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Abstract—We consider the problem of service caching at the
edge, in which an application provider can rent resources at the
edge to cache its codes/libraries to serve incoming requests. A
key characteristic of current edge computing platforms is that
they provide pay-as-you-go flexibility via short term contracts.
This implies that the client can make significant cost benefits
by dynamically adjusting its caching decisions depending on the
intensity of service requests. A novel feature of this work in
contrast to the literature is that we allow the service to be
partially cached at the edge. The probability that the edge is
able to serve an incoming request is assumed to be an increasing
function of the fraction of service cached. The focus of this work
is on characterizing the benefits of partial service caching at
the edge. The key insight from this work is that partial service
caching can bring down the cost of service only if there is at least
one intermediate caching level at which the probability that an
incoming request can be served at the edge is strictly more than
the fraction of service cached and the cost of renting edge storage
resources falls within a range of values which depends on the
statistics of the request arrival process. We use these insights to
design near-optimal service caching policies.

I. INTRODUCTION

Software as a Service (SaaS) instances like social network-
ing platforms, online shopping platforms, and navigation apps
have had a huge impact on our lives in recent times and
continue to grow in popularity. This phenomenon has in part
been fueled by cloud-computing which allows service devel-
opers to use computational and storage resources in the cloud
to serve their customers [1]. Even though the computational
resources in the cloud are unparalleled in their processing
power, serving requests via the cloud increases latency due
to the time required to transfer data between the users and the
cloud. Latency leads to deterioration in the quality of service.

A promising solution to this roadblock is edge computing
[2]. Edge computing refers to serving requests using storage
and computation resources at the edge of the network, i.e.,
close to the users. Broadly speaking, the edge is defined as
any point between the end-users and the cloud data centers.
In this work, we consider the setting where third-party edge
resources (storage/computation) can be rented at a cost via
short-term contracts [3], [4]. We say a service is cached at the
edge if the code and data/libraries required to serve requests
is stored on the edge server.

Usage patterns show that the request arrival rates for many
services are time-inhomogeneous. For instance, for a navi-
gation service like Google Maps, congestion on a particular
route after an accident causes an increase in the request arrival
rate. This is because drivers either want to get an estimate of
their expected time of arrival at the destination or attempt to
find alternative routes. As this congestion resolves, the request

arrival rate reduces. Since the resources at the edge can be
rented via short-term contracts, the cache state can be changed
as the request arrival rate changes. This flexibility is exploited
to design dynamic caching policies.

The key novelty of this work is the option to partially
cache the service at the edge. Many services are naturally
suited for partial caching. For instance, for a translation
service like Google Translate, the edge can be equipped to
handle translation tasks for certain language pairs and all other
requests are served by the cloud. Similarly, for a navigation
service like Google Maps, the route search algorithm and road
information of certain geographical areas can be cached at the
edge. Requests that can be answered by running the search
algorithm on the partial road information cached at the edge
are served at the edge and the rest are forwarded to the cloud.
In addition, designing services as a collection of independent
microservices instead of a monolith is a paradigm which is
growing in popularity [5]. All services designed as collections
of microservices are also candidates for partial caching.

We model the overall cost of service as the cumulative cost
incurred due to latency in service, bandwidth consumption,
and renting edge resources. When the service is partially
cached, the probability that the edge is able to serve an
incoming request is assumed to be a non-decreasing function
of the fraction of service cached. The main takeaway from
this work is that partial caching can reduce the average cost
of service only if there exists at least one intermediate caching
level for which the probability that an incoming request can be
served at the edge is more than the fraction of service cached.
This insight is useful in two ways: (i) it serves as a guide to
design partitions of a service into microservices, and (ii) it
assists in designing caching policies.

A. Our Contributions

We first formulate the dynamic caching problem as a
Markov Decision Process (MDP) and the optimal policy
corresponds to the solution of this MDP, which decides what
fraction of the service to cache in the next time-slot based on
the current state information. We also study a variant of the
MDP which restricts the action set at each step to be binary
(cache/don’t cache). We propose another caching policy called
Arrival Based Caching (ABC) which, unlike the MDP, makes
the caching decisions based on partial state information.

We show that for the case when there is no intermediate
caching level at which the probability that an incoming request
can be served at the edge is strictly more than the fraction
of service cached, all the three policies are equivalent in
terms of their long-term average cost (Theorems 2, 3, and



4). Furthermore, for this case, none of the policies (including
the optimal policy corresponding to the solution of the MDP)
use partial caching.

For the complementary case, i.e., when there exists at least
one intermediate caching level at which the probability that an
incoming request can be served at the edge is strictly more than
the fraction of service cached, finding an analytical solution to
the MDP proves elusive. On the other hand, the ABC policy
framework which bases decisions on partial state information
(and thus can potentially be sub-optimal) turns out to be more
tractable and we are able to explicit characterizations in a few
cases. We also conduct simulations for this case and show that
the performance of ABC is indistinguishable from the optimal
policy. Finally, we also observe that partial caching can indeed
bring down the cost of service in this case.

B. Related work

The advent of new bandwidth-intensive and latency-
sensitive applications such as Augmented/Virtual Reality, the
Internet of Things, and autonomous vehicles has been accom-
panied by the emergence of various edge computing systems
and architectures [6]–[8]. We now briefly review some of the
academic works which attempt to model and analyze such
systems, focusing primarily on works closest to ours in spirit.

One line of work [9]–[13] poses the problem of designing
efficient edge computing systems as a one-shot static optimiza-
tion problem to decide which services to cache at the edge and
which computation tasks to offload. Our work differs from
this approach in that we are interested in designing online
algorithms which adapt their service placement decisions over
time, depending on the varying number of requests. There
are broadly two classes of works which look at the dynamic
setting: 1) adversarial requests: the focus here is on arbitrary
request arrival processes and the goal is to provide worst-case
guarantees on the performance of the proposed service caching
schemes, see for example [14], [15]; 2) stochastic arrivals:
here, the request process is assumed to be generated from a
stochastic model and the measure of efficiency is the ‘average’
cost of serving the requests, see for example [16] which as-
sumes that the requests follow a Poisson process. In this work,
we take the latter approach; however, unlike most previous
work we consider temporal changes in the request process and
model requests as a time-inhomogeneous stochastic process
whose intensity is modulated by an underlying discrete-time
Markov chain. One work which does consider such temporal
variations in the request process, albeit in a different context, is
[17] which considers a Markovian model for user mobility and
uses a Markov Decision Process (MDP) framework to decide
when and which services to migrate between different edge
servers as the users move around. Finally, a key distinguishing
feature of our work with respect to the literature is that we
allow for partial caching of the service and show that this
flexibility can provide significant benefits in terms of the
efficiency of service caching policies.

Most of the literature on caching policies has dealt with
content caching problem, which considers the problem of

delivering multimedia content such as music or videos by
deploying storage caches close to the end users. See for
example [18]–[23]. While the problem of service caching does
resemble the content caching problem, there are some key
differences. In the content caching problem, upon any cache
miss, the requested content has to be fetched entirely from
the cloud server. On the other hand, in the service caching
problem, if a request for a service arrives when it is not cached,
there are two options: (a) request forwarding which simply
forwards the service request to the back-end server, which
then carries out all the relevant computation for addressing
the request; and (b) service download which downloads all
the data and code needed for running the service from the
back-end server and caches it on the edge server. The cost for
these two options differ, depending for example on the amount
of network bandwidth needed or the latency incurred for each
of them. Motivated by empirical evidence [2], [24], a natural
assumption is that the cost of forwarding a single request to
the back-end server is lower than the cost of downloading the
entire service to cache it on the edge server. These differences
are critical and in fact it can be shown that schemes which
work well in the content caching setting turn out to be highly
inefficient for the service caching problem [14], [15].

C. Organization

The rest of the paper is organized as follows. Section II
describes our problem setting. Section III details some natural
classes of policies for our setting and presents our results on
the structure as well as performance of the optimal policy
in each class. We propose and study an alternate, more
tractable policy in Section IV. We present simulation results
in Section V. The proofs are discussed in the appendix.

II. SYSTEM SETUP

A. Arrival Process

We consider a time-slotted system with stochastic request
arrivals. At the beginning of time-slot t, requests arrive in
a batch according to a stochastic process, such that the
expected number of requests in the batch is λ(t), where λ(t)
can take K distinct values, namely, λk for 1 ≤ k ≤ K.
Without loss of generality, λi < λj for i < j. We consider
the setting where λ(t) evolves in a Markovian manner. We
define transition probabilities ri,j for 1 ≤ i, j ≤ K, where
ri,j = P(λ(t) = λj |λ(t− 1) = λi).

For some of the results presented in this paper, we consider
a special case of this Markovian process with K = 2.

Assumption 1 (Two-state Arrival Process): The request ar-
rival rate λ(t) takes on two values λH and λL, with λL < λH .
The transition probabilities are as follows:

P(λ(t) = λL|λ(t− 1) = λH) = p,

P(λ(t) = λH |λ(t− 1) = λH) = 1− p,
P(λ(t) = λH |λ(t− 1) = λL) = q,

P(λ(t) = λL|λ(t− 1) = λL) = 1− q.



B. Service Model

We study a system consisting of a back-end (cloud) server
and an edge server in proximity to the end-user. The back-
end server always stores the service and can serve all requests
that are routed to it. In addition, the service can be cached on
the edge server either in its entirety or in part by paying the
appropriate renting cost.

Let ρt denote the fraction of service cached at the edge-
server at the beginning of time-slot t. The probability that
the edge is able to serve an incoming request is a non-
decreasing function of ρt. We use a function g(.) to quantify
this probability, where g : [0, 1] → [0, 1] is a non-increasing
function with g(0) = 1 and g(1) = 0. Each incoming request
in time-slot t can be served by the edge server with probability
1− g(ρt), independent of all other requests.

C. Sequence of Events in a Time-slot

The following sequence of events occurs in each time-slot.
We first have request arrivals. Each incoming request is served
by the edge server if possible. Requests which cannot be
served by the edge server are routed to the back-end server.
The system then makes a caching decision for the next time-
slot.

D. Cost Model and Constraints

Our cost model builds on the model proposed in [14] to
incorporate partial service caching.

For a policy P , the total cost incurred in time-slot t, denoted
by CPt , is the sum of the following three costs.

– Service cost (CPS,t): Each request forwarded to the back-
end server is served at the cost of one unit.

– Fetch cost (CPF,t): On each fetch of the entire service
from the back-end server to cache on the edge-server,
a fetch cost of M (> 1) units is incurred. The cost
incurred to fetch parts of the service from the bank-end
server to cache on the edge-server is proportional to the
fraction of service fetched.

– Rent cost (CPR,t): A renting cost of c units is incurred to
cache the entire service on the edge server for a time-
slot. The cost incurred to store parts of the service on
the edge-server is proportional to the fraction of service
cached.

Let the number of requests arriving in time-slot t be denoted
by Xt. Let Yt(i) be the indicator random variable denoting
if the ith request arriving in time-slot t can be served by the
edge-server. Then, CPt = CPS,t + CPF,t + CPR,t, such that
CPS,t =

∑Xt
i=1(1−Yt(i)), CPF,t = M(ρt−ρt−1)+, CPR,t = cρt.

E. Algorithmic Challenge and Goal

The algorithmic challenge is to design a policy which
decides what fraction of the service to cache on the edge server
in each time-slot. We consider the setting where the policy
knows the value of λt before making the caching decision
at the end of time-slot t. Note that this caching decision
determines the fraction ρt+1 of the service that will be cached
in the next time-slot t+ 1.

The goal is to design an online caching policy which makes
caching decisions based on the knowledge or estimate of the
current request arrival rate and various costs, i.e., the rent cost
c, the fetch cost M , and the function g, to minimize the infinite
horizon time-average of the expected cost incurred in per time-
slot, i.e.,

lim
T→∞

1

T

T∑
t=1

E
[
CPt
]
. (1)

III. OPTIMAL POLICIES

In this section, we characterize optimal static/dynamic
caching policies with/without partial caching.

A. Optimal Policy with Partial Caching

We formulate our caching problem as a Markov Deci-
sion Process (MDP). We refer to this MDP as MDP w/
PartialCaching. Under assumptions discussed in [25], opti-
mizing the average cost (1) is equivalent to optimizing the
discounted cost with discount factor γ close to 1. In view
of this, we instead optimize for the discounted cost, i.e.,
minP E

[∑∞
t=1 γ

(t−1)CPt
]
. The MDP w/ PartialCaching has

the following components.
– States: The state of the system at time t, denoted by s(t),

is given by (Λt−1, ρt−1). Note that s ∈ {λ1, · · · , λK} ×
[0, 1]. For simplicity we denote ρt−1 as ρ, ρt as ρ′, Λt−1
as Λ, and Λt as Λ′. We initialize ρ1 = 0.

– Actions: Let a(t) ∈ [0, 1] be the action of the MDP at
time t. Any stationary Markov policy is represented by
P = {a(Λ, ρ);∀(Λ, ρ)}. At any time t, the policy speci-
fies a state dependent action a(t) = a(Λt−1, ρt−1) = ρt,
which is the fraction of service to be cached given the
state.

– Transition probabilities: The transition probability from
state s to s′ under action a is

P(s′|s, a) = 1{ρ′=a}P(Λt|Λt−1).

Note that the evolution of arrival rates is independent of
the actions taken.

– Reward: If action a is chosen in a time-slot, the expected
immediate reward is

E[r(s′|s, a)] = ca+M(a− ρ)+ + g(a)E[Λ′|Λ].

This is the sum of the three types of costs (service, fetch,
and rent costs) discussed in Section II.

– Discount factor: γ.
The dynamic programming (DP) equations for this MDP are

v(λH , ρ) = min
a
{ca+M(a− ρ)+ + g(a)λ̃H+

γ(1− p)v(λH , a) + γpv(λL, a)},
v(λL, ρ) = min

a
{ca+M(a− ρ)+ + a(a)λ̃L+

γ(1− q)v(λL, a) + γqv(λH , a)}.

For the special case when g(ρ) = 1− ρ, the optimal policy
can be obtained in closed form, as shown in our first result.



Theorem 1: For the arrival process satisfying Assumption
1, let a∗H(ρ), a∗L(ρ) ∈ [0, 1] be optimal actions when system
is in state (λH , ρ), (λL, ρ) respectively. Let λ̄ =

q

p+ q
λ̃H +

p

p+ q
λ̃L, where λ̃H = pλL + (1 − p)λH and λ̃L = qλH +

(1− q)λL. Then for g(ρ) = 1−ρ, the values of a∗H(ρ), a∗L(ρ)
are as shown in Table I.

Cases lim
γ→1

(a∗H(ρ), a∗L(ρ))

1. c > max{λ̃H , λ̃L} (0, 0)

2. c < min{λ̃H , λ̃L} (1, 1)

3. M <
λ̃H − c
p

& M <
c− λ̃L
q

(1, 0)

4. M >
λ̃H − c
p

& λ̄ < c < λ̃H (ρ, 0)

5. M >
c− λ̃L
q

& λ̃L < c < λ̄ (1, ρ)

6. M >
λ̃L − c
q

& c > λ̄ & c < λ̃L (0, ρ)

7. M >
c− λ̃H
p

& c > λ̃H & c < λ̄ (ρ, 1)

8. M <
λ̃L − c
q

& M <
c− λ̃H
p

(0, 1)

TABLE I: Solution of MDP w/ PartialCaching for arrival
processes satisfying Assumption 1, with g(ρ) ≥ 1 − ρ for
all ρ ∈ [0, 1]. This is also the solution of the MDP w/o
PartialCaching for arrival processes satisfying Assumption 1.

Refer to Figure 1 for a pictorial representation of the
solution in Table I for three cases: p + q < 1, p + q = 1
and p+ q > 1.

We use Theorem 1 to obtain the optimal policy in closed
form for more general cases. Specifically, our next result
characterizes the optimal caching policy for the arrival pro-
cess satisfying Assumption 1 in the case when there is no
intermediate caching level for which the probability that an
incoming request can be served at the edge is more than the
fraction of service cached, i.e., 1− g(ρ) ≤ ρ for all ρ ∈ [0, 1].

Theorem 2: For the arrival process satisfying Assumption
1, let a∗H(ρ), a∗L(ρ) ∈ [0, 1] be the optimal actions when
the system is in state (λH , ρ), (λL, ρ) respectively. Let λ̄ =
q

p+ q
λ̃H +

p

p+ q
λ̃L, where λ̃H = pλL + (1 − p)λH and

λ̃L = qλH + (1− q)λL. If g(ρ) ≥ 1− ρ for all ρ ∈ [0, 1], the
values of a∗H(ρ), a∗L(ρ) are as shown in Table I.

Remark 1: We conclude the following from Theorem 2.

(i) For arrival processes satisfying Assumption 1, if g(ρ) ≥
1−ρ for all ρ ∈ [0, 1], and the initial cache state ρ1 = 0,
the optimal policy does not use partial caching. To see
this, note that when (a∗H(ρ), a∗L(ρ)) is (ρ, 0), the optimal
action will be (0, 0) since ρ1 = 0. Similarly, if (a∗H(ρ),
a∗L(ρ)) is (1, ρ), the optimal action will be (1, 0) until
the time when the request arrival rate makes a transition
from λH to λL, beyond which the value of (a∗H , a∗L)
becomes (1, 1).

Fig. 1: Solution (a∗H(ρ), a∗L(ρ)) to the MDP w/ PartialCaching
for arrival processes satisfying Assumption 1 with g(ρ) ≥ 1−ρ
for all ρ ∈ [0, 1] for three cases, namely, p+q < 1, p+q > 1,
p+q = 1, as a function of the values of the rent cost c and the
fetch cost M . For each region, we show the values of (a∗H(ρ),
a∗L(ρ)) as defined in Theorem 1.

(ii) For p + q < 1 and p + q > 1, for very low and very
high values of c, the storage policy is static, the fraction
of service cached does not change as the request arrival
rate changes. As expected, for very low/high values of c,
the service is always/never cached. In addition, for high
values of M , the fraction of service cached does not
change as the request arrival rate changes. For p+q = 1,
the optimal caching policy is static for all values of M
and the service is always cached when c is less than the
average request arrival rate and never cached otherwise.

A closed form characterization of the optimal policy for
the case where g(ρ) < 1 − ρ for some ρ ∈ [0, 1] remains an
open problem. We present numerical results for this case in
the simulations section.

B. Optimal Policy without Partial Caching

Next, we focus on the setting where, at all times, the service
is either cached completely or not cached at all, i.e., ρt =
{0, 1} for all t. We again formulate our caching problem as
a Markov Decision Process (MDP). We refer to this MDP as



MDP w/o PartialCaching and it is identical to the MDP w/
PartialCaching except that the action a(t) ∈ {0, 1} and the
expected immediate reward is E[r(s′|s, a)] = ca + M(a −
ρ)+ + 1{a=0}E[Λ′|Λ].

Our next result characterizes the optimal policy for the
MDP w/o Partial Caching when the arrival process satisfies
Assumption 1.

Theorem 3: For the arrival process satisfying Assumption
1, let a∗H(ρ), a∗L(ρ) ∈ {0, 1} be the optimal actions when
the system is in state (λH , ρ), (λL, ρ) respectively. Let λ̄ =
q

p+ q
λ̃H +

p

p+ q
λ̃L, where λ̃H = pλL + (1 − p)λH and

λ̃L = qλH + (1− q)λL. Then, the values of a∗H(ρ), a∗L(ρ) are
as shown in Table I.

Remark 2: The solution to the MDP w/o PartialCaching is
the same as that of the MDP w/ PartialCaching for the case
where g(ρ) ≥ 1−ρ for all ρ ∈ [0, 1]. Furthermore, it does not
involve partial caching for any choice of system parameters.
However, when g(·) does not satisfy the above constraint,
partial caching can indeed provide significant benefits, as
illustrated via simulations in Section V.

C. Optimal Static Policy with Partial Caching

We say that a policy is static if the fraction of service cached
does not change with time. The optimal static policy without
partial caching has the following structure.

ρt = arg min
ρ∈[0,1]

cρ+ g(ρ)λ̄, (2)

where λ̄ is the time-average of the request arrival rate.

D. Optimal Static Policy without Partial Caching

Restricting ρ to be in {0, 1} in (2), we find that the
optimal static policy without partial caching has the following
structure.

ρt =

{
1 if c < λ̄,

0 otherwise,

where λ̄ is the time-average of the request arrival rate.

IV. ARRIVAL BASED CACHING (ABC)

In this section we propose a policy called Arrival Based
Caching (ABC). ABC makes caching decisions based only
on the current request arrival rate, i.e., the caching decision
at the end of time-slot t is made based on the value of
λt. Note that this caching decision determines the fraction
ρt+1 of the service that will be cached in the next time-
slot t+ 1. Unlike the MDP w/ PartialCaching (Section III-A)
which makes decisions based on the current arrival rate and
cache state, ABC does not take into account the current cache
state ρt while making decisions. This makes the ABC policy
analytically tractable even in cases in which the MDP is not.

To implement ABC, we choose values of ρk for 1 ≤ k ≤ K
such that ρt+1 = ρk if λt = λk. Let S = {(u, v, w) : 1 ≤
u, v, w ≤ K}, where u, v, w represent the index of the arrival
rates in time-slots t− 2, t− 1, and t respectively. Under the
model discussed in Section II, ru,v denotes the probability of

transition from λu to λv . Let πu be the steady state probability
of the arrival rate being λu. Then, the steady-state probability
of state s = (u, v, w) ∈ S is given by by P(s) = πuruvrvw.

Under ABC, for s = (u, v, w) ∈ S , the expected cost
incurred in slot t is given by C(s) = cρv + M(ρv −
ρu)++λwg(ρv). ABC uses the values of {ρ1, · · · , ρK} which
minimize the expected cost. Formally,

{ρ∗k : 1 ≤ k ≤ K} = arg min
{ρk:1≤k≤K}

∑
s∈S

P(s)C(s)

s.t 0 ≤ ρk ≤ 1, ∀ 1 ≤ k ≤ K.

Example 1: In Fig. 2, we illustrate the ABC policy for the
case when g(ρ) ≥ 1 − ρ for all ρ ∈ [0, 1] and the arrival
process satisfies Assumption 1 with p+ q < 1, p+ q = 1, or
p+ q > 1.

Remark 3: We conclude from Fig. 2 that for arrival pro-
cesses satisfying Assumption 1, if g(ρ) ≥ 1 − ρ for all
ρ ∈ [0, 1], the ABC policy does not use partial caching, i.e.,
it either caches the whole service or does not cache it at
all. This property is also satisfied by the optimal policy, see
Remark 1.(i).

Our next result compares the performance of ABC to the
optimal policy defined in Section III-A for the above class of
g(·) functions.

Theorem 4: For arrival processes satisfing Assumption 1,
the ABC policy is optimal if g(ρ) ≥ 1− ρ for all ρ ∈ [0, 1].

The above result follows by comparing the optimal actions
under MDP w/ Partial Caching and ABC shown in Fig. 1 and
Fig. 2 respectively, and the argument in Remark 1.(i). A key
consequence of this result is that when g(ρ) ≥ 1 − ρ for all
ρ ∈ [0, 1], the ABC policy performs as well as the optimal
policy even though it only uses partial state information to
make caching decisions.

Next, we study the ABC policy for some other classes of g
functions.

Example 2: In Fig. 3, we illustrate the ABC policy for the
case when g(ρ) is differentiable and strictly convex and the
arrival process satisfies Assumption 1 with p+q < 1. Caching
decisions under ABC for p+ q ≥ 1 can be obtained similarly.

Example 3: In Fig. 4, we illustrate the ABC policy for the
case when g(ρ) = 1 for 0 ≤ ρ < α, g(ρ) = β < 1 − α for
α ≤ ρ < 1 and g(1) = 0 and the arrival process satisfies
Assumption 1 with p+ q < 1. Caching decisions under ABC
for p+ q ≥ 1 can be obtained similarly.

Remark 4: We note that for the cases considered in Ex-
amples 2 and 3, under ABC, partial caching is used for
intermediate values of the rent cost c. For very low values
of c, the entire service is always cached and for very high
values of c, the service is not cached.

While a closed form characterization of the ABC policy for
the general case where g(ρ) < 1 − ρ for some ρ ∈ [0, 1] is
not available, we present numerical results for this case in the
simulations section.



Fig. 2: Caching under the ABC policy for arrival processes
satisfying Assumption 1 and g(ρ) ≥ 1 − ρ for all ρ ∈ [0, 1]
for the three cases, namely, p+ q < 1, p+ q > 1, p+ q = 1,
as a function of the values of the rent cost c and the fetch
cost M . For each region, we show the values of (ρH , ρL) as
defined in Section IV. Here λ̄, λ̃H and λ̃L are as defined in
Theorem 1.

V. SIMULATION RESULTS

In this section, we compare the performance of ABC with
other policies via simulations for arrival processes satisfying
Assumption 1. The other polices we consider include the
optimal policy with partial caching (OPT w/ PC) which is the
solution of the MDP w/ PartialCaching discussed in Section
III-A, the optimal policy without partial caching (OPT w/o
PC) which is the solution of the MDP w/o PartialCaching
discussed in Section III-B, and the optimal static policies with
and without partial caching (OPT Static w/ PC and OPT Static
w/o PC) discussed in Sections III-C and III-D respectively.

The parameters we consider for the simulations are p = 0.2,
q = 0.1, λH = 8, λL = 1, and g(ρ) = (1−e(1−ρ)µ)/(1−eµ).
Note that for µ ≤ 0, g(ρ) ≥ 1 − ρ for all ρ ∈ [0, 1] and if
µ > 0, g(ρ) is strictly convex w.r.t ρ and g(ρ) < 1− ρ for all
ρ ∈ (0, 1). Each data point is obtained by averaging over 104

time-slots and 100 iterations.
We begin by studying the impact of µ,M , and c on the

Fig. 3: Caching under the ABC policy for arrival processes
satisfying Assumption 1 for strictly convex g(ρ) for p+q < 1
as a function of the values of the rent cost c and the fetch
cost M . For each region, we show the values of (ρH , ρL)
as defined in Section IV. Here λ̃H and λ̃L are as defined in
Theorem 1. The shaded region represents the values of M and
c for which ABC uses partial caching.

Fig. 4: Caching under the ABC policy for arrival processes
satisfying Assumption 1 with p + q < 1 for the case when
g(ρ) = 1 for 0 ≤ ρ < α, g(ρ) = β < 1 − α for α ≤ ρ < 1
and g(1) = 0 as a function of the values of the rent cost c
and the fetch cost M . For each region, we show the values
of (ρH , ρL) as defined in Section IV. Here λ̃H and λ̃L are as
defined in Theorem 1.

average cost of the five policies mentioned above. In Fig.5,
we fix M = 6, c = 3 and vary µ. Note that for values of
µ ≤ 0, the cost for OPT w/ PC, OPT w/o PC, and ABC
are identical. This is as expected from Theorems 3 and 4
since g(ρ) ≥ 1 − ρ for all ρ ∈ [0, 1] in this case. On the
other hand, for µ > 0, we note the the performance of ABC
and OPT w/ PC is indistinguishable, while all other polices
are sub-optimal for certain parameter values. We note that the
performance gap between policies which use partial caching
and those which do not increases with the value of µ. This is
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Fig. 5: Performance of various caching policies for M = 6
and c = 3. The performance of ABC and OPT w/ PC is
indistinguishable and all other polices are sub-optimal. The
performance gap between policies which uses partial caching
and those which do not increases with the value of µ.

Fig. 6: Caching decisions under various policies as a function
of time for µ = 3 and c = 3, M = 6 for a sample path.
Both ABC and OPT w/ PC use partial caching for the entire
time-interval and their caching decisions are indistinguishable.
Caching decisions under OPT w/o PC oscillate between 0
and 1. Caching decisions are time-invariant for the two static
policies (OPT static w/ PC and OPT static w/o PC).

due to the fact that as µ increases, service cost for the same
level of caching goes down and this is exploited by partial
caching. In Fig.6, we fix M = 6, c = 3, and µ = 3 and
show the caching decisions made by the five policies for the
last 40 time-slots of a particular run of the experiment. Again,
both ABC and OPT w/ PC make the same partial caching
decisions. Caching decisions for the two static policies (OPT
static w/ PC and OPT static w/o PC) are time-invariant, while
the caching decision under OPT w/o PC oscillates between
0 and 1. In Fig.7, we set µ = 3, c = 3 and vary the value
of M , while in Fig.8, we consider the setting where µ = 3,
M = 6 and vary the value of c. As expected, with increase in
the value of M , the performance of OPT Static w/o PC and
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Fig. 7: Performance of various caching policies for µ = 3
and c = 3. The performance of ABC and OPT w/ PC is
indistinguishable and all other polices are sub-optimal for
certain parameter values. With increase in the value of M ,
the performance of OPT Static w/o PC and OPT Static w/ PC
approaches that of OPT w/o PC and OPT w/ PC respectively.
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Fig. 8: Performance of various caching policies for µ = 3
and M = 6. The performance of ABC and OPT w/ PC
is indistinguishable and all other polices are sub-optimal for
certain parameter values. The performance of all policies is
close for very low/high values of c.

OPT Static w/ PC approaches that of OPT w/o PC and OPT
w/ PC respectively. Further, the performance of all policies is
close for very low/high values of c since the optimal decision
under all policies is to always/never cache respectively.

VI. CONCLUSIONS

We consider the setting where a service can rent resources at
the edge to cache its codes/libraries to serve incoming requests.
Notably, we allow the service to be partially cached at the
edge. The probability of the edge being equipped to serve an
incoming request is an increasing function of the fraction of
service cached. The focus of this work is on characterizing the
benefits of partial service caching at the edge. The key insight
from this work is that partial caching can be useful when (i)
there is at least one intermediate caching level at which the



probability that an incoming request can be served at the edge
is strictly more than the fraction of service cached, and (ii)
the cost of renting edge storage resources falls within a range
of values which depends on the statistics of the request arrival
process. We use these insights to design near-optimal service
caching policies.
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APPENDIX

In this section, we discuss the proofs of the results discussed
in Sections III and IV.

A. Proof of Theorem 1

Proof of Theorem 1: By the Dynamic programming
principle [25], for g(ρ) = 1− ρ, the value function satisfies:

v(λH , ρ) = min
a
{ca+M(a− ρ)+ + (1− a)λ̃H+

γ(1− p)v(λH , a) + γpv(λL, a)}, (3)

v(λL, ρ) = min
a
{ca+M(a− ρ)+ + (1− a)λ̃L+

γ(1− q)v(λL, a) + γqv(λH , a)}. (4)

By observing the structure of the DP equations (3)-(4) we
conjecture that value function is linear and indeed prove that
to be true.

We assume v(λH , ρ) = eHρ + dH , v(λL, ρ) = eLρ + dL,
where eH , eL, dL, dH are some constants chosen appropri-
ately. If a∗H is the optimal action in state (λH , ρ), then it should
satisfy (3) [25, Corollary 6.2.8]. We split the domain of a and
analyze (3) as follows:

v(λH , ρ) = min{ min
a∈[0,ρ]

q(λH , ρ, a), min
a∈[ρ,1]

q(λH , ρ, a)} with

q(λH , ρ, a) :=ca+M(a− ρ)+ + (1− a)λ̃H+

γ(1− p)v(λH , a) + γpv(λL, a),

v(λL, ρ) = min{ min
a∈[0,ρ]

q(λL, ρ, a), min
a∈[ρ,1]

q(λL, ρ, a)} with

q(λL, ρ, a) :=ca+M(a− ρ)+ + (1− a)λ̃L+

γ(1− q)v(λL, a) + γqv(λH , a).

We then solve this optimization problem by substituting the
conjectured values for the value functions. Note that both
optimization problems are linear in ρ.

a∗H =

 0 if φH > 0,
ρ if −M < φH < 0,
1 if φH < −M, with

φH := c− λ̃H + γ(1− p)eH + γpeL. (5)

a∗L =

 0 if φL > 0,
ρ if −M < φL < 0,
1 if φL < −M, with

φL := c− λ̃L + γ(1− q)eL + γqeH . (6)



Case 1 – c > max{λ̃H , λ̃L}: For this case, we claim that
a∗H = a∗L = 0 for all ρ. If a∗H = 0 for all ρ, then, for all
ρ ∈ [0, 1]:

v(λH , ρ) = λ̃H + γ(1− p)v(λH , 0) + γpv(λL, 0),

which implies that

eH = 0, and dH = λ̃H + γ(1− p)v(λH , 0) + γpv(λL, 0).

Similarly if a∗L = 0, then eL = 0 and

dL = λ̃L + γ(1− q)v(λL, 0) + γqv(λH , 0).

When c > max{λ̃H , λ̃L}, all the required conditions ((5), (6),
and the dynamic programming equations) are satisfied and it
is clear that the DP equations are solved with linear value
functions, i.e., with

v(λH , ρ) = d∗H and v(λL, ρ) = d∗L,

where d∗H and d∗L satisfy the linear equations:

d∗H = λ̃H + γ(1− p)d∗H + γpd∗L and

d∗L = λ̃L + γ(1− q)d∗L + γqd∗H .

Therefore, the optimal decision a∗ = 0 for all states.
Case 2 – c + (1 − γ)M < min{λ̃H , λ̃L}: For this case, we
claim that a∗H = a∗L = 1 for all ρ. If a∗H = 1 for all ρ, then
for all ρ ∈ [0, 1]:

v(λH , ρ) = c+M(1− ρ) + γ(1− p)v(λH , 1) + γpv(λL, 1),

which implies that

eH = −M, and dH = c+M+γ(1−p)v(λH , 1)+γpv(λL, 1).

Similarly if a∗L = 1, then eL = −M and

dL = c+M + γ(1− q)v(λL, 1) + γqv(λH , 1).

When c + (1 − γ)M < min{λ̃H , λ̃L} all the required
conditions ((5), (6), and the dynamic programming equations)
are satisfied and it is clear that the DP equations are solved
with linear value functions, i.e., with

v(λH , ρ) = −Mρ+ d∗H and v(λL, ρ) = −Mρ+ d∗L

where d∗H and d∗L satisfy the linear equations:

d∗H = c+M + γ(1− p)(−M + d∗H) + γp(−M + d∗L) and
d∗L = c+M + γ(1− q)(−M + d∗L) + γq(−M + d∗H).

Therefore, the optimal decision a∗ = 1 for all states.

Case 3 – M <
λ̃H − c
p

& M <
c− λ̃L
q

: In this case, for γ

close to 1, we claim that if a∗H = 1 and a∗L = 0 for all ρ. If
a∗H = 1 for all ρ, then, for all ρ ∈ [0, 1]:

v(λH , ρ) = c+M(1− ρ) + γ(1− p)v(λH , 1) + γpv(λL, 1),

which implies that

eH = −M, and dH = c+M+γ(1−p)v(λH , 1)+γpv(λL, 1).

Similarly if a∗L = 0, then eL = 0 and

dL = λ̃L + γ(1− q)v(λL, 0) + γqv(λH , 0).

As γ → 1, if M <
λ̃H − c
p

& M <
c− λ̃L
q

, all the required

conditions ((5), (6) and the dynamic programming equations)
are satisfied and it is clear that the DP equations are solved
with linear value functions, i.e., with

v(λH , ρ) = −Mρ+ d∗H and v(λL, ρ) = d∗L

where d∗H and d∗L satisfy the linear equations:

d∗H = c+M + γ(1− p)(−M + d∗H) + γpd∗L and

d∗L = λ̃L + γ(1− q)d∗L + γq(−M + d∗H).

Similar analysis can be done for other cases listed in TABLE
I. TABLE II lists the slopes for the different cases. Although
the techniques work for all values of γ, for ease of calculation,
we consider γ close to one.

(a∗H , a
∗
L) eH eL

(0, 0) 0 0
(1, 1) −M −M
(1, 0) −M 0

(ρ, 0) c−λ̃H
1−γ(1−p) 0

(1, ρ) −M c−Mγq−λ̃L
1−γ(1−q)

(0, ρ) 0 c−λ̃L
1−γ(1−q)

(ρ, 1) c−Mγp−λ̃H
1−γ(1−p) −M

(0, 1) 0 −M

TABLE II: Slopes of v functions for different cases

B. Proof of Theorem 2

The next two lemmas draw a connection between an optimal
policy for the case when g(ρ) ≥ 1− ρ for all ρ ∈ [0, 1] to the
solution to the MDP w/ Partial Caching for g(ρ) = 1− ρ for
all ρ ∈ [0, 1].

Lemma 1: Given a sequence of caching decisions Γ =
{ρ1, ρ2, · · · }, where ρt is the fraction of service cached
in time-slot t, let E(Γ, g) and E(Γ, g̃) be the time-average
of expected costs incurred under Γ for functions g and g̃
respectively. Let g(ρ) = 1 − ρ and g̃(ρ) ≥ 1 − ρ for all
ρ ∈ [0, 1] with g̃(0) = 1 and g̃(1) = 0. Then,

E(Γ, g)− E(Γ, g̃) ≤ 0.

In addition, if under Γ∗, ρt ∈ {0, 1} for all t ≥ 1,

E(Γ, g)− E(Γ, g̃) = 0.

Proof: For a given sequence of caching decisions, the
effect of g/g̃ is only on service cost. Let CPs,t(g), CPt (g) be
the service cost and the overall cost for slot t for g(ρ) =
1− ρ and CPs,t(g̃), CPt (g̃) be the service cost and the overall
cost for slot t for g̃(ρ) ≥ 1 − ρ. It follows that for all t,
CPs,t(g) ≤ CPs,t(g̃) and therefore, CPt (g) ≤ CPt (g̃). It follows
that E(Γ, g)− E(Γ, g̃) ≤ 0.



Since g(0) = g̃(0) and g(1) = g̃(1), if ρt ∈ {0, 1} for all t,
E(Γ, g)− E(Γ, g̃) = 0.

Lemma 2: Let P∗ be the optimal policy for g(ρ) = 1− ρ.
Let g̃(ρ) ≥ 1−ρ for all ρ ∈ [0, 1] with g̃(0) = 1 and g̃(1) = 0.
If under P∗, ρt ∈ {0, 1} for all t ≥ 1, then, the decisions made
by policy P∗ for g(ρ) = 1− ρ are optimal for the case where
g(ρ) ≥ 1− ρ for all ρ ∈ [0, 1].

Proof: Recall from Lemma 1 that given a sequence of
caching decisions Γ = {ρ1, ρ2, · · · }, where ρt is the fraction
of service cached in time-slot t, let C(Γ, g) and C(Γ, g̃) are
the costs incurred under Γ for functions g and g̃ respectively.

Let Γ∗ and Γ̃∗, be the caching decisions made by the
optimal policies P∗ and P̃∗ for functions g(ρ) = 1− ρ and g̃
respectively.

By Lemma 1, E(Γ̃∗, g̃) ≥ E(Γ̃∗, g). Since Γ∗ is the sequence
of caching decisions made by P∗,which is the optimal policy
for function g, E(Γ̃∗, g) ≥ E(Γ∗, g).

Since g̃(0) = 1 = g(0) and g̃(1) = 0 = g(1) and under Γ∗,
ρt ∈ {0, 1} for all t ≥ 1, by Lemma 1, E(Γ∗, g) = E(Γ∗, g̃).
Therefore,

E(Γ̃∗, g̃) ≥ E(Γ∗, g̃). (7)

Since Γ̃∗ is optimal for function g̃,

E(Γ̃∗, g̃) ≤ E(Γ∗, g̃). (8)

From (7) and (8), it follows that E(Γ̃∗, g̃) = E(Γ∗, g̃), thus
proving the result.

Proof of Theorem 2: Follows by Theorem 1 and Lemma
2.

C. Proof of Theorem 3

We note that in this case, the cost is agnostic to the function
g. Given this, we use g(ρ) = 1−ρ and the fact that the solution
obtained in Theorem 1 for g(ρ) = 1− ρ does not use partial
caching to prove the theorem.

D. Details of Example 2

Under Assumption 1,

E[cost] =(πLρL + πHρH)c+ (ρH − ρL)MπLq

+ g(ρH)λ̃HπH + g(ρL)λ̃LπL.

Refer to Table III for the details. For g(ρ) = 1− ρ,

E[cost] =(πLρL + πHρH)c+ (ρH − ρL)MπLq

+ (1− ρH)λ̃HπH + (1− ρL)λ̃LπL

=ρHπH(c+Mp− λH) + πHλH

+ ρLπL(c−Mq − λL) + πLλL.

Since the cost is linear in ρH , ρL, it follows the opti-
mal solution lies at the extreme points, i.e., (ρH , ρL) ∈
{(1, 1)(1, 0), (0, 0)}. We exploit this to find the optimal values
by substituting all potential solutions. By the arguments used
in the proof of Lemma 1, we extend this to the case where
g(ρ) ≥ 1− ρ for all ρ ∈ [0, 1].

(λt−2, Storage Service Request Probability
λt−1, λt) cost fetch forward of event

cost cost
(λH, λH, λH ) cρH 0 g(ρH )λH (1− p)2πH
(λH, λL, λH ) cρL 0 g(ρL)λH pqπH
(λL, λH, λH ) cρH M(ρH − ρL) g(ρH )λH q(1− p)πL
(λL, λL, λH ) cρL 0 g(ρL)λH (1− q)qπL
(λH, λH, λL ) cρH 0 g(ρH )λL (1− p)pπH
(λH, λL, λL ) cρL 0 g(ρL)λL p(1− q)πH
(λL, λH, λL ) cρH M(ρH − ρL) g(ρH )λL qpπL
(λL, λL, λL ) cρL 0 g(ρL)λL (1− q)2πL

TABLE III: Cost for various cases under Assumption 1

E. Proof of Theorem 4

Proof of Theorem 4: Let T0 be the time at which the
request arrival rate has made at least one transition from λL
to λH and vice versa. Under Assumption 1, T0 is the sum of
two geometric random variables and E[T0] <∞.

For t > T0, by Theorem 2 and Example 2, if g(ρ) ≥ 1− ρ
for all ρ ∈ [0, 1], the caching decisions under the solution to
the MDP w/ PartialCaching and ABC are identical. Therefore,

T∑
t=1

CABC
t =

T0∑
t=1

CABC
t +

T∑
t=T0+1

CABC
t ,

≤
T0∑
t=1

(c+M + λH) +

T∑
t=T0+1

CP
∗

t ,

where P∗ is the solution the MDP w/ PartialCaching. It
follows that

T∑
t=1

E[CABC
t ] ≤ (c+M + λH)E[T0] + E

[
T∑

t=T0+1

CP
∗

t

]
,

≤ (c+M + λH)E[T0] + E

[
T∑
t=1

CP
∗

t

]
.

Since E[T0] <∞, we have that,

lim
T→∞

1

T

T∑
t=1

E[CABC
t ] = lim

T→∞

1

T

T∑
t=1

E[CP
∗

t ].

Hence ABC is optimal under Assumption 1 if g(ρ) ≥ 1 − ρ
for all ρ ∈ [0, 1].


