of a hit at Cache 2. Since a hit
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Fig. 15: Hit rate for Zipf popularity for C = 20, β = 0.8,
N = 100. The LU policy outperforms LRU, RAND and SMP policy.
The performance of the SMP policy improves and approaches the
performance of the LU policy as the freshness requirements for all
sensors approach the same value.

Cache Consumer Producer

Wireless Access Point

Fig. 16: Tandem network

occurs at Cache 2 only when there is a miss at Cache 1, the
effective request arrival rate at Cache 2 for Producer i is

λLRU
i (2) = λi(1− h(i)LRU(1)).

Similar to [18], we approximate the arrival process at Cache
2 with a Poisson process with this rate.

Provided min{Fi, T (i)
C2
} > T

(i)
C1

, there will be a hit at Cache
2 at time t for a request for Producer i only if there is at
least one request that arrives at Cache 2 in the interval [t −
min{Fi, T (i)

C2
}, t− T (i)

C1
]. If min{Fi, T (i)

C2
} ≤ T

(i)
C1

, h̃(i)LRU(2) =
0. This gives the result.

Next, we illustrate the accuracy of our approximations for
the performance of the SMP and LRU policies for the Tandem
network. We focus on the setting where producer popularity
follows the Zipf distribution with parameter β. We consider
four settings with the following freshness constraints.

Definition 1: (Freshness constraints) Let the freshness con-
straints for producer be denoted by Fi.

Case 1 (F = 500): Fi = 500, ∀i.
Case 2 (F = 30): Fi = 30, ∀i.
Case 3 (F = 5): Fi = 5, ∀i.
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Case 4 (F3b):

Fi =

{
500 if 11 ≤ i ≤ 20,

5 otherwise.

In Figure 17, we compare the simulated performance of the
SMP policy with the approximation in Proposition 7 for a
system consisting of 100 producers, i.e., N = 100.
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Fig. 17: Comparison between the simulated performance of
the SMP policy with the approximation in Corollary 7 for
the Tandem network for four different freshness constraint
settings. We plot the hit ratio as a function of the Zipf
parameter β for C1 = 10 and C2 = 15.

In Figure 18, we compare the simulated performance of
the LRU policy with the approximation in Proposition 8 for a
system consisting of 100 producers, i.e., N = 100.
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Fig. 18: Comparison between the simulated performance of
the LRU policy with the approximation in Proposition 8 for
the Tandem network for four different freshness constraint
settings. We plot the hit ratio as a function of the Zipf
parameter β for C1 = 10 and C2 = 15.

B. Upper Bound on Hit Rate

Proposition 9: Let hOPT be the hit rate of the optimal
caching policy, Producer i is requested with probability pi.

Then, we have that,

hOPT ≤ min

{ N∑
i=1

piλiFi
1 + λiFi

,
∑
i∈C

pi

}
,

where C is the set of the C1 + C2 most popular producers.
Proof: By Lemma 2,

hOPT ≤
∑
i∈C

pi.

We upper bound the hit rate of this system by the hit rate of
a system with infinite cache memory. By Lemma 1,

hOPT ≤
N∑
i=1

piλiFi
1 + λiFi

,

We use the two upper bounds on hit rate to conclude that

hOPT ≤ min

{ N∑
i=1

piλiFi
1 + λiFi

,
∑
i∈C

pi

}
.

C. Cooperative Caching Policy for a Tandem Network

In this section we propose a caching policy for the Tandem
Network which take the freshness of the data being cached
into account. In addition, we allow for cooperation across
caches in deciding which contents to cache, i.e., there is
signaling between the routers to exchange the information.
This information is used to make joint caching decision. We
ignore the time delays in data transfer from one cache to
another.

Under our cooperative caching policy, we implement the
Least Useful policy while ensuring there is no common data
in the caches at the two routers. Since R1 receives new data
only through R2, R2 makes decisions about what R1 should
cache in the following manner. When new data is fetched,
R2 compares the popularity-residual lifetime product of the
new data with the popularity-residual lifetime product of all
the data currently cached at R1 and R2. The newly fetched
data replaces the data with the minimum popularity residual
lifetime product across the two caches if there exists at least
one data with a lower popularity-residual lifetime product than
the newly fetched data.

In Figure 19, we compare the performance of our coopera-
tive LU policy with other non-cooperative caching policies
(SMP, LRU and RAND implemented independently at all
caches) and the upper bound on the hit rate. We consider
a network consisting of 100 producers, i.e., N = 100 with
requests arriving at Router 1 according to a Poisson process
with rate one. The popularity of the producers follows the
Zipf distribution with parameter β. The cache sizes at Routers
1 and 2 are 10 and 15 respectively. The freshness constraints
on the N producers are as in Case 4 in Definition 1. We
see that our policy outperforms the three traditional caching
policies which do not take the freshness of data into account.
The performance of all policies increase with β due to
concentration of probability mass over first few producers with
increase in β. For high value of β, all policies are able to store
data of same set of producers.
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Fig. 19: Comparison between our cooperative LU policy with
other non-cooperative caching policies (SMP, LRU and RAND
implemented independently at all caches) and the upper bound
on the hit rate for the Tandem network for freshness constraint
as in Case 4. We plot the hit ratio as a function of the Zipf
parameter β for C1 = 10 and C2 = 15.

IV. CONCLUSIONS

Motivated by applications like Information Centric Net-
working for the Internet of Things, we focus on designing
caching policies for the setting where the data being cached
is transient in nature. For the single cache setting and a
two cache setting, we show that traditional caching policies
which make eviction decisions agnostic to the residual lifetime
of the data being cached are sub-optimal. We characterize
the fundamental limits on the performance of any caching
policy for both settings. Next, for both settings, we propose
a new policy which takes into account the residual lifetime
of the cached contents in addition to their popularity to
make caching/eviction decisions. Via extensive simulations,
we show that the proposed policy outperforms traditional
caching policies and its performance is close to that of the
optimal caching policy.
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