
EE 389 EDL Report EE Dept., IIT Bombay, Nov. 2004

INTERFACING PCI with DSP
Group No.: D7

Ankit Kulin (01D07015), Amit Ghorawat (01D07017),
Saurabh Goyal (01D07035)

Supervisor: Prof. Mukul Chandorkar

ABSTRACT
PCI devices form the best way of interfacing a PC with an external device if high data
speed with minimum CPU overhead is required. We attempt to build one such interface
using TI’s PCI 2040 which would be a general purpose device enabling any user to
establish communication between PC and DSP through the Host Port Interface of the later.
This report provides the procedure we followed to complete the task.

CONTENTS
ABSTRACT ... 1
CONTENTS ... 1
List of Figures .. 1
1. Problem Definition ... 2
2. The PCI BUS.. 2
3. The Host Port Interface of DSP.. 5
4. PCI 2040... 8
5. Interfacing DSP to HPI by PCI 2040 ... 15
6. Details of the Software ... 20
7. Results .. 23
8. Appendix A .. 24
References .. 26

List of Figures
Figure 1: Block Diagram of Generic HPI Interface ... 6
Figure 2: HPI-8 Memory Map.. 8
Figure 3. Voltage regulator .. 16
Figure 4. Detailed circuit diagram of PCI card .. 18
Figure 5. Detailed circuit diagram of PCI card (contd.)... 19
Figure 6. Word Write To HPID without Auto-Increment Enabled.................................... 22
Figure 7. Word Read from HPID without Auto-Increment Enabled 23
Figure 8. The PCI 2040 interface circuitry on a PCB .. 24
Figure 9. Picture depicting how the hardware sits inside a PC .. 24
Figure 10. PCI – DSP Board Connection... 25
Figure 11. HWIL signal on a CRO depicting data rate of 1.5 MB/s.................................. 25

2

1. Problem Definition

The primary objective of EDL Project is to design a PCI Device to enable communication
through the Host Port Interface (HPI) of the DSP. We aim at data transfer rates upto 1.5
MB/s. The project involves designing proper hardware and writing of the proper device
driver to enable the PC to perform the required data transfer. The above is implemented
using a TI’s PCI 2040.

Our hardware will provide a general purpose interface to connect PC to any DSP
through the Host port interface. This will be much faster than currently used JTAG which
is a serial interface and much cheaper than the TI JTAG interface which costs about
$1500. The debugging and downloading software needs to be developed for our PCI
interface. The other option was USB interface to DSP which is also an ongoing project.
That is also a serial interface.

Our device would also provide a flexible way to transfer data at high speeds from any
other device to PC. The PCI 2040 provides a clean interface with PCI bus on one side and
HPI on other side.

The presence of DSP increases the flexibility. The DSP can be used for performing
operations of data. These operations will be fully in control of user, free of any operating
system interferences.

2. The PCI BUS

The PCI bus is an integral part of today's high-performance personal computer systems.
Conceived and designed as a way to give peripheral components high-bandwidth access to
the host processor in a PC, the PCI bus is a board-level expansion standard with important
benefits to anyone whose work involves PC-based data acquisition. The PCI Local Bus is a
high performance bus for interconnecting chips, expansion boards, and processor/memory
subsystems. It is synchronous bus architecture with all data transfers being performed
relative to a system clock (CLK).

The PCI bus breaks open the bandwidth bottleneck by providing a 132 MB/s
(theoretical), 95 MB/s (typical) burst-rate highway. In addition to its high bandwidth, the
PCI bus features master/slave operation to reduce latency and offload the host CPU. Other
advantages include plug-and-play auto configuration to simplify installation; processor and
platform independence, which lets designers easily develop PCI peripherals to run on other
platforms than the Pentium PC; and a specified migration path to 3.3 V, which simplifies
the design of portable systems.

2.1 Salient features of PCI for Data Acquisition Applications

• For data acquisition, the high-bandwidth of the PCI bus allows simultaneous, real-
time gathering analog and digital input data, along with outputs for analog stimuli
and digital control. Data acquisition boards built for the PCI bus can feed acquired
data directly to the PC's memory, minimizing the need for onboard memory.

3

• PCI data acquisition boards do not leave gaps in the acquired data. In other words,
PCI boards do not lose data like ISA boards when the latter does not respond fast
enough to the board's request to transfer data. High bandwidth also ensures gap-free
data transfer by allowing several subsystems to be active simultaneously rather than
sequentially.

• Because boards on the PCI bus can transfer without intervention from the host
CPU, data can be simultaneously acquired and processed in real time. For example,
as data is sampled, the host CPU can perform a mathematical operation, plugging
the results into a spreadsheet for analysis. Moreover, by adding digital I/O
functions, you can set up real-time collection and control experiments.

• In its original implementation PCI ran at 33MHz. This was raised to 66MHz by the
later PCI 2.1 specification It can be configured both as a 32-bit and a 64-bit bus,
and both 32-bit and 64-bit cards can be used in either. Also, PCI bus mastering
reduces latency and results in improved system speeds.

Table 2-1 Advantages of PCI I/O over USB I/O

Attributes PCI USB
Type of bus Parallel Serial I/O

System overhead Less More
Bus width (data bits) 32/64 1

Peak bandwidth (MB/s) 133-512 0.2-15

2.2 PCI Bus Protocol

PCI implements a 32-bit multiplexed Address and Data bus (AD[31:0]). It architects a
means of supporting a 64-bit data bus through a longer connector slot, but most of today's
personal computers support only 32-bit data transfers through the base 32-bit PCI
connector.

The multiplexed Address and Data bus allows a reduced pin count on the PCI
connector that enables lower cost and smaller package size for PCI components. Typical
32-bit PCI add-in boards use only about 50 signals pins on the PCI connector of which 32
are the multiplexed Address and Data bus. PCI bus cycles are initiated by driving an
address onto the AD[31:0] signals during the first clock edge called the address phase. The
address phase is signaled by the activation of the FRAME# signal. The next clock edge
begins the first of one or more data phases in which data is transferred over the AD[31:0]
signals.

In PCI terminology, data is transferred between an initiator which is the bus master,
and a target which is the bus slave. The initiator drives the C/BE[3:0]# signals during the
address phase to signal the type of transfer (memory read, memory write, I/O read, I/O
write, etc. During data phases the C/BE[3:0]# signals serve as byte enable to indicate
which data bytes are valid. Both the initiator and target may insert wait states into the data
transfer by de-asserting the IRDY# and TRDY# signals. Valid data transfers occur on each
clock edge in which both IRDY# and TRDY# are asserted.

A PCI bus transfer consists of one address phase and any number of data phases. I/O
operations that access registers within PCI targets typically have only a single data phase.
Memory transfers that move blocks of data consist of multiple data phases that read or

4

write multiple consecutive memory locations. Both the initiator and target may terminate a
bus transfer sequence at any time. The initiator signals completion of the bus transfer by
de-asserting the FRAME# signal during the last data phase. A target may terminate a bus
transfer by asserting the STOP# signal. When the initiator detects an active STOP# signal,
it must terminate the current bus transfer and re-arbitrate for the bus before continuing. If
STOP# is asserted without any data phases completing, the target has issued a retry. If
STOP# is asserted after one or more data phases have successfully completed, the target
has issued a disconnect.

Initiators arbitrate for ownership of the bus by asserting a REQ# signal to a central
arbiter. The arbiter grants ownership of the bus by asserting the GNT# signal. REQ# and
GNT# are unique on a per slot basis allowing the arbiter to implement a bus fairness
algorithm. Arbitration in PCI is "hidden" in the sense that it does not consume clock
cycles. The current initiator's bus transfers are overlapped with the arbitration process that
determines the next owner of the bus.

PCI supports a rigorous auto configuration mechanism. Each PCI device includes a
set of configuration registers that allow identification of the type of device (SCSI, video,
Ethernet, etc.) and the company that produced it. Other registers allow configuration of the
device's I/O addresses, memory addresses, interrupt levels, etc.

PCI defines support for both 5 Volt and 3.3 Volt signaling levels. The PCI connector
defines pin locations for both the 5 Volt and 3.3 Volt levels. However, most early PCI
systems were 5 Volt only, and did not provide active power on the 3.3 Volt connector pins.
Over time more use of the 3.3 Volt interface is expected, but add-in boards which must
work in older legacy systems are restricted to using only the 5 Volt supply. We will be
using 5 V supply as the socket for 5V is easily available on all motherboards currently in
use.

Table 2-2 Byte enables for various commands in PCI bus.

C/BE[3:0]# Command Types
0000 Interrupt Acknowledge
0001 Special Cycle
0010 I/O Read
0011 I/O Write
0100 Reserved
0101 Reserved
0110 Memory Read
0111 Memory Write
1000 Reserved
1001 Reserved
1010 Configuration Read
1011 Configuration Write
1100 Memory Read Multiple
1101 Dual Address Cycle
1110 Memory Read Line
1111 Memory Write and Invalidate

5

3. The Host Port Interface of DSP

The HPI is an 8-bit parallel port used to interface a host device or host processor to a C54x
DSP. Information is exchanged between the DSP and the host device through on-chip
C54x memory that is accessible by both the host and the DSP.

The HPI is designed to interface to the host device as a peripheral, with the host
device as the master of the interface, and so facilitating the ease of access by the host. The
host device communicates with the HPI through dedicated address and data registers, to
which the DSP does not have direct access, and the HPI control register using the external
data and interface control signals. Both host devices and the HPI have access to the HPI
control register.

In C54x, the HPI provides 16-bit data to the DSP while maintaining an external
interface of 8-bit by automatically combining the successive bytes into 16-bit words. When
the host performs a data transfer with the HPI registers, the HPI control logic automatically
performs an access to DSP’s memory to complete the transaction. The DSP can then
access the data within its memory space.

The DSP can work independently of the transactions on HPI interface. So Accessing
HPI doesn’t affect DSP performance. Also Host can have access to DSP memory during its
RESET state also.

3.1 Modes of Operation

In C54x, the HPI has two modes of operation as follows:
Shared access mode (SAM): This is the normal mode of operation and in this mode both
the DSP and host can access the HPI memory. In this case, the asynchronous host accesses
are resynchronized internally. In the case of a conflict between the DSP and host, host has
access
Host only mode (HOM): In this mode, only the host can access the HPI memory while the
DSP is in reset state or IDLE2 with all internal or external clocks stopped. This mode
allows host to access the HPI memory while the DSP is in minimum power consumption
configuration. In HOM, the HPI supports higher speed back-to-back accesses on the order
of 1 byte/50 ns (160 MB/s) independent of the DSP’s clock rate.

3.2 HPI Functional Description

In C54x, information is exchanged between the host and the DSP via 8-bit external data
bus. Due to the 16-bit word structure of the C54, all transfers consist of two consecutive
bytes. The dedicated HWIL pin indicates whether the first or second byte is being
transferred. Bits 0 and 8 (BOB) in the HPI control register determines whether the first
byte is MSB or LSB. The host must not break the first/second byte sequence, otherwise the
data may be lost or some unpredictable results may happen.

6

Figure 1: Block Diagram of Generic HPI Interface

3.3 HPI Registers

The HPI utilizes three registers for communication between the host device and the CPU.
These registers are:
HPI address register (HPIA). It is directly accessible only by the host and contains the
address in HPI memory at which the current address access occurs.
HPI control register (HPIC). It is directly accessed by the host or by C54x and contains
the control and status bits for HPI operation.
HPI data register (HPID). This register is directly accessible by the host and contains the
data that was read from the HPI memory if the current access is a read, or the data that will
be written to the HPI memory if the current access is a write.

The two control inputs, HCNTL1 and HCNTL0, indicate which internal register is
being accessed as shown below.

Table 3–1. C54X HPI Registers Access Control

HCNTL1 HCNTL0 DESCRIPTION
0 0 PCI2040 read/write to HPI control register.
0 1 PCI2040 read/write to HPI data register. Address auto-increment

is selected.
1 0 0 PCI2040 read/write to HPI address register
1 1 PCI2040 read/write to HPI data register. Address auto-increment

is not selected

3.3.1 C54X HPI Control Register
Upper word of control register is same as lower nibbles. The higher nibble of each word is
reserved for future applications. With the DSPs having extended memory space the LSB of
higher nibble of each word is XHPIA. This is to enable extended HPI Memory Space. If
this bit is set to 1 the Address Register will point to extended HPI Memory Space. The
functions of lower nibble bits are as in following table.

7

Table 3-2 Description of HPI Control Register

3.4 Auto Increment Feature

The HPI data register can be accessed with optional auto-address increment. It provides a
convenient way of reading or writing to subsequent word locations. In the auto-increment
mode, the data read causes a post increment of the HPI address register and a data write
causes a pre increment of the HPI address register. Because the HPI has 2Kx16-bit emory,
it uses only the 11 LSBs of the HPI address register but, during the auto-increment
operation, all 16 bits will be incremented or decremented.

3.5 Host Read/Write Access to HPI

The host begins accessing the HPI interface first by initializing the HPI control register,
then by initializing the HPI address register, and then by reading data from or writing data
to the HPI data register. Writing to the HPI address or HPI data register initiates an internal
cycle that transfers the desired data between the HPI data register and the internal HPI
memory. This process may take several cycles. Each time an access is made, data written
to HPI data register is not written to HPI memory until after the host access cycle and the
data read from HPI data register is the data from the previous cycle. Therefore, when
reading, the data is obtained from the location specified in the previous access and the
current access serves as an initiation of the next cycle. A similar operation occurs for the

Bit No Name Description
3

HINT This bit determines the state of the DSP HINT output which is used to
generate an interrupt to the host. HINT= 0 after reset. The HINT can
be set only by the DSP by writing a 1 to this bit and can be cleared
only by the host writing a 1 to this bit.

2 DSPINT Host to DSP interrupt. This bit can only be written by the host and is
not readable by the host or the DSP. When the host writes a 1 to this
bit, an interrupt is generated to the DSP.
Writing a 0 has no effect.

1 SMOD This bit determines the mode of operation.
0 = HOM is selected (always during reset)
1 = SAM is selected
BOB affects both data and address transfers. Only the host can modify
this Bbit and it is not visible to the DSP. BOB must be initialized
before the first data or address register access.
0 = First byte is MS
1 = First byte is the LS

0 BOB BOB affects both data and address transfers. Only the host can modify
this bit and it is not visible to the DSP. BOB must be initialized before
the first data or address register access.
0 = First byte is MS
1 = First byte is the LS

8

write operation. The data written to the HPI data register is not written to HPI memory
until after the external cycle is completed. If the HPI data register read operation
immediately follows an HPI data register write operation, then the same data (the data
written) is read

3.6 HPI Memory Access during Reset

The DSP is not operational during reset, but the host can access the HPI hereby allowing
the program or data to be downloaded to the HPI memory. However to use this capability,
it is convenient for the host to control the DSP’s reset. Initially, the host stops accessing
the HPI at least six DSP periods before driving the DSP reset line low. The HPI mode is
set to HOM during the reset and the host can start accessing the HPI after four DSP
periods.

3.7 HPI Memory Map

The host uses the HPIA register as a pointer to ’54x on-chip memory, and all on-chip
RAM locations are accessible through the HPI-8. Because the internal memory map of
each ’54x device is unique, the address range that the HPI-8 can access varies from device
to device. For example, the ’VC5410 includes much more on-chip RAM than the
’VC5402.

Figure 2: HPI-8 Memory Map

4. PCI 2040

The TI PCI2040 is a PCI-DSP bridge that provides a glue less connection between the 8-
bit host port interface (HPI) port on the TMS320C54X or the 16-bit HPI port on

9

TMS320C6X to the high performance PCI bus. It provides a PCIbus target interface
compliant with the PCI Local Bus Specification. The PCI2040 provides several external
interfaces: the PCI bus interface with compact PCI support, the HPI port interface with
support for up to four DSPs, a serial ROM interface, a general-purpose input/output
interface (GPIOs), and a 16-bit general-purpose bus to provide a glue less interface to TI
JTAG test bus controller (TBC). The PCI2040 universal target-only PCI interface is
compatible with 3.3-V or 5-V signaling environments. The PCI2040 interfaces with DSPs
via a data bus (HPI port).

4.1 PCI Interface of PCI 2040

PCI2040 provides an integrated 32-bit PCI bus interface compliant with the PCI Local Bus
Specification. The PCI2040 incorporates a PCI target interface for configuration cycles,
accesses to internal registers, and access to the HPI interface via memory-mapped space.
The PCI2040 does not provide PCI mastering.

As a PCI bus target, PCI2040 incorporates the following features:

1. Supports the memory read, memory write, configuration read, and configuration
write.

2. Aliases the memory read multiple, memory read line, and memory write and
invalidate to the basic memory commands (i.e., memory read and memory write).

3. Supports PCI_LOCK.

4.1.1 Internal PCI2040 Registers Used for Controlling PCI Interface

PCI configuration registers

PCI configuration space is accessed via PCI configuration read and PCI configuration
write cycles. These registers may be accessed using byte, word, or double-word transfers.
The important of these are:-

Table 4-1. PCI 2040 Configuration Register
REGISTER NAME OFFSET

Device ID Vendor ID 00h
Status Command 04h

Class code Revision ID 08h
BIST Header type Latency timer Cache line size 0Ch

HPI CSR memory base address 10h
Control space base address 14h

GPBus base address 18h
Reserved 1Ch
Reserved 20h
Reserved 24h
Reserved 28h

Subsystem ID Subsystem vendor ID 2Ch
Reserved 30h

Reserved Reserved Reserved Capability pointer 34h

10

Reserved 38h
Max_Lat Min_GNT Interrupt pin Interrupt line 3Ch

Reserved Reserved 40h

GPIO output data GPIO direction control GPIO
input data GPIO select 44h

Reserved Reserved Reserved GPIO interrupt
type 48h

Diagnostic
 Reserved Miscellaneous control 4Ch

Power management capabilities

PM next-item
pointer

PM capability ID
 50h

Reserved
 PM control/status 54h

HPI CSR I/O base address
 58h

Reserved
 HS_CSR HS next-item

pointer HS capability ID 5Ch

Reserved

Reserved

Reserved

Reserved
 60h

Reserved
 64h-FFh

PCI command register
This register is provided to enable coarse control over a device’s ability to generate and
respond to PCI cycles. As far as PCI-2040 is concerned only 4 bits can be written. Rests all
are hardwired. The details of those bits are as follows:-

Table 4-2. Writable bits of PCI command register
BIT No/Name Description

8th bit (SERR_EN) System

error (SERR) enable.

This bit is an enable for the output driver on the SERR
pin. If this bit is cleared and a system error condition is
set inside PCI2040, then the error signal will not appear
on the external SERR pin.

6th bit (PERR_EN) Parity
error response enable.

This bit controls whether or not the device responds to
detected parity errors. If this bit is set, then the PCI2040
responds normally to parity errors. If this bit is cleared,
then the PCI2040 ignores detected parity errors.

1st bit (MEM_EN)
Memory space enable.

This bit enables the device to respond to
 memory accesses to any of the defined base address
memory regions. If this bit is cleared, then the PCI2040
will not respond to memory-mapped accesses.

0th bit (IO_EN) I/O space
control

This bit enables the device to respond to I/O accesses
within its defined base address register I/O regions.

HPI control and status registers

11

The PCI2040 provides a set of registers specifically for interfacing with the HPI port.
These registers are called the HPI control and status registers (HPI CSRs), and they may be
memory- and I/O-mapped.

The HPI CSR memory base address register provides the mechanism for mapping the
HPI CSRs into memory space. When mapped into memory space, the HPI CSRs may be
accessed using bytes, words, or double-word transfers. Memory mapping the HPI CSR
registers is recommended.

Table 4-3. CSR Memory Base Address Register

Bit number Description

31–12
Available address bits. These bits can be written by the host
in order to allow initialization of the base address at startup.
The PCI memory address space is on the 4-Kbyte boundary.

11–4 Unavailable address bit. Bits 11–4 return 00h when read.
3-0 Hardwired to 0 is pci2040

Table 4-4. HPI Control and Status Registers. These are Memory or I/O mapped. The base address is

stored in Base Address Registers in PCI 2040 Configuration Registers.
REGISTER NAME OFFSET

Interrupt event set 00h
Interrupt event clear 04h
Interrupt mask set 08h

Interrupt mask clear 0Ch
Reserved HPI error report 10h

HPI DSP implementation HPI reset 14h
Reserved HPI data width 18h

4.2 PCI2040 Host Port Interface

The PCI2040 HPI interface is used to access TI’s TMS320C54X or TMS320C6X DSP
chips. The devices connected to the HPI interface are memory-mapped in host memory.
The host system processor accesses the HPI interface via slave accesses to PCI2040. The
DSP devices can generate interrupts, and the PCI2040 passes these interrupt requests to the
PCI bus via INTA. See Section 3.7, Interrupts, for more information on PCI2040
interrupts. The HPI port on DSP devices is a parallel port that allows access to the DSP’s
memory space and internal registers. The PCI2040 has to configure the HPI interface on
the DSP by accessing the DSP’s HPI control register (HPIC). Other DSP HPI registers
include the HPI data register (HPID) and the HPI address register (HPIA). See Section 6,
DSP HPI Overview for more information on DSP registers.

12

4.2.1 Identifying Implemented Ports and DSP Types
The PCI2040 supports up to four DSPs of both the C54x and C6x types. It may be useful
for generic software to discover what number and type of DSPs are connected to the
PCI2040. This is accomplished by using the HPI DSP implementation register and HPI
data width register in the HPI control and status register space. The HPI DSP
implementation register identifies how many DSPs are implemented and what HCSn
outputs are connected, and the HPI data width register identifies whether the HPI port per
connected DSP is 8 bits (C54x) or 16 bits (C6x).The HPI DSP implementation register and
HPI data width register may be loaded from a serial ROM. Also, these registers are
implemented as read/write so intelligent software can load them with the proper values.

Table 4-5. HPI DSP Implementation Register
BIT

FIELD
NAME

TYPE DESCRIPTION

15–4

RSVD R Reserved. Bits 15–4 return 0s when read.

3 DSP_PRSNT3 RWU DSP3 present. Bit 3 indicates if the DSP3 is
present on the HPI interface.

2

DSP_PRSNT2 RWU DSP2 present. Bit 2 indicates if the DSP2 is
present on the HPI interface.

1

DSP_PRSNT1 RWU DSP1 present. Bit 1 indicates if the DSP1 is
present on the HPI interface.

0

DSP_PRSNT0 RWU. DSP0 present. Bit 0 indicates if the DSP0 is
present on the HPI interface.

Table 4-6. HPI Data Width Register
BIT

FIELD
NAME

TYPE DESCRIPTION

15–4

RSVD R Reserved. Bits 15–4 return 0s when read.

3

DWIDTH3 RWU When bit 3 is set, the HPI[3] data bus is 16 bits
(C6x). When bit 3 is 0, it is 8 bits (C54x).

2

DWIDTH2 RWU. When bit 2 is set, the HPI[2] data bus is 16 bits
(C6x). When bit 2 is 0, it is 8 bits (C54x)

1

DWIDTH1 RWU When bit 1 is set, the HPI[1] data bus is 16 bits
(C6x). When bit 1 is 0, it is 8 bits (C54x).

0

DWIDTH0 RWU When bit 0 is set, the HPI[0] data bus is 16 bits
(C6x). When bit 0 is 0, it is 8 bits (C54x).

4.2.2 Decoding the Address of PCI cycle to get Memory Mapping, Chip Select and
HPI Register Access Control
The PCI2040’s control space base address register is a standard PCI base address register
requesting 32K bytes of control space non pre-fetchable memory to access up to four
DSPs. The PCI2040 claims PCI memory access transactions that fall within the 32-Kbyte

13

memory window by comparing the upper 17 bits of the PCI address (PCI_AD31–
PCI_AD15) to bits 31–15 (AVAIL_ADD field) in the control space base address register.

Table 4-7. Control Space Base Address Register

31-15 (AVAIL_ADD)

Available address bits. Bits 31–15 allow
the host to map the PCI2040’s 32K bytes

of control space into memory. See Sections
3.5.2, DSP Chip Selects, and 3.5.3, HPI
Register Access Control, for details on

addressing the control space.

14-4 RSVD
3-0 Hardwired to 0.

The PCI2040 provides four chip select outputs (HCS3–HCS0) that uniquely select each
HPI port DSP (or other HPI peripheral) per transaction. When a PCI cycle is claimed, the
chip select is determined by decoding bits 14 and 13 of the PCI address. PCI_AD14 and
PCI_AD13 determine the chip select according to Table-3.8.

Table 4-8. PCI2040 Chip Select Decoding
PCI_AD(14–13) CHIP SELECT ASSERTED

2’b00 HCS0
2’b01 HCS1
2’b10 HCS2
2’b11 HCS3

The HCNTL1 and HCNTL0 terminals are driven by the PCI2040 to select the DSP HPI
register and access mode on a cycle-by-cycle basis. When a cycle is claimed by decoding
PCI_AD31–PCI_AD15, the HCNTL1 and HCNTL0 control signals are determined by
decoding bits 12 and 11 of PCI address. PCI_AD12 maps to HCNTL1 and PCI_AD11
maps toHCNTL0, and the selected HCNTL1 and HCNTL0 are driven to the HPI interface
when the cycle is forwarded.

The PCI address bits PCI_AD10–PCI_AD0 are not forwarded to the HPI interface,
and these address bits are not decoded by PCI2040 for any purpose. This 2-Kbyte of
addressable space per DSP (and control) allows the host to directly map 2K bytes of host
memory to the HPI interface for each DSP. This allows for fast memory block copies
rather than an I/O port mechanism. The PCI2040 does not automatically generate accesses
to the HPI address registers based upon PCI_AD10–PCI_AD0, and it is left to software to
synchronize the HPI address register with copies to and from HPI memory space.

14

4.3 Read Write Procedure

The following procedure illustrates how to read and write HPI space, and covers some of
the initialization that must be done to successfully transfer data to and from DSP memory
via the HPI data register. After a power-on reset (GRST):

• PCI2040 preloads several registers if a serial ROM is implemented, and this
rewrites the HPI implementation and HPI data width registers (software can also
rewrite these registers).

• HPI CSR memory base address register is programmed to provide a pointer to the
HPI control and status registers.

• Control space base address register is programmed and 32K bytes of memory are
allocated.

• The PCI command register is programmed to allow PCI2040 to respond to
memory and I/O cycles.

• Software must clear the HPI reset register to remove the reset assertion to the
DSPs.

• When PCI2040 decodes a PCI address within the 32-Kbyte memory control space
window, it claims the cycle and decodes the chip select, HCNTL1 and HCNTL0,
to pass to the HPI interface.

• The host initializes the BOB or HWOB bit in the HPI control register to choose
the correct byte alignment. This results in an HPI cycle to the DSP’s HPI control
register.

• The host then initializes the HPI address register with the correct HPI memory
address. By loading the HPI address register, an internal DSP HPI memory access
is initiated and the data is latched in the HPI data register.

• If this is a read:
– The host performs a read of the HPI data register. During the read, the

contents of the first half-word data latch appear on the HADn pins when
the HWIL signal is low and contents of the second data latch when the
HWIL signal is high.

– If auto-increment is selected, then it occurs between the transfer of the
first and second bytes. This allows back-to-back HPI data register accesses
without an intervening HPI address register access.

• If this is a write:
– The first data latch of HPI data register is written from the data coming

from the host while HWIL is low and the second data latch when HWIL is
high. If communicating with C6x, then the correct combination of byte
enables must also be used.

– If auto-increment is selected, then it occurs between the transfer of the
first and second bytes.

15

5. Interfacing DSP to HPI by PCI 2040

We have completed the interfacing the DSP to HPI. This section mainly presents the work
done by us to complete the interfacing. This section includes the block diagram, circuit
diagram, system configuration used and design issues

5.1 Block Diagram

Host CPU: Pentium I (166 MHz)
DSP kit used: TMS320C54XX Evaluation Module.

5.2 Power and Signaling Levels

The PCI2040 supports both 3.3-V and 5-V signal environments. This is accomplished by
the VCCH and VCCP clamping rails. These two rails are not power rails. They only clamp
the signals at the rail voltage (3.3 V or 5 V). All I/O buffers are powered by the VCC rail.
Because VCC powers both the core and the I/O buffers, it must always be at 3.3 V. Table
describes the different voltage combinations supported by the PCI2040.

Table 5-1:- PCI 2040 Signaling Levels
PCI Bus Signaling

Level
HPI Bus Signaling Level VCCP VCCH VCC

5 5 5 5 3.3
5 3.3 5 3.3 3.3

3.3 5 3.3 5 3.3
3.3 3.3 3.3 3.3 3.3

PCI Slot

32 data

pins
total 128

inputs

Operates at
33 MHz

TI’s PCI 2040

144 pin PQFP

package

3.3 V regulator
for PCI 2040

Host Port
Interface

34 pin

connector
to DSP
EVM

8-data pins

C5410
DSP

PCI
Slot on
mother
board

16

We have selected 5 V PCI signaling level. DSP provides us 3.3 I/O signaling levels for
HPI interface. So for our circuit VCCP pin of PCI 2040 will have level of 5 V, and other
VCCH pins will be connected to 3.3 volt power supply. We will have to generate 3.3 on-
board. So we are using a separate power supply circuit.

5.3 Power Supply using 3.3 V regulator

PCI 2040 works at I/O voltage level of 3.3 volts. As we are using 5 V I/O convention We
are using 5 V directly from PCI Bus and converting it to 3.3 V by using low drop out
voltage regulator TPS 7333Q. The circuit diagram of the power supply is as shown in
figure below:-

Figure 3. Voltage regulator

5.4 Pull – up Resistors

The pull up resistors forms a crucial part of the circuit. The PCI2040 require pullup
resistors for various PCI and HPI signals.

PCI Pull-up Resistors
All PCI control signals require pull-up resistors on the motherboard to ensure they are at a
stable state when no agent is actively driving the signal. Pull-ups should be implemented
on the motherboard only; expansion boards or add-in cards should not provide pull-up
resistors for the PCI control signals. The PCI signals which require pull-ups are FRAME,
TRDY, IRDY, DEVSEL, STOP, SERR, PERR, LOCK, INTA, INTB, INTC, INTD, and
when used REQ64 and ACK64. Pull-ups are not required on point-to-point or shared 32-
bit signals, as bus parking ensures their stability.

17

Table 5-2: Minimum and typical PCI Pull-up Resistor Values

Signaling Rail Rmin Rtyp
5 V 963 kΩ 2.7 kΩ ± 10%

3.3 V 2.42 kΩ 8.2 kΩ ± 10%

HPI Pull-up Resistors
Pull-up resistors are required on all unused HPI and GPbus inputs in order to prevent
oscillation and increased power consumption. Pull-up resistors are not required on
HAD[15:0] due to the fact that the PCI2040 drives these signals to stable values during
idle times.

Table 5-3. HPI/GP Bus Pullup resistor
HPI/GPbus Signal Pullup Voltage

GPINT# VCCH
HINT[3:0] # VCCH

HRDY5x[3:0] VCCH

The GPRDY signal is used to notify the PCI2040 whether the device on the GPbus is
ready for a transaction. Because this signal is active low, pulling this signal up will always
put the GPbus in a not ready state. As we are not using GPbus we have pulled up this
signal. The recommended value of all pull-ups mentioned above is 10kΩ.

DSP Pull-up Resistors
The PCI2040 uses only one data strobe (HDS) and does not implement HAS. Because of
this, the HAS on the DSP needs to be pulled up and one of the two HDS lines on the DSP
needs to be pulled up. The other HDS line needs to be connected to the HDS signal on the
PCI2040. The pull-up value to be used is 10kΩ.

Other Pull-up Resistors
PME: A 43 kΩ pull-up resistor to 3.3 V is required on the open-drain PME (pin 68).
HSENUM: A 43 kΩ pull-up resistor to 3.3 V is required on the open-drain HSENUM
(pin71). A pull-up resistor may already exist on the motherboard.
Two-Wire Serial Interface Signals, SDA and SCL: When implementing the serial
EEPROM via generic two-wire serial bus interface on general-purpose terminals GPIO0
and GPIO1, pull-up resistors are required on the open-drain SCL and SDA signals. For
typical PCI2040 serial EEPROM applications, a pull-up of between 2 kΩ and 10 kΩ is
recommended. We have given a provision for EEPROM in the circuit.

Bypass Capacitors
Low inductance ceramic chip capacitors are best for bypass capacitors. A value of 0.1µF is
recommended for each of the power supply pins VCC, VCCP, and VCCH.

18

5.5 Detailed Circuit Diagram

Figure 4. Detailed circuit diagram of PCI card

19

Figure 5. Detailed circuit diagram of PCI card (contd.)

20

6. Details of the Software

We have to write a device driver for PCI-2040. The driver we have made enables us to
read from and write to any DSP memory location. We can manually verify the same using
code composer studio for the DSP that has a provision to show DSP memory. We explain
here the important software considerations, the algorithm for reading and writing in DSP
memory and give some examples with the timing diagrams for the same.

6.1 Decoding of Chip Select, HCNTL0 and HCNTL1

As we have explained earlier, During the PCI address phase, AD[12:11] determine which
HPI register in the DSP is being accessed. The AD[12] maps to HCNTL1 and AD[11]
maps to HCNTL0. We will be using chip select 0. This can be selected by AD[14:13] by
making them 00. So we have the following:

PCI address HPI register where data would be
written

0000 Control Register(HPIC)
1000 Address Register(HPIA)
0800 Data Register(HPID) with autoincrement
1800 Data Register without autoincrement

6.2 HPI Interface Initialization

The following initialization steps are needed to proper working of HPI.

• Setting the HPI CSR memory or I/O base address register to provide access to
the HPI control/status registers in the PCI2040 and the control space base address
register to map the HPI bus into host memory space. We take values set in by
BIOS for these Base Address Registers (BARs). BIOS automatically allots memory
space to each PCI device so we consider it better to use the memory allocated by
BIOS.

• The command register then needs to be programmed to allow the PCI2040 to
claim memory and I/O cycles. Typically we set memory enable and make I/O
enable to zero.

• Setting the HPI data width and implementation registers: These two registers
must be programmed either by the serial ROM or software so the PCI2040 knows
which DSPs are available and what type of HPI interface to use (8-bit or 16-bit).

• Software then programs the HPI reset register to de-assert reset on the HPI bus.

6.3 Setting DSP memory Address and Data R/W Procedure

After this initialization procedure, memory ‘read’ and ‘write’ operations can be done. But
before accessing DSP data, the host must first initialize HPIC, in particular BOB (bit 0 and

21

bit 8), and then the HPIA register. The initialization must occur in this order because the
state of BOB affects the HPIA register access.
 On devices with extended on-chip RAM, the host should also initialize the XHPIA
bit of the HPIC before accessing the HPIA register. The XHPIA bit can be initialized in the
same write access to the HPIC that initializes BOB. By writing a one to the XHPIA bit, the
host gains access to the seven extended HPI addresses. The host then writes the HPIA
register with the seven LSBs designating the value of the extended addresses (HPIA
16:22). When initializing the extended HPI addresses, the same value should be written for
the first and second bytes of the access. After initializing the extended addresses, the host
must perform another access to the HPIC, writing a zero in the XHPIA bit to regain access
to the lower sixteen address bits in the HPIA register. Hence we must follow the following
sequence to set a complete address. We are using C5410 DSP which has extended memory
space.
Steps to set correct address:

• Setting the extended HPI address: This involves first writing 0x1010 to control
register and then writing 0x0000 to address register if we don’t want to access
extended space else writing 0x0001 if we want to access extended space.

• Setting the DSP memory address we want to access: This involves first writing
0x0101 to control register (we are sending LSB first so BOB bit =1) and then
writing the appropriate address in the address space.

Now we are prepared to write data to the data register. This data will automatically go to
the corresponding memory of the DSP. We present here two examples with timing
diagrams to explain this Data Write.

Examples of Transactions Targeting the C54X
The control space base address (PCI offset 14h) contains FFEF0000h.

PCI Word Write
In the first example depicted in Figure 6, a PCI write transaction with address FFEF1800,
byte enables of 1100b, and a single data phase of the PCI bus occurs. The data is
DDCCBBAAh. The PCI2040 takes this PCI transaction and translates it to an 8-bit host
port transaction. The event flow is as follows:
1. The host port is idle.
2. HCNTL0 and HCNTL1 are driven high indicating to the C5410 that this transaction is
going to target the HPID without auto-increment enabled. The HR/W is driven low
indicating to the C5410 that this transaction is a write.
3. HCS0 is asserted indicating that this transaction is targeting DSP0. The first byte or half-
word is driven onto the HAD bus. The upper eight data lines (HAD15–HAD8) are not
used. Only the lower eight data lines are used when communicating with the C5410. Also,
during clock 3, the HDS is asserted. During this time, the C5410 latches the values of
HCNTL1, HCNTL0, HWIL, and HR/W.
4. The PCI2040 samples the state of HRDY5X0. If the C5410 indicates it is not ready, then
the PCI2040 waits until the C5410 indicates it is ready before it de-asserts HDS and
HWIL.

22

5. Because the state of the HRDY5X0 signal indicates the C5410 is ready, the PCI2040 de-
asserts HDS. The C5410 latches the data, AAh, on the rising edge of HDS. The HWIL is
driven high.
6. During clock 6, the PCI2040 starts driving the second byte or half word onto the HAD
bus. Please note that the PCI bus uses little endian notation. For this reason, the PCI2040
transfers the least significant byte first followed by the next least significant byte.
7. Same as Step 4.
8. Same as Step 5 except the data latched is BBh and the HCS0 is de-asserted indicating
the end of the transaction.

Figure 6. Word Write To HPID without Auto-Increment Enabled

PCI Word Read
The second example outlined in Figure 7 shows how the PCI2040 translates a word read
on the PCI bus with a PCI address of FFEF5800h. The event flow is as follows:
1. The host port is idle.
2. HCNTL0 and HCNTL1 are driven high indicating to the C5410 that this transaction is
going to target the HPID without auto-increment enabled. The HR/W is driven high
indicating to the C5410 that this transaction is a read.
3. HCS2 is asserted indicating that this transaction is targeting DSP0. The first byte or half-
word is driven onto the HAD bus. Also during clock 3 the HDS is asserted. During this
time, the C5410 latches the values of HCNTL1, HCNTL0, HWIL, and HR/W.
4. The PCI2040 samples the state of HRDY5X0. If the C5410 indicates it is not ready, then
the PCI2040 waits until the C5410 indicates it is ready before it de-asserts HDS and
HWIL. In this case, the C5410 is not ready.
5. Same as Step 4 but in this case the C5410 is ready.
6. The PCI2040 drives both HDS and HWIL high. The PCI2040 also latches the data on
the lower eight data lines (HAD7–HAD0).
7. Same as Step 3.
8. Same as Step 5.
9. Same as Step 6 except the data latched is BBh and HCS2 is de-asserted indicating the
end of the transaction. The PCI2040 then places XXXXBBAAh on the PCI bus.

23

Figure 7. Word Read from HPID without Auto-Increment Enabled

7. Results

We successfully achieved the objectives of the project and established two-way
communication between the PC and DSP. We could read and write data at a 1.5MB/s from
host. Figure 11 shows the HWIL signal on a CRO during a word write depicting the same.
During the data transfer at the above speed we are also able to execute applications on the
DSP.

24

8. Appendix A

Figure 8. The PCI 2040 interface circuitry on a PCB

Figure 9. Picture depicting how the hardware sits inside a PC

25

Figure 10. PCI – DSP Board Connection

Figure 11. HWIL signal on a CRO depicting data rate of 1.5 MB/s

26

References
1. Technical Reference, TMS320C54XX Evaluation Module 2001 DSP

Development Systems.

2. Data Manual, PCI 2040.

3. PCI Local Bus Specification Rev 2.2

4. Datasheet, TPS7333Q low dropout voltage regulator.

5. Data Manual, TMS320VC5410 Fixed Point Digital Signal Processor.

