Introduction to AVR
(Atmega 16/32)

C Programming

Sagar B Bhokre
Research Associate, WEL LAB, IITB Powai, Mumbai - 76

Note

e The assembly language codes mentioned in
these slides are just for understanding, most
of the aspects will be handled by the C
program. However ensuring the working (is
handled by C) is left up to the programmer.

A microcontroller
interfaces to
external devices
with a minimum of
external
components

9/21/2009

PC

—

Microcontrollers

Motor

\'—

|

Sagar B Bhokre

LED

Seven-segment

Dhsplay
S

5x7 dot-matrix

Serial Port Digstal 'O Port
RAM
Watchdog
Timer CPU
Clock, RTC
Oscillator Timer
Reset, Program
Brownout Analog /0 Port Memory
detector
—|>|— f::f <~
“b;j'; —
Sensor \\

Swite

e

Analog display

AVR General Features

 The architecture of AVR makes it possible to use the
storage area for constant data as well as instructions.

* |nstructions are 16 or 32-bits
— Most are 16-bits and are executed in a single clock cycle.

 Each instruction contains an opcode

— Opcodes generally are located in the initial bits of an
instruction

9/21/2009 Sagar B Bhokre

AVR Architecture

'Il

aaaaaaaaaaaa

AVR General Features

e RISC architecture with mostly fixed-length
instruction, load-store memory access and 32
general-purpose registers.

e A two-stage instruction pipeline that speeds
up execution

 Majority of instructions take one clock cycle
e Up to 16-MHz clock operation

9/21/2009 Sagar B Bhokre

AVR General Features

e The ATMegal6 can use an internal or external clock
signal
— Clock signals are usually generated by an RC oscillator or a
crystal

* The internal clock is an RC oscillator programmable to 1, 2, 4, or 8
MHz

e An external clock signal (crystal controlled) can be more precise for
time critical applications

9/21/2009 Sagar B Bhokre 7

AVR General Features

e Up to 12 times performance speedup over
conventional CISC controllers.

e Wide operating voltage from 2.7Vto 6.0V

e Simple architecture offers a small learning
curve to the uninitiated.

9/21/2009 Sagar B Bhokre

What is an Interrupt

e A condition or event that interrupts the
normal flow of control in a program

e Interrupt hardware inserts a function call

between instructions to service the interrupt
condition

* When the interrupt handler is finished, the
normal program resumes execution

9/21/2009 Sagar B Bhokre

Interrupt Sources

e Interrupts are generally classified as
— internal or external
— software or hardware

* An external interrupt is triggered by a device
originating off-chip

 Aninternal interrupt is triggered by an on-chip
component

9/21/2009 Sagar B Bhokre 10

Interrupt Sources

e Hardware interrupts occur due to a change in
state of some hardware

e Software interrupts are triggered by the
execution of a machine instruction

9/21/2009 Sagar B Bhokre 11

Interrupt Handler

* Aninterrupt handler (or interrupt service
routine) is a function ending with the special
return from interrupt instruction (RETI)

e Interrupt handlers are not explicitly called;
their address is placed into the processor's
program counter by the interrupt hardware

9/21/2009 Sagar B Bhokre

12

AVR Interrupt System

e The ATMegal6 can respond to 21 different
Interrupts

e Interrupts are numbered by priority from 1 to
21

— The reset interrupt is interrupt number 1

* Each interrupt invokes a handler at a specific
address in program memory

— The reset handler is located at address SO000

9/21/2009 Sagar B Bhokre 13

Interrupt Vectors

 The interrupt handler for interrupt k is located at
address 2(k-1) in program memory
— Address S0000 is the reset interrupt
— Address S0002 is external interrupt O
— Address S0004 is external interrupt 1

 Because there is room for only one or two
instructions, each interrupt handler begins with a
jump to another location in program memory where
the rest of the code is found

— jmp handler is a 32-bit instruction, hence each handler is
afforded 2 words of space in this low memory area

Interrupt Vector Table

* The 21 instructions at address SO000 through $0029
comprise the interrupt vector table

 These jump instructions vector the processor to the
actual service routine code

— Along JMP is used so the code can be at any address in
program memory

 An interrupt handler that does nothing could simply

have an RETI instruction in the table
@ The interrupt vector addresses are defined in the include file

9/21/2009 Sagar B Bhokre

15

Interrupt Enabling

Each potential interrupt source can be
individually enabled or disabled

— The reset interrupt is the one exception; it cannot
be disabled

 The global interrupt flag must be set (enabled)
in SREG, for interrupts to occur
— Again, the reset interrupt will occur regardless

9/21/2009 Sagar B Bhokre 16

Interrupt Actions

o If
— global interrupts are enabled

— AND a specific interrupt is enabled
— AND the interrupt condition is present

e Then the interrupt will occur

 What actually happens?

— At the completion of the current instruction,
e the current PCis pushed on the stack
e global interrupts are disabled
e the proper interrupt vector address is placed in PC

9/21/2009 Sagar B Bhokre

17

Return From Interrupt

 The RETI instruction will
— pop the address from the top of the stack into the PC

— set the global interrupt flag, re-enabling interrupts

* This causes the next instruction of the previously
interrupted program to be executed

— At least one instruction will be executed before another
interrupt can occur

9/21/2009 Sagar B Bhokre 18

Stack

e Since interrupts require stack access, it is
essential that the reset routine initialize the
stack before enabling interrupts

e Interrupt service routines should use the stack
for temporary storage so register values can
be preserved

Status Register

* |nterrupt routines MUST LEAVE the status register
unchanged

 Optional: Handled by C Program.
typical _i1nterrupt handler:
push roO
iIn rO, SREG

out SREG, rO

pop rO
reti

9/21/2009 Sagar B Bhokre

20

Interrupt Variations

* AVR Interrupts fall into two classes

— Event based interrupts

e Triggered by some event; must be cleared by taking
some program action

— Condition based interrupts

e Asserted while some condition is true; cleared
automatically when the condition becomes false

9/21/2009 Sagar B Bhokre

21

Event-based Interrupts

 Even if interrupts are disabled, the
corresponding interrupt flag may be set by the
associated event

* Once set, the flag remains set, and will trigger
an interrupt as soon as interrupts are enabled

— This type of interrupt flag is cleared
 manually by writinga 1 to it
e automatically when the interrupt occurs

9/21/2009 Sagar B Bhokre 22

Condition-based Interrupts

e Even if interrupts are disabled, the interrupt flag will
be set when the associated condition is true

e If the condition becomes false before interrupts are
enabled, the flag will be cleared and the interrupt

will be missed
— These flags are cleared when the condition becomes false

— Some program action may be required to accomplish this

9/21/2009 Sagar B Bhokre 23

Sample Interrupts

e Event-based

— Edge-triggered external

interrupts

— Timer/counter overflows

9/21/2009

and output compare

Sagar B Bhokre

Condition-based

— Level triggered external
interrupts

— USART Data Ready,
Receive Complete

— EEPROM Ready

24

External Interrupts

®The ATMegal6 responds

¢

to 4 different external xewmo P o 1 SRV
. . (INTZ2/AINDY PB2 O 3 1 PAZ2 (ADC2)
interrupts — signals (OCANY PB3 | 4 D PA3 (ADCY)
| O 5 1 PA4 (ADC4)
applied to specific pins v, boe o 5 A
@ RESET (pin 9) [SC};)EQE_?E g 33 d E.ETI'EF:_ADET".I
VOO O 10 31 O GHD
@INTO (pin 16 — also PD2) KA 12 28 eCr (Tosca
@INT1 (pin 17 — also PD3) ®x0) P00 T 14 27D PCS (D)
TxDY PDA
®INT2 (bin 3 — also PB3 o) P02 o e nea (T,
(pln a SO) (INT1) PD3 4 17 PCZ2 (TCK)
(OC1B) PD4 O 18 PC1 (5DA)
(OC14) PO5 O 19 PCO (SCL)
(ICP1) PDE] 20 PD7 (OC2)

9/21/2009 Sagar B Bhokre 25

External Interrupt Configuration

e Condition-based

— while level is low

 Event-based triggers
— level has changed (toggle)
— falling (negative) edge (1 to O transition)

— rising (positive) edge (0 to 1 Knsition)

;!\|i |

9/21/2009 Sagar B Bhokre

26

Software Interrupt

e |f the external interrupt pins are configured as
outputs, a program may assert O or 1 values
on the interrupt pins
— This action can trigger interrupts according to the

external interrupt settings

e Since a program instruction causes the
interrupt, this is called a software interrupt

9/21/2009 Sagar B Bhokre 27

Timer/Counters

e The ATMegal6 has three timer/counter
devices on-chip

e Each timer/counter has a count register

e A clock signal can increment or decrement the
counter

* Interrupts can be triggered by counter events

9/21/2009 Sagar B Bhokre 28

8-Bit Timer/Counter

9/21/2009

TOVNn
E—
DATA BUS (Int. Req.)

Clock Salact
count Edge -
cloar | ok, Detector

TCNTR — Control Logic =a—F
directi
irecticon |
i From Prescaler |
EG‘I‘I‘GMT TTGF‘

Sagar B Bhokre

29

Timer Events

e QOverflow

— In normal operation, overflow occurs when the
count value passes SFF and becomes S00

e Compare Match

— Occurs when the count value equals the contents
of the output compare register

— This can be used for PWM generation

9/21/2009 Sagar B Bhokre

30

Output Compare Unit

DATA BUS

OCRn TCNTn

= (8-bit Comparator)

OCFn {Int.Req.
...': q.)

Y

t':'p —_—

bottom] Waveform Generator - OCN

T -/

WGMR1:0 COMNP1:0

9/21/2009 Sagar B Bhokre

Status via Polling

 Timer status can be determined through
polling
— Read the Timer Interrupt Flag Register and check
for set bits

— The overflow and compare match events set the
corresponding bits in TIFR

e TOVn and OCFn (n=0, 1, or 2)

— Timer 1 has two output compare registers: 1A and 1B
e Clear the bits by writinga 1

9/21/2009 Sagar B Bhokre 32

Status via Interrupt

 Enable the appropriate interrupts in the Timer
Interrupt Mask Register

 Each event has a corresponding interrupt
enable bit in TIMSK

— TOIEn and OCIEn (n =0, 1, 2)
e Again, timer 1 has OCIE1A and OCIE1B

— The interrupt vectors are located at OVFnaddr and
OCnaddr

9/21/2009 Sagar B Bhokre 33

Timer Interrupts

 The corresponding interrupt flag is cleared
automatically when the interrupt is processed

— It may be manually cleared by writing a 1 to the
flag bit

9/21/2009 Sagar B Bhokre 34

Automatic Timer Actions

e The timers (1 and 2 only) can be configured to
automatically clear, set, or toggle related output bits
when a compare match occurs

— This requires no processing time and no interrupt handler
— it is a hardware feature

— The related OCnx pin must be set as an output; normal
port functionality is suspended for these bits
« 0CO (PB3) 0C2 (PD7)
« OC1A (PD5) OC1B (PD4)

9/21/2009 Sagar B Bhokre

35

Timer Clock Sources

e The timer/counters can use the system clock,
or an external clock signal

e The system clock can be divided (prescaled) to
signal the timers less frequently

— Prescaling by 8, 64, 256, 1024 is provided

e Timer2 has more choices allowing prescaling of an
external clock signal as well as the internal clock

9/21/2009 Sagar B Bhokre 36

ATMegal6 Prescaler Unit

clk » »ls 10-BIT T/C PRESCALER

K.
CKI256
C K024

PSR10

T P TTTTTT | | .

1 1
| Synehronization |

T o T Dc
| Synchronizstion | o

CE1 ;:h =)
* Ce0
512 \ ;\ C502

TIMER/COUNTER T CLOCK SOURCE TIMERCOUNTERD CLOCK SOURCE
clkyy clkpy,

9/21/2009 Sagar B Bhokre 37

Clock Selection

TCCRO and TCCR1B — Timer/Counter Control
Register (counters 0 and 1)

CSn2, CSn1, CSnO (Bits 2:0) are the clock select
bits(n=0or 1)

000 = Clock disabled; timer is stopped
001 =1/0 clock

010 = /8 prescale

011 = /64 prescale

100 = /256 prescale

101 = /1024 prescale

110 = External clock on pin Tn, falling edge
trigger

111 = External clock on pin Tn, rising edge
trigger

9/21/2009

Sagar B Bhokre

TCCR2 — Timer/Counter Control Register
(counter 2)

CSZZB CS21, CS20 (Bits 2:0) are the clock select
its

000 = Clock disabled; timer is stopped

001 =T2 clock source

010 = /8 prescale

011 = /32 prescale

100 = /64 prescale

101 = /128 prescale

110 = /256 prescale

111 = /1024 prescale

ASSR (Asynchronous Status Register), bit AS2
sets the clock source to the internal clock
(0) or external pin TOSC1)

38

Timer/Counter 1

e Thisis a 16 bit timer

— Access to its 16-bit registers requires a special
technique

e Always read the low byte first
— This buffers the high byte for a subsequent read

e Always write the high byte first

— Writing the low byte causes the buffered byte and the
low byte to be stored into the internal register

9/21/2009 Sagar B Bhokre

39

Timer/Counter 1 Control Register

* TCCR1A

TCCR1A Timer/Counter 1 Control Register A
7 6 5 4 3 2 1 0

COM1Al | COM1A0 | COM1B1 | COM1BO

* TCCR1B

TCCR1B Timer/Counter 1 Control Register B
7 6 5 4 3 2 1 0

9/21/2009 Sagar B Bhokre

Timer 1 Data Registers

e TCNT1H:TCNTI1L
— Timer 1 Count

* OCR1AH:OCR1AL

— Output Compare value — channel A

* OCR1BH:OCR1BL

— Output Compare value — channel B

 |CR1H:ICR1L
— Input Capture

9/21/2009 Sagar B Bhokre 41

Switch Bounce Elimination

e Pressing/releasing a switch may cause many
0-1 transitions

— The bounce effect is usually over within 10
milliseconds

 To eliminate the bounce effect, use a timer
interrupt to read the switch states only at 10
millisecond intervals

— The switch state is stored in a global location to be
available to any other part of the program

9/21/2009 Sagar B Bhokre 42

Debounce Interrupt

.dseg
switchstate: .byte 1

.Ccseg
switchread:
push rl6
in R16, PIND
com rl6
sts switchstate, rl6
pop rlo6
reti

9/21/2009

Sagar B Bhokre

Global variable holds the most
recently accesses switch data
from the input port

— 1 will mean switch is pressed, 0
means it is not

The interrupt is called every 10
milliseconds

It simply reads the state of the
switches, complements it, and
stores it for global access

Timer Setup

e Use timer overflow e The maximum resolutions
interrupt (256 counts to overflow)
e Timer will use the prescaler using these settings are
and the internal 8 MHz — /1:1.000 millisec
clock source — /8:0.512 millisec
— T|me between counts — /32 3125 mi||iseC
e 8Mhz/8 = 1 microsec — /128 7.812 millisec
* 8MHz/64 = 8 microsec e Using a suitable prescale,
* 8MHz/256 = 32 microsec find the required count that
e 8MHz/1024 = 128 microsec should be loaded in the
timer.

9/21/2009 Sagar B Bhokre

44

Timer Initialization

e A constantis used to specify
.equ BOTTOM = 100 the counter's start value

Idi temp, BOTTOM

The Timer Overflow

out TCNTO, temp interrupt is enabled
Idi temp, 1<<TOIEQ °* Theclocksource is set to
out TIMSK, temp use the divide by x prescaler

Idi temp, 4<<csoo ° Clobalinterruptsare
enabled

out TCCRO, temp

sel

9/21/2009 Sagar B Bhokre 45

Interrupt Task

 On each interrupt, we must reload the count value so
the next interrupt will occur in 10 milliseconds

* We must also preserve the status register and
registers used

 The interrupt will alter one memory location
— .dseg
— ;debounced PIND values
— switchstate: .byte 1

9/21/2009 Sagar B Bhokre 46

Interrupt Routine

 The counter has just
switchread: overflowed (count is O

push temp or close to 0)
Idi temp, BOTTOM We need to set the

out TCNTO, tem count back to our
P BOTTOM value to get

the proper delay

) * Remember to save
reti registers and status
flags as required

..Switch processing details

pop temp

9/21/2009 Sagar B Bhokre

47

Application

Ids temp, switchstate
;1 1In bt n means

; switch n 1s down
cpi temp, $00

 The application accesses
the switch states from

breg no_press SRAM
— This byte is updated ever
..process the switches 10 milliseconds by the

timer interrupt
NO_press:

.dseg
switchstate: .byte 1

9/21/2009 Sagar B Bhokre 48

USART Interrupts

* Interrupt driven receive and transmit routines

free the application from polling the status of
the USART

— Bytes to be transmitted are queued by the
application; dequeued and transmitted by the
UDRE interrupt

— Received bytes are enqueued by the RXC
interrupt; dequeued by the application

9/21/2009 Sagar B Bhokre 49

Cautions

e The queues are implemented in SRAM

 They are shared by application and interrupt

— Itis likely that there will be critical sections where changes
should not be interrupted!

;A queue storage area

.dseg

queuecontents .byte MAX Q SIZE
front .byte 1

back .byte 1

size .byte 1

9/21/2009 Sagar B Bhokre 50

USART Configuration

 |n addition to the normal sbi UCSRB, RXCIE

9/21/2009

configuration, interrupt
vectors must be setup and
the appropriate interrupts
enabled

— The transmit interrupt is only
enabled when a byte is to be
sent, so this is initially
disabled

— The receive interrupt must be
on initially; we are always
waiting for an incoming byte

Sagar B Bhokre

The UDRE and TXC
interrupts are disabled by
default

Other bits of this register
must not be changed; they
hold important USART
configuration information

The transmit complete
interrupt is not needed

o1

USART Interrupt Vectors

-org UDREaddr * The interrupt vectors
Jmp transmit_byte must be located at the
.org URXCaddr correct addresses in the
jmp byte received table

.org UTXCaddr — The include file has
reti already defined labels

for the addresses

— The TXC interrupt is
shown for completeness;
it is not used in this
example

9/21/2009 Sagar B Bhokre 52

Byte Received

e This interrupt occurs when e |f another byte arrives

the USART receives a byte during this routine, it will be
and makes it available in its caught on the next interrupt
internal receive queue — Receive errors?

e To prevent overflow of this — Queue full?
2 byte queue, the interrupt — Registers saved?

immediately removes it and
places it in the larger RAM-
based queue

9/21/2009 Sagar B Bhokre 53

Transmit Byte

e This occurs when UDRE is ready to accept a byte
e |f the transmit queue is empty, disable the interrupt
e Otherwise place the byte into UDR

e Thet dequeue function returns a byte in R16
— If no byte is available, it returns with the carry flag set

® Remember to save registers and status! (assembly
language)

9/21/2009 Sagar B Bhokre

o4

UDRIE?

e The UDRE Interrupt is enabled by the
t _enqueue function

— When a byte is placed into the queue, there is
data to be transmitted

— This is the logical place to enable the UDRE
interrupt (if not already enabled)

 Enable it after the item is enqueued, or it might occur
immediately and find nothing to transmit!

Example: Interrupt Subroutine using
WINAVR/AVR Studio

ISR(SIG_UART_DATA) // Data register empty ISR
{

//Insert your code here........

}

Applications must ensure that critical sections are not interrupted

9/21/2009 Sagar B Bhokre

56

AVR Studio

* An integrated development environment
— Provides a text editor
— Supports the AVR assembler
— Supports the gnu C compiler
— Provides an AVR simulator and debugger

— Provides programming support for the AVR
processors via serial interface

9/21/2009 Sagar B Bhokre

S7

AVR Studio: New Project
e

Create new project
(] Sta rt AVR F':ie:t tyTZVH'&' - P'r-:-ieu:tln1a|me:
Studio ‘@'&‘VFEEGEE ssssss | p
. [v Create initial file v Create folder
° CIle New initial fiI;e:1
P rOj e Ct Location:
° Select type: CAEE303_AVRN J
AVR GCC
e Choose a
prOJeCt nam Ver 413528 W Show dialog at startup
°® Select Create B ack ‘ Mewt = J Finizh ‘ Cancel J Help ‘
gfctll(;ns and | 5cation should be a folder to hold all
: roject folders
location bro)

e Each project should be in its own folder

9/21/2009 Sagar B Bhokre 58

9/21/2009

AVR Studio: New Project

Wer4.13.528

Sagar B Bhokre

ATmegal64F
ATmeqalEh

ATmegal 6P

ATmeqalBd

ATmegal B8P

ATmeqalBd v

Finizh | Cancel | Help ‘
59

AVR Studio: Interface

 Enter the
program in the
assembly source
file that is
opened for you.

 (Click the
Assemble button
(F7)

9/21/2009

- AYR Studio - add.asm *
File Project Build Edit Wiew Tools Debug Window Help
== =] S Tl Moe ==
i oo :
: | Project X :
[= add |
i a e s - '/ I dw $E2 [:IC
add.asm dw $ED 1F
3 Included Files .dw S0F01
a Labelz
'a output
3 ObjectFile

| -
1 Project Qrd I/ Wiew i ot

Message

Loaded plugin STES00
Loaded plugin Atmel AVRE Assembler
Loaded partfile: T Pragram Files\AnmelhAWR Tools\ PartDezcriptionFiles\ATmegals =ml

1 Loaded plugin Atmel AWVR Azsembler
' Loaded partfile; C:hProgram Files' AomeltAWE TI:ID|S"|,F'B.F-E§|3.16.KH"||

Sagar B Bhokre 60

add.asm *

AVR Studio: Assembler-Report

Build

AVELSM: AVE macro assembler 2.1.2 (build 99 Now 4 2005 02:35:05)
Copyright (C) 1995-2005% ATHMEL Corporation

CiYAVRProjectshyaddyadd.asw(4): No EEPROM data, deleting C:%VAVEProjectsiadd,add.eep

Memory use summary [bytes]:

Jedquent Begin End Code Data Tzed 3ize Tzex
[.c3eg] 0x000000 Ox00000&] & & unknown -
[.dseg] 0x000060 O0x000060] o 0 unknouwn -
[.eseg] 0x000000 Qx000000] o 0 unknouwn -

Azzenbly conplete, 0 errors. 0 warnings

e Assembler summary indicates success

— 6 bytes of code, no data, no errors

9/21/2009 Sagar B Bhokre

61

9/21/2009

A general Program ...

AVR Studio - [example1.c]

File Project Buld Edt Vew Tools Debug Window Help

DEEHS 0 L Capdg o 20 4% %%

KAREE N RO N ey = R |

‘ Trace Disabled | B ok T e S

AYR GCC v x 2 j 1100 View - x
= 4G examplet (dofaukt) x ATmega 16 Processor with B Mhz internal clock fuse bit settings * -
ER=) = = St o F
" [F) examplet - Name Add.. | Vale Bt |
23 Header Flles 2 TWBR 0400
/24 External Dependenies gmciugwavr;w"b o -+ TSR 1%}
" include<avwr/interrup > =
3 Other Fies #includecsvr signal b JEaTWAR 02
#includecavr/iomlé.hs S TWDR 0wG..
s DrapcL)
woid init_devices() DHancH 005,
DDRA=0xff. ~/Define the direction of port a to be output P ADCSRA 0406,
PORTA=0xif; - Pins of PORTA in active pull up state TYADMUK 0407,
T AR (008,
void delay(int a) HaUBRRL 0u03
{ ¥ UCSRE [
int i.3: ¢ UCSRA 008
ssforii’= 0. i < 1000 ; i++) //commented out for simulations JEUDH D‘DE
srior(i = 0. 3 ¢ & ; i++);//conmented out for simulations Evl i
% SFCR 00
' 5PSR OHDE
int main(void) 95P0R .
//Declare your varisbles here ZPND 010,
. . # DDRD 1.
init_devices(): - defins & function to initialize the ports, peripherals =8 PORTD 12,
~#and the interrupts -~ .
= PING 0v13
//Insert your functional code hers DDRC Owld,
#rexemple’ code given =9 PORTE 0415,
2 PINB 016
while(1) sshlvays end the program vith a while(1) loop as =
#/the Elash contents after the end of the programn are not kaown $ DDRE 7.
i 2 PORTE 0418
PORTA=0=FF; ~FORTA all pins are set to high level =5V({approz.) =
delap(500) " = PINA 0418
PORT&=0x00: - PORTA all pins are set to low level =0V(approz.) $ DDRA D1,
" delay(500); 2 PORTA 018,
retuin 0. ¢ EECR wIC
i BIEEDR 0.
BIEEARL OWIE
BIEEARH OxF.
_'_l ¢ UCSRC 0420 _
U« | L2 24 UBRRH 020
Bl examplet.c 4 b | ¢ wDTCR 021
L ASSR w22
Buld X ®ore .
) @ TCNT2 0s24...
Program: 222 bytes (1.4% Full) ¥ TCCR2 0:25.
{.text + .data + .bootloader) BICRIL 425,
BICRH 0427,
Data: 0 bytes (0.0% Full) DOocREL Bes
{.data + .bss + .noinit) [0CR1BH 0129,
| DOmRIAL D
¥ DOoRUH B
2 BTONTIL 02C
d | Message | EFind in Files | (@ Ereakpaints and Tracepoints BTCNTIH 2. |
ATmegal6 AWR Simulator Auta ® i, o2 AP NUM SCRL

Sagar B Bhokre

62

9/21/2009

‘[B) Ble Project Build Edit View

Build and Run...

Tools Debug Window

FONEEN W YT MEN o e s W P

 [Trace Disabled |

A R=1" N NEREACE TN N L

Sagar B Bhokre

ARGC wx) AG|
=8 exanpled (dsault) clock fuse bit settings * & - [
(=43 seuree Files *; =
[examplet.c Hare hdd
- 23 Header Files 29 TwER 0+00
3 External Dependencies g TSR 0401...
* 3 Other Files -+ 5% TWAR 0202
39 TwDR 003...
. TrapcL 004
void init_dev Deancn D45
DDRA=0xff: ~/Define t of port & to be cutput g ADCSRA W06,
PORTA=0xff; -~ Pins of PORTA in active pull up state I TrADMUX 007
+ 4405 0408,
void delay(int a) & UBRRL 0408
"¢ UCSAB x4
to1.3:
foril- 0 i < 1000 : i++) /commented out for sinulations ﬂ?UESHA 008
sfor(j = 0; j < a : j++);/#commented out for simulations aaUDR 0x0C.
" SPCR 00
" SFSR 040E
int main(void) 34 57pA s
#sDeclare your variables here = FIND 010
s . IR . ¥ DDRD st
init_devices(): define a function to initialize the ports, peripherals =2 ranTo 2.
#/and the interrupts =
RPN 013
##Insert your functional code here “§ DDRC 0x14..
srexanple code given. = PORTC 0x15
while(1} srkluays end the program with a while(1) loop as ELE Ox16...
~the flash contents after the end of the programm are not known ~ DDRB 017
{ = PORTE 0618...
PORTA=0xFF; ~-PORTA all pins are set to high level =5V({approx.) =
Gelay (500 R FiNa 019
FORTA=0x00,//FORTA all pins are set to low level =0¥{appros.) # DDRA 014
delay(500); 2 FORTA 0x18...
retuin 0. o EECR 0IC
3 BEEDR 0.
EJEEARL OlE
B EEARH 0x1F
_|_I 1§ UCSRC 020
Uel | 25 UBRRH 020
\EE309_AVR'exampleliexamplel.c 4 b | 2 WDTCA]
4 A55R 022
E T | ®ocr2 0423
(.text + .data + .bootloader) 0x24.
025
Data: 0 bytes (0.0% Full) 026,
(.data + .bss + .noinit) 0x27
026
0:29...
Build succeeded with 3 Uarnings... x2,
0i28..
] I] 8 @TNTIL DeC
=] Build IOMessage | BR Fird in Files | @ Breakpoints and Tracepoints @D TCHTIH 02,
ATmegals AVR Simulator Auto ®

Build and Run...

e Build the program and execute the same using
the run command

AVR Studio - [C:AEE309_AVR\example1iexample1.c]
File Projectk Buld Edit Miew Tools Debug Window Help

A Z A & N - . Y Y Y

Trace Disabled ST =T P o . N i %X

9/21/2009 Sagar B Bhokre 64

Single Step Simulation
Edit Wiew Tools Debug Window Help
NS Hd o 4 and 9 &0 ¢4 4% EF p@asplc=nEo o< FEEA A

‘B Eile Project Build
SRk T I e e

E |Tra|:e Disabled

Single Step

Stop Simulation
Run without Simulation
single stepping

Sagar B Bhokre

9/21/2009

65

To check the Register Contents

Processa = = - IO View - X
A - ATmega 16 Processor with 2 Mh= internal clock fuse bit ssettings * .
Frograrn Courter Ox00003E s 3% 2 - [LA -3
tack e e . g Mame Add.. | Valus | Bits -]
ES po!nter 0x0000 =9 TWwWBR 0=00. o | o o o
r pointer 00457 #include<avrsio hs o TWSH w0, [[I |
Z pointer D003, ¥include<avr-interrupt h> =,
Cycle Counter 24 #Fincludedavr-signal h: = 331 TR O, I | A
#includecavr-iomlé h =20 TwWDR 0=03.. | o | o o
Frequency 4.0000 MHz TrapcL 004, I [|
Stop Watch 2.50 ug void init_devices() TrancH =05, OOOO040cr
SREG [OMEIEE :
Freist DDRA=0=ff <+Define the direction of port = to be output =g ADCSRA 0=06. o o
) Registers c»PORTA=0xff: ~Pins of PORTA in active pull up state T ADMUR 007 O000000d
¥ T yacsR 0=08. | | [
void delay(int a) S5 UBRAL Ox09... | o
o =+ UCSRE Oils... o [
int i,3: LCSRA 0=0E.
<ofor{i o= 0; 41 < 1000 i++) Srcommented out for simulations 1‘? " EEEEEEEE
soforid = 0: 3 < & d++): scommented out for simulations S UDR 0-0C.
, S i |
int main{woid)
“<Declare wvour wvariables here.
init_devices().-~define a function to initialize the ports, peripherals
~~and the interrupt=s
SInsert yvour functional code here.
~rexmanple code giwven.
whileil)} sohlways end the program with a2 while(l) loop as e - DI IE]
~~sthe flash content= after the end of the programm are not Lknod $ ODRE 017 AR 0]
i
PORTA=0=FF:. ~~PORTA all pins are ==t to high level =5V{appro=.) A
delay (5007} ;
PORTA=0=x00; ~~PORTA 2ll pin=s are ==t to low level =0V{approx.)
delay {500}
return 0
: I | o
< L J_f e oooooooo
| W B 020, o
"@AVR S0 | Processor B c:\EE309_AYR'\eramplelexamplel.c 4 B Omz1. o o
— o~ 0x22. Ooood
'atc b O0x23. o | o
Marmne Yalue Type | Location Omzd. I | | | | [|}
0x25.. | o
0426. O000000d
0x27. I
0x28. | o
0:29... o
042A... I [|
0=2E.
[T | Watch 1 < '\Watch 2 <'Wvatch 3 < WWatch 4 D:z[j EEEEEEEE
=1 Build oMessage %FindinFiles i_jBreakpoints and Tracepoints @Watch o2 | o | o o LI
ATmegals AYR Simulator Auto Stopped =) Ln 1S, Coli LM

9/21/2009

Sagar B Bhokre

66

Watch window to monitor variable contents

Processor - X 2 - :I
- ATmega 16 Proces=or with 8 Mh= internal clock fu=se bit =ettings=s e D
Frogram Counter D=00004E 3 3
Stack Painter O=0451 - -
¥4 pointer D=0000
v pointer D041 #Finclude<avr~-io. hx
= pointer Q=003 #:i_nclude< avr/ir}terrupt ~hox
Cyecle Counter 121 ¥include<avr-signal h:
Frequency 4.0000 bH = #Hincludecavr-iomls h:>
Stop Wwiatch 3025 us woid init_dewvice=({)
SREG [OMEIEIR
41 Begist DDRA=0=f f : ArD=fine the direction of port =2 o be coutput
=1 Registers PORTA=0xff: ~~FPins of PORTA in sctiwe Dull up stote
i

woid delaw{int al

1

imt i, g

Aofoxr(i = 0;: i < 1000 ;@ i4+4+) ~rcommented out for simalations

Sofor(d = 0: 4 < & @ d4+4) sscommented out for simulations

=>=3

int main{woid)

AoeDeEclare your wariable=s here

init_devices(): . ~define a function to initisli=z=e the ports. peripherals=s
~and the interrupts

~oInsert ywour functional codes heres. | . L.
Sosxample ocode giwven. .. L L L L

while({1l) B lwanys end the program with a whiledl)d loop as
~the flash contents after the end of the programm are not kknown
£

PORTA=0=FF: ~-PORTA a2ll pins are ==t to high lewsel =EV({approx.)
delaw (5007 ;

PORTA=0=00;: ~~FORETA all pin= are ==t to low level =0V({appro=.)
AdA=las (5007

return 0:
r

| | BN] T _'l_l

‘@A\-’R (=l Processor C:EE309_AavRhexampleliexamplel.c J 1
wWakch -
4 4 = Pkl Watch 1 waatch 2 waatch S Wifatch 4
Eleuild | ¥ Message | % Find in Files | Eﬁreakpnints and Tracepoints |EWatch |
ATmegals AVR Simul:

9/21/2009 Sagar B Bhokre

67

AVR Studio: Debugger
o5 ﬂ-

e Start the debugging session

—
Click Start Debugging D
.dw SEQ0LF
— Next instruction is shown with yellov|| av Soro1
e Choose I/O View
IO View
— View registers 16-17 “agw Ve |
e Step through program gi‘i e
— F10 is Step Over gii
B z: OO0
B =3 ey
B 24 000
@25 O Oi
B rroject -@Irowﬂlf—

9/21/2009 Sagar B Bhokre 68

AVR Studio: Debugger

I} View =
MName Yaluz Bits
+ @ Register 0-15 . dw $E2DC
.dw SE01F
=|. dw $0F01

B 17 OwOF

- B Register 16-31
B 1s 02T
= 1z QR0

 The first 2 instructions are completed
— R16 and R17 have thﬁiewnvnnrfnd \/::lyn from the

. . M ame “Yalue Bitz
LDI instructions B Registro-15 = dw SE20C
=[] Reqister 15-31 .dw SEO0OLF
B 15 (o 3B m .dw S0F01
A 17 Ox0F M

e The sum is placed in R16
— S3B is the sum

9/21/2009 Sagar B Bhokre 69

AVR Studio: Memory

e Memory contents may be viewed (and edited)
during debugging

— You can view program (flash), data (SRAM), or
EEPROM memory

— You can also view the general purpose and /0
registers using this tool

|
-
Program kT 8/16 abc. dress: (0 Caols Auto ™

gooooo oc E2 1F EQO 01 OFFF FF FF FF FF FF FF FF FF FF FF FF .&.a&..%F
ooooos FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF iy

9/21/2009 Sagar B Bhokre 70

What's Next?

* |n our sample program,
we executed three
instructions, what
comes next?

— Undefined! Depends on
what is in flash

e How do we terminate a
program?

— Use a loop!

0000:
0001:
0002:
0003:

$E20C LDI R16, $2C
$EOL1F LDI R17, $OF

$OFO1 ADD R16, R17
$?77?2?? 2?77

IT a program 1s to simply

stop, add an instruction

that jumps to 1ts own
address

9/21/2009 Sagar B Bhokre

References and Downloads

[1] “Assembly language programming” University of Akron Dr.
Tim Margush

[2] Atmegal6/32 Datasheet
[3] AVR Studio and WINAVR files

http://www.atmel.com/dyn/Products/tools card.asp?tool id=2725

http://sourceforge.net/projects/winavr/files/
e Install WINAVR first and then install AVR Studio.

« Sample codes mentioned in the Datasheet are the most
reliable

 Try executing the sample code to get used to its procedure

Thank You

For more details, visit the course website.
http://sharada.ee.iitb.ac.in/~ee315

For any further doubts or queries, feel free to contact
me.

email id: sagar@ee.iitb.ac.in

Sample Code

#include<avr/io.h>
#include<avr/interrupt.h>
#include<avr/signal.h>
#include<avr/iom16.h>

void init_devices() //initialization of devices

{

DDRA=0xff; //Define the direction of port a to be output
PORTA=0xff; //Pins of PORTA in active pull up state
UCSRA=0x00; //refer datasheet for details

UCSRB=0xF8;

UCSRC=0x86;

UBRRH=0x00;

UBRRL=0x33;

}

void delay(int a)

{

intij;

for(i=0; i< 10; i++) //commented out for simulations
for(j=0; j< 10 ; j++);//commented out for simulations

}
ISR(SIG_UART_DATA) // Data register empty ISR

{

//Insert your code here........
UDR=0xaga;

}

int main(void)

{

//Declare your variables here...........

cli();
init_devices();//define a function to initialize the ports, peripherals
sei(); //and the interrupts

//Insert your functional code here.....
//example code given.......

while(1) //Always end the program with a while(1) loop as
//the flash contents after the end of the programm are
not known
{

PORTA=0xFF; //PORTA all pins are set to high level
=5V(approx.)

delay(2);

PORTA=0x00;//PORTA all pins are set to low level
=0V(approx.)

delay(2);
}

return O;

}

