
On the Regret of Online Edge Service Hosting

R Sri Prakash
IIT Bombay

prakash.14191@gmail.com

Nikhil Karamchandani
IIT Bombay

nikhilk@ee.iitb.ac.in

Sharayu Moharir
IIT Bombay

sharayum@ee.iitb.ac.in

ABSTRACT
We consider the problem of service hosting where a service
provider can dynamically rent edge resources via short term
contracts to ensure better quality of service to its customers.
The total cost incurred by the system is modeled as a com-
bination of the rent cost, the service cost incurred due to
latency in serving customers, and the fetch cost incurred as
a result of the bandwidth used to fetch the code/databases
of the service from the cloud servers to host the service at
the edge. In this paper, we compare multiple hosting poli-
cies with regret as a metric, defined as the difference in the
cost incurred by the policy and the optimal policy over some
time horizon T . In particular we consider the Retro Rent-
ing (RR) and Follow The Perturbed Leader (FTPL) policies
proposed in the literature and provide performance guaran-
tees on the regret of these policies. We show that under
i.i.d Bernoulli arrivals, RR policy has linear regret while
FTPL policy has constant regret. Next, we propose a variant
of FTPL, namely Wait then FTPL (W-FTPL), which also
has constant regret while demonstrating much better depen-
dence on the fetch cost. We also show that under adversarial
arrivals, RR policy has linear regret while both FTPL and
W-FTPL have regret O(

√
T) which is order-optimal.

1. INTRODUCTION
Software as a Service (SaaS) instances like online naviga-

tion platforms, Video-on-Demand services, etc., have strin-
gent latency constraints in order to provide good quality
of experience to their customers. While most SaaSs use
cloud resources, low latency necessitates the use of stor-
age/computational resources at the edge, i.e., close to the
end-user. A service is said to be hosted at the edge if the
code and databases needed to serve user queries are stored
on the edge servers and requests can be served at the edge.

We consider the setting where third-party resources can be
rented via short-term contracts to host the service and the
edge hosting status of the SaaS can be dynamically changed
over time. If the service is not hosted at the edge, it can be
fetched from the cloud servers to host at the edge by incur-
ring a fetch cost. The performance of a hosting policy is a
function of the rent cost, the fetch cost, and the quality of
experience of the users. We refer to the algorithmic chal-
lenge of determining when to host the service at the edge as
the service hosting problem.

Copyright is held by author/owner(s).

Novel online service hosting policies with provable perfor-
mance guarantees have been proposed in [4, 7]. The metric
of interest in [4, 7] is the competitive ratio, defined as the
ratio of the cost incurred by an online policy to the cost
incurred by an offline optimal policy for the same request
arrival sequence. Since the competitive ratio is multiplica-
tive by definition, the absolute value of the difference in the
cost incurred by an online policy and the optimal policy
can be large even though the competitive ratio of the online
policy is close to one. This motivates studying the perfor-
mance of candidate policies in terms of regret, defined as
the difference in the cost incurred by the policy and the of-
fline optimal policy. Regret is a widely used metric in online
learning [2], including recently for the caching problem [5,
1] which is closely related to the service hosting problem.
In this work, one of our goals is to design hosting policies
with provable guarantees in terms the regret. Another key
dimension in the performance guarantees of online policies is
the assumption made on the request arrival process. Com-
monly studied settings include the stochastic setting and the
adversarial setting and we provide performance guarantees
for both settings.

For the service hosting problem, [4] proposed the Retro-
Renting (RR) policy and showed that it has a constant com-
petitive ratio with the offline optimal policy. On the other
hand, for the closely related caching problem, several poli-
cies inspired by the recent advances in online convex op-
timization have been proposed including Online Gradient
Ascent [5], Online Mirror Descent [6] and Follow the Per-
turbed Leader (FTPL) [3, 1]. In particular, FTPL has been
shown to have order-optimal regret for the caching problem
in the adversarial setting [3, 1]. In this work, we study re-
gret for the RR and FTPL policies for the service hosting
problem, under both the stochastic and adversarial settings.
Since RR is a deterministic policy, its regret performance in
the adversarial setting is poor. A limitation of FTPL which
is a randomized policy is that it makes hosting decisions ag-
nostic of the fetch cost. As a result, in some cases, FTPL is
prone to fetching and evicting the service multiple times in
the initial time-slots when its estimate of the request arrival
rate is noisy, thus leading to poor performance.

Our Contributions: We propose a variant of the FTPL
policy called Wait then Follow the Perturbed Leader (W-
FTPL). W-FTPL is a randomized policy that takes into
account the fetch cost in its decision-making. More specifi-
cally, W-FTPL does not fetch the service for an initial wait
period which depends on the request arrivals and is an in-
creasing function of the fetch cost. Following the wait pe-

riod, W-FTPL mimics the FTPL policy.
For i.i.d. Bernoulli request arrivals and the regret metric,

we show that RR is sub-optimal and FTPL and W-FTPL
order-optimal with respect to the time horizon. While the
regret of FTPL can increase linearly with the fetch cost, the
regret of W-FTPL increases at most logarithmically. The
improved performance of W-FTPL over FTPL is a conse-
quence of the fact that W-FTPL avoids most of the fetches
made by FTPL in the initial time-slots and by the end of
the wait period, its estimate of the arrival rate is accurate
enough to avoid multiple fetches.

For the adversarial setting, we first characterize a fun-
damental lower bound on the regret of any online hosting
policy. In terms of regret, we then show that RR is strictly
suboptimal, while FTPL and W-FTPL have order-optimal
performance with respect to time.

2. SETTING
We consider a system consisting of a back-end server and

an edge-server. The back-end server always hosts the service
and can serve any requests that are routed to it. In addition,
the service can be hosted at the edge-server. If a service is
hosted at the edge, requests can be served locally, i.e., at the
edge. The hosting status at the edge can be changed over
time. If the service is not hosted at the edge, it can also be
fetched from the back-end server to host at the edge. We
consider a time-slotted system.

Request arrivals: We consider two types of arrival pro-
cesses. The first where arrivals are i.i.d. Bernoulli across
time-slots with mean µ and the second where the arrival
process is generated by an oblivious adversary1 with at most
one request arrival per slot.

Sequence of events in each time-slot : In each time-slot,
we first make the service hosting decision for that time-slot.
Following this, a request may arrive and is served either at
the edge or by the back-end server.

Costs: We model three types of costs.
Rent cost : The system incurs a cost of c ∈ (0, 1) units per
time-slot to host the service at the edge.2

Service cost : The system incurs a cost of 1 unit for each
request that is served by the back-end server.
Fetch cost : The system incurs a cost of M > 1 units for
each fetch of the service from the back-end server to host on
the edge-server.

Let rt ∈ {0, 1} denote the number of request arrivals in
time-slot t and ρPt denote the edge hosting status of the
service in time slot t under policy P, where ρPt = 1 if the
service is hosted at the edge in time-slot t, and 0 otherwise.
The total cost incurred in time-slot t by policy P denoted
by CPt (rt) is the sum of the rent, service, and fetch costs. It
follows that CPt (rt) = cρPt + (1 − ρPt)rt + M(ρPt − ρPt−1)+.
Let r = {rt}t≥1 denote the request arrival sequence and
CP(T, r) denote the cumulative cost incurred by policy P in

time-slots 1 to T . It follows that CP(T, r) =
∑T
t=1 C

P
t (rt).

Performance metrics: For i.i.d. Bernoulli arrivals, the
regret of a policy P, denoted by RPB(T), is defined as the
expectation of the difference in the total cost incurred by the
policy and the optimal static hosting policy. The optimal
static hosting policy makes a hosting decision at t = 1 using
the knowledge of the statistics of the request arrival process

1The entire request sequence is assumed to be fixed apriori.
2For c ≥ 1 it is optimal to never host the service.

but not the entire sample-path. It follows that the expected
cost incurred by the optimal static hosting policy in time-
slots 1 to T is min{cT +M,µT}, and therefore,

RPB(T) = EP,r[CP(T, r)]−min{cT +M,µT}.

For adversarial arrivals, the regret of a policy P, denoted
by RPA(T), is defined as the expectation of the difference in
the total cost incurred by the policy and the optimal static
hosting policy in the worst case. It follows that the cost
incurred by the optimal static hosting policy in time-slots 1
to T is min{cT +M,

∑T
t=1 rt}, and therefore,

RPA(T) = sup
r∈R

(
EP [CP(T, r)]−min{cT +M,

T∑
t=1

rt}

)
.

Goal : The goal is to design online hosting policies with
provable performance guarantees with respect to regret.

3. POLICIES
Our Policy : Our policy called Wait then Follow the Per-

turbed Leader (W-FTPL) is a variant of the popular FTPL
policy. FTPL is a randomized policy and is known to per-
form well for the caching problem, in fact achieving order-
wise optimal regret for adversarial arrivals [1]. At the end
of each time-slot, FTPL retrospectively computes the costs
that would have been incurred by the two static options:
hosting the service throughout and not hosting the policy in
any slot. It then perturbs the two costs by adding appropri-
ately scaled version of independent samples from standard
Gaussian random variables and chooses for the next time-
slot the option with the lower value.

The key idea behind the W-FTPL policy is to not host
the service for an initial wait period. This is to reduce the
number of fetches made initially when estimate the arrivals
is noisy. The duration of this wait period is a function of the
arrival pattern seen till that time. Following the wait period,
W-FTPL mimics the FTPL policy. Refer to Algorithm 1 for
a formal definition of W-FTPL.

Algorithm 1: Wait then Follow The Perturbed
Leader (W-FTPL)

Input: c, M , {ηt}t≥1, β, {rl}tl=1

1 Set R0 = 0, t = 1, wait = 1, sample γ1, γ2 ∼ N (0, 1)
2 for t > 0 do
3 Rt = Rt−1 + rt, wait = min{wait,1

t< β logM

(c−Rt/t)2
}

4 ρt = 1wait6=1 × 1Rt+ηtγ1>ct+ηtγ2

Retro-Renting (RR) [4]: The RR policy is a deterministic
hosting policy. The key idea behind this policy is to use
recent arrival patterns to make hosting decisions. We omit
the details of this policy due to space constraints. The per-
formance of RR with respect to the competitve ratio was
analyzed in [4].

4. MAIN RESULTS AND DISCUSSION
In this section, we state and discuss our key results. Our

first result characterizes the regret performance of the poli-
cies discussed in Section 3 for i.i.d. Bernoulli arrivals.

Theorem 1. Let the arrivals in each time-slot be i.i.d.
Bernoulli with mean µ.

(a) RRR
B (T) ≥M

(
T

M
1−c+

M
c

+2
− 1

)
µd

M
1−c e(1− µ)d

M
c
e.

(b) RFTPL
B (T) ≤ 16α2+2

|c−µ|2 (M + |c− µ|) for ηt = α
√
t.

(c) RW-FTPL
B (T) ≤ 1 + β

|c−µ| + β(1+4 logM)

|c−µ|2 + β2

|c−µ|4 for

ηt = α
√
t and β = max{(1 + 4α)2, (1 +

√
2)2}.

The key take-aways from Theorem 1 is that for i.i.d. Bernoulli
arrivals, RR is strictly sub-optimal with respect to time and
incurs linear regret while both FTPL and W-FTPL have
constant regret with respect to time. Further, the upper
bound on the regret of FTPL increases linearly with fetch
cost M , while the upper bound on the regret of W-FTPL is
proportional to logM .

Note that FTPL makes hosting decisions agnostic of the
fetch cost. As a result, FTPL changes the hosting status
multiple times in the initial time-slots before eventually con-
verging on the optimal hosting status. This leads to high
switching costs. Compared to this, since W-FTPL does
not change the hosting status in the first O(logM) time-
slots, the switching cost incurred in the waiting period is
zero. Further, once the waiting period is over, W-FTPL has
enough information about the arrival process to make the
right hosting decision with high probability, thus avoiding
multiple fetch-evict cycles.

In Figure 1, 2, we compare the performance of the policies
via simulations for i.i.d. Bernoulli arrivals with c = 0.45,
µ = 0.4, α = 0.1, β = 6 averaged over 50 experiments.
For Figure 1 we consider M = 5 and compare the regret
as a function of the time horizon. We note that W-FTPL
outperforms RR and FTPL policies and the results agree
with Theorem 1. For Figure 2 we set T = 5000 and plot the
total cost as a function of M . We observe that W-FTPL
outperforms RR, FTPL and the key differentiating factor
between the policies is the fetch cost incurred.

Figure 1: Regret as a function of time

Our second result characterizes the regret performance
of the policies discussed in Section 3 and also provides a
fundamental limit on the performance of any online policy
for adversarial arrivals.

Theorem 2. If the arrivals are generated by an oblivi-
ous adversary under the constraint that at most one request
arrives in each time-slot, then,

(a) RPA(T) ≥
√

Tc(1−c)
2π

[
1− 1

12(cT−1)(1−c)

]
∀ policy P.

(b) RRR
A (T) ≥M

(
T

M
1−c+

M
c

+2
− 1

)
.

(c) RFTPL
A (T) ≤ α

√
2T log 2+4(1+c)2

√
T

α
√
2π

+ 3M
α
√
π

√
T for

ηt = α
√
t for α > 0.

5 15 25 35 45
0

500

1000

1500

2000

2500

RR

C
o
s
t

M

fetch cost

other cost

5 15 25 35 45
0

500

1000

1500

2000

2500

FTPL

C
o
s
t

M

fetch cost

other cost

5 15 25 35 45
0

500

1000

1500

2000

2500

W-FTPL

C
o
s
t

M

fetch cost

other cost

0 10 20 30 40 50
0

50

100

150

200

250

300

R
e
g
re

t

M

RR

FTPL

W-FTPL

Figure 2: Cost, Regret as a function of fetch cost (M)

(d) RW-FTPL
A (T) ≤ α

√
2T log 2 + 4(1 + c)2

√
T

α
√

2π
+ 3M

α
√
π

√
T

+
√
βT logM for ηt = α

√
t for α > 0 and β > 0.

The key take-away from Theorem 2 is that RR suffers linear
regret while both FTPL and W-FTPL are order-optimal
with respect to time. We thus conclude that for the regret
metric, RR is strictly sub-optimal and W-FTPL performs
well in both the adversarial and stochastic settings.

5. REFERENCES
[1] R. Bhattacharjee, S. Banerjee, and A. Sinha.

Fundamental limits on the regret of online
network-caching. Proceedings of the ACM on
Measurement and Analysis of Computing Systems,
4(2):1–31, 2020.

[2] T. L. Lai and H. Robbins. Asymptotically efficient
adaptive allocation rules. Advances in applied
mathematics, 6(1):4–22, 1985.

[3] S. Mukhopadhyay and A. Sinha. Online caching with
optimal switching regret. In 2021 IEEE International
Symposium on Information Theory (ISIT), pages
1546–1551. IEEE, 2021.

[4] V. C. L. Narayana, S. Moharir, and N. Karamchandani.
On renting edge resources for service hosting. ACM
Transactions on Modeling and Performance Evaluation
of Computing Systems, 6(2):1–30, 2021.

[5] G. S. Paschos, A. Destounis, L. Vigneri, and
G. Iosifidis. Learning to cache with no regrets. In IEEE
INFOCOM 2019-IEEE Conference on Computer
Communications, pages 235–243. IEEE, 2019.

[6] T. S. Salem, G. Neglia, and S. Ioannidis. No-regret
caching via online mirror descent. In ICC 2021-IEEE
International Conference on Communications, pages
1–6. IEEE, 2021.

[7] T. Zhao, I.-H. Hou, S. Wang, and K. Chan. Red/led:
An asymptotically optimal and scalable online
algorithm for service caching at the edge. IEEE Journal
on Selected Areas in Communications, 36(8):1857–1870,
2018.

