MICROCONTROLLER

Part 1:

Difference between Microprocessor & Microcontroller

Microprocessor is a general purpose central processing unit (CPU) that contains an arithmetic logic unit (ALU), a program counter (PC), a stack pointer (SP), some working registers, a clock timing circuits and interrupt circuits. To make a complete microcomputer system, one must add memory usually read only program memory (ROM) and random access data memory (RAM), memory decoder, an oscillator, and a number of I/O devices, such as parallel and serial data ports.

A typical 8051 contains:

- 8-bit CPU optimized for control applications, 16- bit program counter (PC) and data pointer (DPTR)
- Extensive Boolean processing (Single-bit logic) capabilities

- 64K Program Memory address space

- 64K Data Memory address space

- 4K bytes of on-chip Program Memory
- 128 bytes of on-chip Data RAM

- 32 bi-directional and individually addressable 1/0 lines
- Two 16-bit timer/counters

- Full duplex UART programmable serial port (baud rate provided by one of the timers)

- 6-source/ 5-vector interrupt structure with two priority levels
- On-chip clock oscillator
- Four register banks (00 to 1F), each containing 8 registers
- 16 bytes that may be addressed at bit level (20 t0 2F)
- 80 bytes general purpose memory (30 to 7F)
The contrast between a microcontroller and a microprocessor is best exemplified by the fact that most microprocessors have many operational codes for moving data from external memory to CPU; microcontroller may have one or two types. Microprocessor may have one or two bit handling instructions; microcontroller will have many.
One vexing problem with the 8051 is its very non-orthogonal instruction set especially the restrictions on accessing the different address spaces. One strong point of the 8051 is the way it handles interrupts. Vectoring to fixed 8-byte areas is convenient and efficient. Most interrupt routines are very short (or at least they should be), and generally can fit into the 8-byte area. Of course if your interrupt routine is longer, you can still jump to the appropriate routine from within the 8 byte interrupt region.

The 8051 instruction set is optimized for the one-bit operations so often desired in real-world, real-time control applications. The Boolean processor provides direct support for bit manipulation. This leads to more efficient programs that need to deal with binary input and output conditions inherent in digital-control problems. Bit addressing can be used for test pin monitoring or program control flags.

SPECIAL FUNCTION REGISTERS:

Ports (P0-P3, Bit-Addressable): The output drivers of ports 0 and 2, and the input buffers of port 0, are used to access external memory. Port 0 outputs the low byte of the external memory address, time-multiplexed with the byte being read / written. Port 2 outputs the high byte of the external memory address when the address is 16 bits wide. Otherwise, the port 2 pins continue to emit the P2 SFR contents. Therefore, when external memory is being used, ports 0 and 2 are unavailable for their primary use as general I/O lines.
Port 0 has open drain outputs. Ports 1, 2, and 3 have internal pull-ups. What does this mean? When used as outputs, all port pins will drive the state to which the associated SFR latch bit has been set. Except for port 0, that will only drive low (not high). When a 0 is written to a bit in port 0, the pin is pulled low (0). But, when a 1 is written to a bit in port 0, the pin goes into a high impedance state or in other words, "disconnected", no value. To be able to get a 1 as output, you need an external pull-up resistor to pull up the port (to 1) when the port is in its high impedance state. Typical values for pull-ups might be 470 ohm to drive a LED, and 4.7K or higher to drive logic circuits.

Any port pin may be used as a general purpose input simply by writing a 1 into the associated SFR latch bit. Since ports 1, 2, and 3 have internal pull-up devices they will pull high and will source current when pulled low. When a port 0 bit is programmed for input (set to 1) it will go to a high impedance state.
SP (Stack Pointer): This is the stack pointer of the microcontroller. This SFR indicates where the next value to be taken from the stack will be read from in Internal RAM. If you push a value onto the stack, the value will be written to the address of SP + 1. That is to say, if SP holds the value 07h, a PUSH instruction will push the value onto the stack at address 08h. This SFR is modified by all instructions that modify the stack, such as PUSH, POP, LCALL, RET, RETI, and whenever interrupts are provoked by the microcontroller.

In instructions that are accumulator specific, A is used to represent the accumulator. However, PUSH and POP have no accumulator specific forms, only direct addressing forms. Therefore, you need to specify the correct accumulator "address" - ACC. Use the instruction PUSH ACC.

DPL/DPH (Data Pointer Low/High): The SFRs DPL and DPH work together to represent a 16-bit value called the Data Pointer. The data pointer is used in operations regarding external RAM and some instructions involving code memory. Since it is an unsigned two-byte integer value, it can represent values from 0000h to FFFFh (0 through 65,535 decimal).
You can't decrement DPTR. Although there is an INC DPTR instruction, there is no DEC DPTR. In fact, there is no other way to change the contents of DPTR except for MOV and INC. You can use the accumulator as an offset if you need to perform calculations on the DPTR. As an example:

MOV DPTR, #9000; load base address into DPTR

MOV A, #10; load desired offset

MOVC A, @A+DPTR; retrieve desired data

Another method would be to use indirect addressing. Instructions such as MOVX A, @ Ri can address a 256 byte "page" of external RAM. The value represented by @ Ri (@R0 or @R1) is emitted to Port 0, which is the low byte of the external RAM address bus. In addition, the contents of the P2 register is emitted to Port 2, which is the high byte of the external memory, address bus. The indirect addressing register together with the P2 register, which specifies the "current page number", gives us a 16 bit pointer into the external memory address space. This technique can make moving data in external memory much faster than reloading DPTR every time. The indirect addressing register can be manipulated much easier than DPTR that can only be loaded and incremented. Just remember to make sure that P2 contains the proper value for the high byte of the address.

PCON (Power Control): The Power Control SFR is used to control the 8051's power control modes. Certain operation modes of the 8051 allow the 8051 to go into a type of "sleep" mode that requires much less power. These modes of operation are controlled through PCON. Additionally, one of the bits in PCON is used to double the effective baud rate of the 8051's serial port.

TCON (Timer Control, Bit-Addressable): The Timer Control SFR is used to configure and modify the way in which the 8051's two timers operate. This SFR controls whether each of the two timers is running or stopped and contains a flag to indicate that each timer has overflowed. Additionally, some non-timer related bits are located in the TCON SFR. These bits are used to configure the way in which the external interrupts are activated and also contain the external interrupt flags that set when an external interrupt has occurred.

TMOD (Timer Mode): The Timer Mode SFR is used to configure the mode of operation of each of the two timers. Using this SFR your program may configure each timer to be a 16-bit timer, an 8-bit auto-reload timer, a 13-bit timer, or two separate timers. Additionally, you may configure the timers to only count when an external pin is activated or to count "events" that are indicated on an external pin.

TL0/TH0 (Timer 0 Low/High): These two SFRs, taken together, represent timer 0. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up. What is configurable is how and when they increment in value.

TL1/TH1 (Timer 1 Low/High): These two SFRs, taken together, represent timer 1. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up. What is configurable is how and when they increment in value.

SCON (Serial Control, Bit-Addressable): The Serial Control SFR is used to configure the behavior of the 8051's on-board serial port. This SFR controls the baud rate of the serial port, whether the serial port is activated to receive data, and also contains flags that are set when a byte is successfully sent or received.

IE (Interrupt Enable, Bit-Addressable): The Interrupt Enable SFR is used to enable and disable specific interrupts. The low 7 bits of the SFR are used to enable/disable the specific interrupts, where as the highest bit is used to enable or disable ALL interrupts. Thus, if the high bit of IE is 0 all interrupts are disabled regardless of whether an individual interrupt is enabled by setting a lower bit.

IP (Interrupt Priority, Bit-Addressable): The Interrupt Priority SFR is used to specify the relative priority of each interrupt. On the 8051, an interrupt may either be of low (0) priority or high (1) priority. An interrupt may only interrupt interrupts of lower priority. For example, if we configure the 8051 so that all interrupts are of low priority except the serial interrupt, the serial interrupt will always be able to interrupt the system, even if another interrupt is currently executing. However, if a serial interrupt is executing no other interrupt will be able to interrupt the serial interrupt routine since the serial interrupt routine has the highest priority.

PSW (Program Status Word, Bit-Addressable): The Program Status Word is used to store a number of important bits that are set and cleared by 8051 instructions. The PSW SFR contains the carry flag, the auxiliary carry flag, the overflow flag, and the parity flag. Additionally, the PSW register contains the register bank select flags that are used to select which of the "R" register banks are currently selected.

Usually the 8051 register banks are switched with the RS0 and RS1 bits in the status register PSW at runtime.

INSTRUCTIONS:

Arithmetic instructions:

INC destination - Increment destination by 1
DEC destination - Decrement destination by 1

ADD/ADDC - Add source to destination without/with carry (C) flag. All addition is done with A register as the destination of the result. C, AC, OV flags are affected.
SUBB destination, source - Subtract with carry, source from destination. C, AC, OV flags are affected.
MUL AB - Multiply the contents of register A and register B, put the lower order byte of product in A and put the higher order byte in B. C=0 and OV flag affected.
DIV AB - Divide the contents of register A by the contents of register B. Put the integer part of quotient in register A and integer part of remainder in register B. C=0 and OV flag affected
DAA - Decimal adjust the A register.

Logical instructions:

The two data levels, byte or bit, at which the Boolean instructions operate are

AND - ANL (AND logical) e.g. ANL A, @Rp: AND each bit of A with the same bit of the contents of RAM address contained in Rp, put the result in A.

OR - ORL (OR logical) e.g. ORL A, #n: OR each bit of A with the same bit of number n, put the result in A.
XOR - XRL (exclusive OR logical) e.g. XRL A, Rr: XOR each bit of A with the same bit of register Rr, put the result in A.
NOT - CPL (Complement) e.g. CPL A: Complement each bit of A, every 1 becomes 0 and each 0 becomes 1.
Note that no flags are affected by byte level logical operations unless direct RAM address is PSW.

Bit addressable control registers are PSW, Interrupt Enable (IE), Interrupt priority (IP), Timer/Counter Control (TCON) and Serial Port Control (SCON).

There are also rotate opcodes that operate only on a byte or a byte and the carry flag, to permit limited 8 and 9 bit shift-register operations.

RL - Rotate a byte to the left, MSB becomes LSB

RLC - Rotate a byte and the carry bit left, carry becomes LSB and MSB becomes carry.

RR - Rotate a byte to right, LSB becomes MSB.

RRC - Rotate a byte and carry to right, LSB becomes carry and carry becomes MSB.

SWAP - Exchange the low and high nibbles in a byte.

Jump and call Instructions

A jump or call instruction can replace the contents of program counter with a new program address number that causes program execution to begin at code located at new address. The difference, in bytes, of this new address from the address in the program where the jump or call is located is called as the range and are of three types

Relative - +127d, -127d bytes.
Absolute - On the same 2K byte page.
Long - Any address from 0000h to FFFFh, anywhere in program memory.

Bit jumps:
Operate according to status of carry flag in PSW or status of any bit addressable location. All bit jumps are relative to PC

JC/JNC - Jump relative if carry flag is set / reset.

JB/JNB b - Jump relative if addressable bit is set/reset.

JBC b, radd - jump relative if addressable bit is set and clear the addressable bit to zero.

Byte jumps:

Jump instructions that test bytes of data, and are relative to program counter (PC).

CJNE A, add, radd - Compare the contents of A register with the contents of direct address, if they are not equal, then jump to relative address, set the carry flag to A, if less than the content of direct address, otherwise set carry flag to zero.

DJNZ Rn, add - Decrement register Rn by 1 and jump to relative address if the result is not zero, no flags are affected.

JZ / JNZ radd - Jump to relative address if A is zero/not zero.

Unconditional jumps:

AJMP, LJMP, SJMP - Jump to absolute short / long, relative address, no flags are affected.

JMP@A+DPTR - Jump to address formed by adding A to DPTR.

Call and Subroutines:

A call causes jump to address where the called subroutine is located. At the end of subroutine, program resumes operation at the opcode address immediately following the call. The sequence of events is as under

- A call opcode occurs in the program software or an interrupt is generated in hardware circuits.

- The return address of next instruction after the call instruction or interrupt is found in the program counter.

- The return address bytes are pushed on stack, low byte first.

- The stack pointer is incremented for each push on stack.

- The subroutine address is placed in the program counter

- The subroutine is executed

- A RET opcode is encountered at the end of subroutine.

- Two POP operations restore return address to PC from the stack area in internal RAM.

- The stack pointer is decremented for each address byte POP

Interrupts and return:

An interrupt is hardware generated call, just as call opcodes, external electrical signals on certain pins, internal operations of timers and the serial port can also cause an interrupt call to take place.

The subroutines called by interrupt are located at fixed hardware address as given below

IE0
0003

TF0
000B
IE1
0013

TF
1001B

Serial
0023

When an interrupt call takes place, hardware interrupt disable flip-flops are set to prevent another interrupt of same priority level from taking place until an interrupt return instruction (RETI) has been executed in the interrupt subroutine. RETI instruction enables interrupt logic.
Later parts will be put up soon.

