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ABSTRACT: 
 
The project involves communication between an embedded test bus controller (eTBC) 
and a device having JTAG port and further programming it using its JTAG port. This 
enables us to take advantage of the latest emulation technology and use it in any device 
compliant to IEEE Std. 1149.1 target. For this purpose, an eTBC was used to master an 
IEEE Std. 1149.1 test access port (TAP) under the control of a microcontroller host. The 
microcontroller is embedded on a USB based controller. Thus, one can program the 
microcontroller by giving commands through the USB port of a host computer which 
then sends signals to the eTBC. Conceptually, an eTBC operates like a memory-mapped 
or I/O-mapped peripheral to a microcontroller to achieve the desired communication.  

We were thus able to program the CPLD using its JTAG port. Codes have been 
written and hardware developed which enables us to program the CPLD once its ‘jedec’ 
file is available. The project can further be extended to program any JTAG compliant 
device by developing the software specific to that device. 
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1.  INTRODUCTION 
 
As the dimension of devices shrunk and surface-mount packing technology improved, it 
became increasingly complex to test devices. To surmount this problem, JTAG (Joint 
Test Action Group) devised a specification for performing boundary-scan hardware 
testing at the IC level. This resulted in IEEE 1149.1, a standard that established the 
details of access to any chip with a JTAG port. 

The specification JTAG devised uses boundary-scan technology, which enables 
extensive debugging and diagnostics on a system through a small number of dedicated 
test pins. Signals are scanned into and out of the I/O cells of a device serially to control 
its inputs and test the outputs under various conditions. Today, boundary-scan technology 
is probably the most popular and widely used design-for-test technique in the industry. 

A device is generally programmed using the RS-232 port or the parallel port 
(printer port) of a computer which is quite slow. Through the use of a JTAG port, the in 
system programming of devices is much faster. Though the communication between 
eTBC and devices is serial, that between the eTBC and microcontroller occurs with a 
parallel 8-bit efficiency and is hence faster. We use a USB based controller which has an 
embedded 8052 based microcontroller and this microcontroller is programmed using 
USB commands from a host computer. The USB port is more versatile and provides 
capability of connecting to multiple devices. Further, it is very fast. Thus, we can use 
USB to program many devices simultaneously.  

The basic module of our system consists of an eTBC receiving instructions from a 
microcontroller and sending appropriate signals to a device having JTAG port. The 
system needs a regulated power supply, because, device characterizers run for hours 
together and a battery or a local power storage device cannot provide supply for such a 
long time consistently. Here, we power the system using the power supplied by the USB 
port. 

 The microcontroller is programmed through a USB and sends instructions to the 
eTBC. The TAP (Test Access Port) state generator operates under the control of an 
executing command to generate the test sequences to move the connected target device 
from one stable state to another, to capture and scan test data into/out of target devices 
and to operate built-in test modes of the target device. 
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2. DESIGN ASPECTS 
 
The circuitry of target device contains an interface through 
which instructions and data are communicated. Required test 
features define a Test Access Port (TAP) to allow access to test 
circuitry, instruction register for interpreting commands, 
boundary registers for implementing device I/O tests and bypass 
register for implementing scan path. The TAP interface consists 
of the four signals, viz. TMS, TCK, TDI, and TDO. Our system 
aims at sending appropriate TMS sequence to the target device 
for its programming. This also means that we move the TAP 
controller from one of its stable state to some other state. 

 

 
 

Fig.2.1 Test Access Port 

 
2.1 BLOCK DIAGRAM 

 
 

Fig.2.2 Basic Block Diagram 
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As mentioned earlier, the basic module of our project is an eTBC, which operates under 
the commands given by a microprocessor that is programmed using USB protocols. All 
the components in our circuit operate at a Vcc of 3.3 V and hence a regulator is also 
required as indicated in the block diagram shown in Fig.2.2. Our target device (CPLD) 
operates at 5 V but since the eTBC is 3.3-5 V tolerant this is not a cause of concern. 
However, the target device has an external power supply, and only the programming 
signals are exchanged between the programmer and the target device. The target device 
might be sitting on another system, and need not be taken out for programming. 
 
 
2.2 VARIOUS COMPONENTS OF CIRCUIT 
 
Our device can be divided into following blocks based on their functionality: 
 
2.2.1 POWER UNIT:  
The 5 V supply obtained from the USB is used for powering up the system. This 5 V is 
used as an input to a regulator, TPS7333 (Low Dropout Regulator) to get  a  constant   
3.3 V supply which is then used as Vcc for all the circuit components. 

 
i) The system is powered through the USB which supplies a voltage of 5 volts. Also, 

this can give a maximum current of 500mA. Since our circuit consumes a current 
far less than this value, we have powered our device through the USB.  

 

ii) TPS7333 – To convert 5 V to 3.3 V constant output 
It can source a maximum current of 2 A. This provides Vcc for other components 
in the circuit like USB controller, oscillator and eTBC. The TPS7333, unlike 
many other low dropout voltage regulators (LDOs), features very low quiescent 
currents that remain virtually constant even with varying loads. This is stable even 
at zero loads; no minimum load is required for operation. 

As with most LDO regulators, the TPS7333 requires an output capacitor 
for stability. A low-ESR 10 µF solid-tantalum capacitor connected from the 
regulator output to ground is sufficient to ensure stability over the full load   
range. 

 
Fig.2.3 TPS7333 Circuit Diagram [1]   
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2.2.2 OSCILLATOR CIRCUIT 

 
This block of our project aims at generating a square wave input for eTBC at its CLKIN 
pin. The block consists of two parts, first being the crystal oscillator and the second part 
consists of its circuitry to provide a square wave of desired frequency. To obtain this, 
SN74LVC1404 chip is used, which has output drive strength of around 25 mA at 3.3 V 
operation. Logic diagram for the chip is shown in Fig.2.4. The CTRL input is provided to 
disable the oscillator circuit to reduce the power consumption. To obtain continuous 
output at the OSCOUT pin, CTRL signal is kept at a high level. The XIN and XOUT pins 
are connected to a crystal of frequency 12 MHz. Circuitry involved for the crystal 
connected between pins XIN and XOUT is shown in Fig.2.5. 

 

 
 

Fig.2.4 Logic Diagram for SN74LVC1404 [2] 
A crystal is connected between XIN and XOUT and required  

clock is obtained at OSCOUT 
 
 
 

 
 
 

Fig.2.5 Crystal Circuit connected between XIN and XOUT [2] 
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2.2.3 TUSB3210 (Host for eTBC) 
 
The TUSB3210 is a USB based controller. It has an embedded 8052 based 
microcontroller and hence provides the designers with much flexibility. Its 
programmability makes it flexible enough to use for various general USB I/O 
applications. Using a 12 MHz crystal, the onboard oscillator generates the internal system 
clocks. The device can be programmed via an inter-IC (I2C) serial interface at power on 
from an EEPROM, or optionally, the application firmware can be downloaded from a 
host PC via USB. Its embedded 8052-based microprocessor acts as a host to the eTBC. 
The microcontroller can be programmed via USB from a host computer and sends 
appropriate signals to the eTBC. Data transfer between the USB, MCU and external 
devices are defined by an Endpoint Descriptor Block (EDB). Four input and four output 
EDBs are present. The RS-232 port is available to monitor 8052 MCU activity for 
debugging purposes.  

It operates at a Vcc of 3.3V. Each port pin of the TUSB can sink around 20mA of 
current. It has an on-chip PLL which generates 48 MHz from 12 MHz supplied to it by 
the oscillator. 
 
Embedded 8052 based Microcontroller  
 

The embedded 8052 based microcontroller is a high performance 8-bit microcontroller. It 
is programmed via the USB port. Its several features include: 
 

• Four ports with 8 pins on each port 
• 256-byte internal data memory 
• Three 16-bit Timer/Counters 
• Upto  48 MHz operation 
• I2C support 
• All ports have internal pull ups 
 

2.2.4 EMBEDDED TEST BUS CONTROLLER SN74LVT8980A 
 
Though powered at 3.3 V, the TAP interface is fully 5 V tolerant for mastering both 5 V 
and/or 3.3 V IEEE Std. 1149.1 targets. It provides simple interface to a low-cost 3.3 V 
microprocessor/microcontroller via 8-bit asynchronous read/write data bus. Further it is 
easily programmable via scan-level command set and smart TAP control. It generates the 
TMS sequences required for communication with JTAG compliant targets. The TAP-
state generator sources the TMS signal, which sequences the TAP controller of connected 
IEEE Std. 1149.1-compliant target device.  

The eTBC masters all TAP signals required to support one 4 or 5 wire IEEE Std. 
1149.1 serial test bus: test clock (TCK), test mode select (TMS), test data input (TDI), 
test data output (TDO), and test reset (TRST). All such signals can be connected directly 
to the associated target IEEE Std. 1149.1 devices without need for additional logic or 
buffering. However, as well as being directly connected, the TMS, TDI, and TDO signals 
can be connected to distant target IEEE Std. 1149.1 devices via a pipeline, with a 
retiming delay of up to 15 TCK cycles; the eTBC automatically handles all associated 
serial-data justification. The exact technical details are explained in section 4.2. 
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Fig.2.6 Basic Block Diagram of the eTBC application [3] 

Microcontroller used is an embedded 8052 microcontroller 
 
2.2.5 JTAG HEADER 

 
The JTAG header used has 4 pins. This is the standard interface used by JTAG emulators 
to interface to various devices, in our case CPLD (XC9572XL_PC44). The various 
signals at different pins of the header are mentioned below. 

 

Table 2.1 
 

Signals at different pins of JTAG header 
 

 

Pin # Signal 
1 TDO 
2 TDI 
3 TMS 
4 TCK 

 
 

 

 
Fig.2.7  JTAG header 

 

Signal at various pins is given in Table 2.1 

 
2.2.6 RS-232 Port 
 
The RS-232 port is available on board to monitor 8052 MCU activity for debugging 
purposes. It helps in communicating with the MCU via the serial port of computer and 
hence makes debugging easy. The signals propagating through RS232 are buffered using 
MAX3232 for better signal levels. The RS232 port connection can be broken up using 
jumpers provided on the PCB. There are jumpers to break the connection from the MCU 
as well as to disable the power supply of MAX3232. 
 
2.2.7 MAX3232 
 
The MAX3232 device consists of two line drivers, two line receivers, and a dual charge-
pump circuit The device provides the electrical interface between an asynchronous 
communication controller and the serialport connector. The charge pump and four small 
external capacitors allow operation from a single 3 V to 5.5 V supply. The devices 
operate at data signaling rates up to 250 kbit/s and maximum of 30 V/µs driver output 
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slew rate. It has a low supply current of 300 µA and requires four external capacitors of 
0.1 µF. 

 

 
Fig.2.8 Logic Diagram for MAX3232 (Positive Logic) [4] 

 
 
2.2.8 LEDs 
 
Five LEDs have been provided on the board. Four of them represent pins 0, 1, 2 and 3 of 
port 2 of the embedded 8052 based microcontroller and hence provide a good way for 
analysis of a problem and interpretation of results. An additional LED has been used as a 
power-on indicator. The circuitry used to implement LEDs is shown in Fig.2.9. The port 
pins can sink upto 8mA each.  

 
 

        Fig.2.9 LED Connections on PCB 
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3. PCB LAYOUT 
 
3.1 SCHEMATIC LAYOUT 
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3.2 BOARD LAYOUT 
 

 
Fig 3.2 Top view of the PCB 

 
 

 
Fig 3.3 Bottom view of the PCB 
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3.3 PCB PHOTOGRAPH  
 

 
A photograph of  the PCB ( JTAG Programmer) 

 

 
 

A photograph of the JTAG Programmer along with target device 
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3.4 OTHER AVAILABLE HEADERS 
 
3.4.1 EMU Header 
 
EMU0 and EMU1 pins are required if the target device is a TI device. 
It is used when multiple devices are to be connected in the target chain 
of eTBC. So jumpers for these two pins have been provided externally 
on our board to make them high/low as and when required. 

 
Fig 3.4 EMU header 

 
3.4.2 General 8-PIN Header 
 
We have an 8-pin header 3 pins of which are Gnd, 3 pins are 5V and remaining 2 pins are 
connected to 3.3V. These may be useful in future and are also useful for debugging 
purposes. 
 
3.4.3 TRST Header 
 
In addition to the above two, a jumper to give  is also provided for future use. Like 
the EMU, this header is required for a TI device and is not used while working with the 
CPLD. 
 
3.4.4 General 12-PIN Header 
 
There is also a 12 pin header on PCB which has its various pins connected to the ports of 
embedded microcontroller. These pins can also be used for debugging purpose. The 
configuration of the pins is shown in the table below. 
 
3.4.5 Reset Header 
 
A header for resetting the device has been provided in addition to the reset switch already 
available on board. This has been done from future considerations wherein the 
completely boxed device has a reset switch connected to this header. 

 
Table 3.1  

Signals at 12 Pin Header 
 

 

Pin # Signal Pin # Signal 
1 P1.3 7 P3.2 
2 P1.4 8 P3.3 
3 P2.4 9 P3.4 
4 P2.5 10 P3.5 
5 P2.6 11 P3.6 
6 P2.7 12 Not Connected 
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3.4.6 Common Ground PIN 
 
A ground pin has been provided adjacent to the JTAG header for providing common 
ground to both the target device and the programmer. 
 
 
3.5 LIST OF COMPONENTS: 
 
1.  TUSB3210 
2.  SN74LVT8980A 
3.  SN74LVC1404 
4.  TPS7333 
5. MAX3232S016 
6.  Bridge Rectifier 
7.  LM7805CV 
8. Resistances: 2.2MΩ, 220kΩ, 100 kΩ, 15 kΩ, 4.7kΩ, 1kΩ, 560Ω 
9.  Capacitors: 473µF, 10µF, 1µF, 0.1µF, 33pf, 473nF 
10. 12 MHz Crystal Oscillators 
11. 9V Transformer 
12. USB Port 
13. RS232 Port 
14. Push-Button Switch 
15. Jumpers 
16. LEDs 
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4. FUNCTIONING OF TUSB3210 AND EMBEDDED TEST BUS CONTROLLER 
 
4.1 FUNCTIONING OF TUSB3210 
 
The TUSB3210 is a USB based controller. It has an embedded 8052 based 
microcontroller which acts as a host to the eTBC. The microcontroller can be 
programmed via USB from a host computer and sends appropriate signals to the eTBC. 
This chapter gives a brief description of TUSB. For details, one has to take a look at the 
datasheet of TUSB3210 from the TI website as mentioned in the reference [5]. 
 
4.1.1 PIN DESCRIPTION 
 
A brief description of the functionalities of the various pins of the TUSB3210 is given in 
table 4.1. 

Table 4.1  
 

Terminal Functions of TUSB3210 
 

TERMINAL DESCRIPTION 
1.8VDD 1.8V. When VREN is high, 1.8V must be applied externally to 

provide current for the core during suspend. 
DM Differential data-minus USB 
DP Differential data-plus USB 
P0[0:7] 
P1[0:7] 
P2[0:7] 

General-purpose I/O port bits 0–7, Schmitt-trigger input, 100mA 
active pullup, open-drain output. 

P3.0: General-purpose I/O port 3 bit 0, Schmitt-trigger input, 100mA 
active pullup, open-drain output. 

P3.0/RXD 
 

RXD: Can be used as a UART interface. 
P3.1: General-purpose I/O port 3 bit 1, Schmitt-trigger input, 100mA 
active pullup, open-drain output. 

P3.1/TXD 
 

TXD: Can be used as a UART interface. 
P3.2 
 

General-purpose I/O port 3 bit 2, Schmitt-trigger input, 100mA active 
pullup, open-drain output; INT0 only used internally. 

P3.3 
 

General-purpose I/O port 3 bit 3, Schmitt-trigger input, 100mA active 
pullup, open-drain output; may support INT1 input. 

P3.[4:7] 
 

General-purpose I/O port 3 bits 4–7, Schmitt-trigger input, 100mA 
active pullup and open-drain output. 

PUR Pullup resistor connection pin (3-state).  
RST 
 

Controller master reset signal, Schmitt-trigger input, 100mA active 
pullup. 

S2 General-purpose input, This input has no internal pullup. 
S3 General-purpose input. This input has no internal pullup. 
SCL Serial clock I2C; push-pull output. 
SDA Serial data I2C; open-drain output. 
SUSP Suspend status signal: suspended (HIGH); unsuspended (LOW) 
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VREN Voltage regulator enable: enable active-LOW; disable active-HIGH 
X1 12-MHz crystal input 
X2 12-MHz crystal output 
Vcc Power supply input, 3.3V typical.  

 
 
4.1.2  FUNCTIONAL BLOCK DIAGRAM  
 
The USB-based controller (TUSB3210) has an embedded 8052-based microcontroller 
which acts as a generic host to the eTBC. Its programmability makes it flexible enough to 
be used for other general-purpose input/output applications. The device can also be 
programmed via an I2C interface.  The functional block diagram is given in Fig.4.1 
 
 

 
 

Fig. 4.1 The functional block diagram of the TUSB3210 [5] 
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4.1.3 TUSB OPERATIONS 
 
a) Pullup Resistor Connect/Disconnect 
 
After reading firmware into RAM, the TUSB3210 can re-enumerate using the new 
firmware (no need to physically disconnect and reconnect the cable). Fig.4.2 shows an 
equivalent circuit implementation for Connect and Disconnect from a USB upstream 
port. When the CONT bit in the USBCTL register is 1, the CMOS driver sources Vcc to 
the pullup resistor (PUR pin) presenting a normal connect condition to the USB hub (high 
speed). When the CONT bit is 0, the PUR pin is driven low. In this state, the 1.5 kΩ 
resistor is connected to GND, resulting in device disconnection state. The PUR driver is a 
CMOS driver that can provide Vdd-0.1 V minimum at 8 mA of source current.  

 
(a) 

 
(b) 

 
Fig. 4.2 Pullup Resistor Connect/Disconnect Circuit [5] 

 
b) RESET  
 
There are three requirements for the reset signal timing. First, the minimum reset pulse 
duration is 100 µs. At power up, this time is measured from the time the power ramps up 
to 90% of the nominal Vcc until the reset signal exceeds 1.2 V. The second requirement 
is that the clock must be valid during the last 60 µs of the reset window. The third 
requirement is that, according to the USB specification, the device must be ready to 
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respond to the host within 100 ms. This means that within the 100 ms window, the device 
must come out of reset, load any pertinent data from the I2C EEPROM device, and 
transfer execution to the application firmware, if any is present.  
 
These requirements are depicted in Fig.4.3 below. When using a 12 MHz crystal or the 
48 MHz oscillator, the clock signal may take several milliseconds to ramp up and become 
valid after power up Therefore, the reset window may need to be elongated up to 10 ms 
or more to ensure that there is a 60 µs overlap with a valid clock.  

 

 
Fig 4.3 Requirements of the reset signal 

 
Implementation of reset 
 

To implement the reset signal, the circuitry and properties of TPS7333 voltage regulator 
have been exploited. The  output of the TPS7333 initiates a reset in microcomputer 
and microprocessor systems in the event of an undervoltage condition. An internal 
comparator in the TPS7333 monitors the output voltage of the regulator to detect an 
undervoltage condition on the regulated output voltage. If that occurs, the  output 
turns on, taking the  signal low. It stays low for the duration of the undervoltage 
condition. Once the undervoltage condition ceases, a 200 ms timeout begins. At the 
completion of the 200 ms delay,  goes high. Fig. 4.4 explains the implementation. 
The reset pin of TUSB is connected to a circuitry consisting of a reset switch. This 
circuitry can be supplied a Vcc of 3.3 V or directly short to Vres of TPS7333 by changing 
the position of jumper JP5. 
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Fig. 4.4 Resetbar waveforms corresponding to TPS7333 [1] 

 
c) SCL/SDA 
 
SCL represents I2C serial clock while SDC represents I2C serial data and is an open drain 
output. In our case, we aren’t using the EEPROM and hence to maintain the functionality 
they are connected to 3.3 V via 1.5 kΩ resistor. 
 
4.2 FUNCTIONING OF eTBC 
 
The eTBC sources/receives all signals required to master IEEE Std.1149.1 compliant 
devices viz. TCK, TMS, TDI, and TDO. The eTBC can also source optional TRST 
signal. Additionally, the eTBC implements high drive output buffers, allowing it to 
interface directly to targets without need for buffering or any other logic. This subsection 
gives a brief description of eTBC. For details, please refer its data sheet [2]. 
 
4.2.1  PIN DESCRIPTION 
 
A brief description of functionalities of various terminals is given in the table 4.2. 
 

     Table 4.2  
Pin description of eTBC 

 
Terminal Description 
A2-A0 Address inputs A2-A0 form the 3 bit address bus that interfaces the eTBC to 

its microcontroller host. These inputs directly index the eTBC register to be 
accessed. 

CLKIN Clock input. CLKIN is the system clock input for the eTBC. Most operations 
of the eTBC are synchronous to CLKIN. Internally, the CLKIN signal is 
divided by a programmable divisor to generate TCK. 

D7–D0 Data inputs/outputs. D7–D0 form the 8-bit bidirectional data bus that 
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interfaces the eTBC to its microcontroller host.  
RDY 
 

Ready output. RDY is used to indicate to the microcontroller host whether or 
not the eTBC is ready to service the access (read or write) operation that 
currently is being requested. 

 Reset input. RST is used to initiate asynchronous reset of the eTBC.  

 
 

Read/write select. R/W is used by the microprocessor/microcontroller host to 
instruct the eTBC as to whether it is to perform read access (R/W high) or 
write access (R/W low).  

 Read/write strobe. STRB is used by the microcontroller host to instruct the 
eTBC to initiate (STRB negative edge) or terminate/conclude (STRB 
positive edge) an access (read or write) operation.  

TCK 
 

Test clock. TCK transmits the TCK signal required by the eTBC IEEE Std. 
1149.1 target(s). All operations of the TAP are synchronous to TCK. 

TDI Test data input. TDI receives the TDI signal output by the eTBC IEEE Std. 
1149.1 target(s). It is the serial input for shifting test data from the target(s); 
it is sampled on the rising edge of TCK and is expected to be transferred 
from the target(s) on the falling edge of TCK.  

TDO 
 

Test data output. TDO transmits the TDO signal required by the eTBC IEEE 
Std. 1149.1 target(s). It is the serial output for shifting test data to the 
target(s); it is transferred on the falling edge of TCK and is sampled in the 
target on the rising edge of TCK. 

TMS Test mode select. TMS transmits the TMS signal required by the eTBC IEEE 
Std. 1149.1 target(s). It is the one control signal that directs the next TAP-
controller state of the target(s). It is transferred from the eTBC on the falling 
edge of TCK and is sampled in the target(s) on the rising edge of TCK. 

 Test-output enable. TOE is the active-low output enable for the eTBC TAP 
outputs (TCK, TDO, TMS, and TRST). 

 Test reset. TRST transmits the TRST signal that may be required by some of 
the eTBC IEEE Std. 1149.1 target(s).  

 

 
4.2.2 eTBC OPERATIONS  
 
All such tasks as generating TMS sequences, serializing the outgoing bit stream and de-
serializing the incoming bit stream are implemented in the eTBC and the microprocessor 
operates at full 8-bit parallel efficiency and hence test throughput is maximized. The 
efficiency and flexibility of host is maximized by using eTBC’s fully visible status and 
implementation of ready (RDY) output. RDY goes inactive during a read or write access 
if the host requested access cannot be performed immediately. Thus, it is used to insert 
hold or wait states back to the host. When the condition blocking the access clears, the 
requested access completes. Additionally, all conditions that cause such a blocking are 
continuously updated in the eTBC status and command registers. 
 
i) TCK GENERATOR 
 

The TCK generator sources the TCK signal required by the IEEE Std.1149.1 target and 
the eTBC internal test-control logic. The fundamental TCK frequency is produced by 
division of CLKIN. The divisor is programmable within a range of 1 to 128 in the 
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configuration B register. While the eTBC is in the discrete control mode, the TCK 
generator is not used; instead the state of TCK is toggled on each alternating read and 
writes to the discrete-control register. 
 
ii) TAP-STATE GENERATOR 
 

The TAP-state generator sources the TMS signal, which sequences the TAP controller of 
connected target device. The TAP controller provides the test control signals to the target 
device. The TAP-state generator operates under the control of an executing command to 
generate the TMS sequences required to move connected target device from one stable 
state to another, to capture and scan test data into/out of target device and to operate 
built-in test modes of target device in the Run-Test/Idle state. 
 

 
Fig. 4.5 TAP controller state diagram 

 
Based on the TAP state that is current upon command initiation, the TAP state-generator 
sources a defined sequence of TMS values to reach the TAP state in which command is 
progressed (e.g. Shift –DR, Shift-IR, Run-Test/Idle) and ultimately to reach the specified 
end TAP state. 
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While the eTBC is in free-running-TCK mode, if a currently operating command empties 
or fills a required test data buffer, then the TAP-state generator sources the TMS 
sequence to move the target device to their Pause-IR or Pause-DR state until the required 
test-data buffer is serviced appropriately. The TAP controller proceeds through its states 
based on level of TMS at the rising edge of TCK. There are two main paths through the 
state diagram, one to access and control the selected data register and one to access and 
control the instruction register. Only one register can be accessed at any given time. 
 
iii) COMMAND/CONTROL 
 

The command register is used to initiate test operations in the target. Any read to the 
command register while a command is in progress returns the value written to the 
command register upon initiation of the command. Once a command finishes, the opcode 
bit group in the command register is set to null. The opcode bit group (bits 3-0) of the 
command register determines the test operation to be executed in the target and the end–
tap-state bit group (5-4) determines the TAP state in which the target scan chain is left 
when the command finishes.  

Now, upon command initiation test control logic is initialized and TDO and TDI 
buffers are cleared. So anything that is to be written to these buffers should be written 
after command initiation. All eTBC commands operate similarly to accomplish test 
objectives. First, the eTBC generates a TMS sequence to move the target from its current 
TAP state to a working state. Second, the command is operated in the working state for a 
number of TCK cycles determined by the value of the counter upon command initiation. 
Third, the eTBC generates a TMS sequence to move the target scan chain from the 
working state to the end state specified in the command register. Various commands 
which describe its operation are mentioned below: 
 
 a)  TAP-state movement  

The state-move command operates to generate a TMS sequence to move the 
target scan chain directly from its current TAP state to the end state specified in 
the command register. 

 

 b) Run-test command 
The run-test command generates TMS sequences to move the target scan chain 
from its current TAP state to the Run-Test/Idle state where it remains for a 
number of TCK cycles determined by the value of the counter upon command 
initiation. Upon the countdown of the counter to zero, the eTBC generates TMS 
sequences to move the target scan chain to the end state specified in the command 
register. 

 

c)   Scan commands 
eTBC commands are provided to perform scan operations to target scan chains. 
These are classified by the destination of scan data in the target- instruction 
register, data register- and by the nature /direction of data transfer- input only, 
output only, etc. The instruction-register (data register) scan commands scan bits 
to and/or from the instruction (data) register of the target. The eTBC generates a 
TMS sequence to move the target scan chain from its current TAP state to the 
Shift-IR TAP state. Data written to the TDO buffer can be driven serially onto the 
TDO pin and bits received serially at the TDI pin can be stored into the TDI 
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buffer for reading by the host. For scan commands of input-only class, only the 
TDI buffer is used to scan data from the target, outgoing scan data is fixed at a 
high level throughout the scan operation. For scan commands of the output-only 
class, only the TDO buffer is used to scan data to the target scan chain, incoming 
TDI data is simply ignored. 

 
Upon the countdown of the counter to zero, the eTBC generates TMS sequences to move 
the target scan chain to the end state specified in the command register. 
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5. PROGRAMMING OF THE TARGET DEVICE  
 
5.1. FIRMWARE PROGRAMMING FLOW 
 
After power-on reset, the bootcode copies predefined USB descriptors to the shared 
RAM. The first USB descriptor is the device descriptor. It describes the embedded 
function class, vendor ID, product ID, etc. The second USB descriptor is the 
configuration descriptor, which contains information such as how the device is powered, 
the number of configurations available, type and number of interfaces, and endpoint 
descriptors. Once the bootcode finishes copying descriptors, it looks for the EEPROM on 
the I2C the port. If a valid signature is found, it reads the data type byte. If the data type is 
application code, it downloads the code to an external data space. Once the code is loaded 
and the checksum is correct, bootcode releases control to the application code. 

After the bootcode updates the hub register and device descriptor, it sets up for a 
USB transaction and connects itself to the USB. It remains there until the host drivers 
download the application code. Once complete, it disconnects from the USB and releases 
control to the application code.  
 
5.1.1. DOWNLOADING THE APPLICATION CODE ONTO THE DEVICE 
 

To download a file/data to the device, we need to pack the data in a proper format, so that 
the bootcode residing on its ROM can read the data, and load our specific application 
code. We need to make sure that the number of bytes that can be transmitted are less than 
8192 bytes (8k memory). Apart from that, when sending firmware directly to endpoint 1, 
one should take care that 
- the first two bytes specify the length (LSB first);  
- the third byte specifies the checksum 
- the firmware follows 
- each packet can be up to 255 bytes 
 
A small piece of code for downloading the firmware to TUSB3210 is reproduced here: 
 
FILE *in; 
unsigned char firmware[8195]; 
len = fread (&firmware[3],1,8192,in); //reading data 
fclose (in); 
/* Store the length */ 
firmware[0] = (unsigned char)(len & 0xff); 
firmware[1] = (unsigned char)((len & 0xff00) >> 8); 
/* Calculate the checksum */ 
firmware[2] = 0; 
for(i=0;i<len;i++) 
  firmware[2] += firmware[3+i]; 
/* Send the header and data to endpoint 1 in 255-byte chunks. */ 
len += 3; 
for(i=0;i<len;i+=255) 

if((retval=usb_bulk_write(tusb,1,&firmware[i],min(255,len-  
i),500))<0) 

die ("Error downloading firmware"); 
} 
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5.1.2. APPLICATION CODE 
 

The application code consists of various interrupt subroutines, which can be exploited to 
serve our purpose. The firmware should initialize all the configuration registers, as well 
as give the definitions of all the interrupt service routines. The application code programs 
the embedded microcontroller as per its requirements. Simple instructions can be 
mentioned in the application code. One needs to set the appropriate values of pull-up 
registers, register locations, etc., if required. 

We have used bulk transfer of data from host to the device, employing the 
interrupts provided to utilize microcontroller processing power. Interrupt transfer 
involves halting the microcontroller, while that interrupt service routine is being 
processed. As mentioned earlier, TUSB3210 supports 4 endpoint interrupts, but we have 
used only endpoint1 to transfer data to and from the device. 
 
5.1.3. INTERRUPT SERVICE ROUTINES 
 

After the hardware receives an IN token on IEP1, it either transmits an NAK or data to 
the host depending on whether the hardware has data or not. If the hardware transmits 
data to the host, it generates an interrupt to the MCU at the end of data transmission. 
Therefore, the application firmware senses that data has been sent and it updates the IN 
buffer with new data. At the end of the transfer we need to reset the NAK bit, and load 
the value of Input EndPoint Byte Count appropriately for further read operation. 
USB_bulk_read on the host generates this interrupt, and thus indicates the completion of 
transfer from the device. 

If the hardware receives an OUT token on OEP1, it either transmits an NAK, if 
the NAK bit is not cleared or generates an interrupt to the application firmware. The 
NAK bit and the interrupts can be cleverly used to perform appropriate operations on 
receiving of data. USB_bulk_write generates this interrupt to the hardware, thus 
initiating the transfer of data. The host program, in order to send the application code 
also utilizes USB_bulk_write to download firmware to the device. 
 
void OEP1InterruptHandler(void) { 
//our packing scheme assumes that the first two bytes send 
//contain the length of packet while third byte is the check sum 
BYTE bSize, bTemp, bCode; 
if(bOEP1RecieveLength == 0) { 
 bOEP1RecieveLength = pbOEP1XBufferAddress[0]; 
    bOEP1RecieveLength += ((int)pbOEP1XBufferAddress[1]<<8); 

bSize = tOutputEndPointDescriptorBlock[0].bEPBCTX & 
EPBCT_BYTECNT_MASK; 

     for(bTemp=3; bTemp<bSize; bTemp++) { 
       bCode = pbOEP1XBufferAddress[bTemp]; 
       abOEP1SaveBuffer[bOEP1SaveBufferPosition] = bCode; 
       bOEP1SaveBufferPosition++; 
     } 
  } 
  else 
  { 

bSize = tOutputEndPointDescriptorBlock[0].bEPBCTX & 
EPBCT_BYTECNT_MASK; 

     for(bTemp=0; bTemp<bSize; bTemp++) { 
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       bCode = pbOEP1XBufferAddress[bTemp]; 
       abOEP1SaveBuffer[bOEP1SaveBufferPosition] = bCode; 

bOEP1SaveBufferPosition++; 
     } 
  } 
 
//process the data that has came 
 
  tOutputEndPointDescriptorBlock[0].bEPBCTX = 0x00;    
  //allowing next data to come in 
  bOEP1SaveBufferPosition=0x00; 
  return;     //clear the interrupt 
} 
 
On similar lines, we can define the Input End Point1 Interrupt. 
 
void IEP1InterruptHandler() { 
 //code to be performed after data has been sent to the host 

tInputEndPointDescriptorBlock[0].bEPBCTX=0x04;   
//also specifies the number of bytes for next transfer 
return; 

} 
 
5.1.4. RS-232 PORT FOR DEBUGGING 
 

Apart from the four LED’s provided in the hardware, we can also use RS232 port to 
monitor the 8052 operations. One of the first steps that the application code must do is to 
initialize the RS-232 port along with other system initialization processes. The firmware 
should define functions like rs232PutChar, send_buffers(), etc. which can transfer data to 
the RS-232 port. The RS-232 port can then be constantly polled for any new data. The 
three jumpers provided can disconnect the RS-232 completely from the circuit. One 
needs to set the PUR3_0, PUR3_1, P3_0, P3_1 bits high for proper transfer through the 
RS-232 port. Host program for reading the data coming from RS-232 is provided in the 
appendix. On the device side, RS-232 can be programmed by invoking the following 
function: 
 
void rs232Initialization(void) { 
// take care of TMOD, SCON setting, because Timer 0&1 use them 
together 
  TMOD &= 0x0f; // Mask Timer 1 high nibble 
  TMOD |= 0x20; // Set Timer 1 to mode 2 (AUTO RELOAD) 
  SCON = 0x40; // Set serial port for mode 1 
 
// 11.0592MHz uses & SMOD = 0, 24MHz or above uses & SMOD = 1 
  PCON = 0x80; // Set SMOD = 1 
  TH1 = RS232_BAUDRATE; // reference header 
  TR1 = 1; // enable Timer 1 
  TI = 1; // Set Transmit Interrupt flag 1 to transmit ready 
  RI = 0; // Set Receive Interrupt flag 0 to receive ready 
} 
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5.2. eTBC FUNCTIONING 
 

As mentioned earlier, the function of eTBC is to master an IEEE Std. 1149.1 (JTAG) test 
access port (TAP) under the command of a host microcontroller, which happens to be 
embedded on TUSB3210. Conceptually, the eTBCs operate as a simple 8-bit memory or 
I/O-mapped peripherals to a microcontroller (host). High level commands and parallel 
data are passed to/from the eTBCs via its generic host interface, which includes an 8-bit 
bidirectional data bus (D7–D0) and a 3-bit address bus (A2–A0). These high level 
commands can move the TAP controller from one state to another, performing 
appropriate scan commands in that state. Read/write select (R/W) and strobe (STRB) 
signals are implemented so that the critical host-interface timing is independent of the 
CLKIN period. An asynchronous ready (RDY) indicator is provided to hold off, or insert 
wait states into a host read/write cycle when the eTBCs cannot respond immediately to 
the requested read/write operation. The pin mapping of our eTBC (SN74LVT8980A) is 
shown in Fig. 5.1. 

 
 

Fig.5.1 Mapping of the pins in SN74LVT8980A 
 
 

5.2.1 READ/WRITE ACCESS 
 

Interfacing a microcontroller and an eTBC involves Read/Write (R/W), Strobe (STRB) 
and Ready (RDY) for handshaking. The read/write select (R/W) controls the direction of 
data flow in the bidirectional data bus. For read access (R/W high), the eTBC data bus 
outputs are made active on the falling edge of STRB to drive the data in the eTBC 
register that is selected by address (A2–A0). For write access (R/W low), the eTBC data 
outputs remain at high impedance, independent of STRB. The register selected by the 
address (A2–A0) inputs latches the values from the data bus on the rising edge of STRB. 
The following pieces of code show the read and write operations of eTBC 
 

P0=0xff;  //input port 
setread(); 
P1_5=0; 
temporary=P0; 
P1_5=1; 

P0=temporary;    //output port 
setwrite(); 
P1_5=0; 
P1_5=1; 
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5.2.2. REGISTER DESCRIPTION 
 

The address pins (A2-A0) directly index the eTBC’s eight read/write registers. Each 
address pin can be addressed to select any of the registers. 
 

Table 5.1 
 Register summary 

 

Address Register Host Access 
000 Configuration A R/W 
001 Configuration B R/W 
010 Status R 
011 Command R/W 
100 TDO buffer R/W 
101 TDI buffer R 
110 Counter R/W 
111 Discrete Control R/W 

 

 
A brief overview of the registers available is given below (details are available in [3]): 
 

1. Configuration A:  
The eTBC operates under the influence of configuration A register by selecting 
the modes like automatic/free-running-TCK, automatic/gated-TCK, or discrete-
control modes. The register is fully readable at all times and is fully writeable 
except when an eTBC command is in progress.  

2. Configuration B 
This register allows software control of the TCK output frequency based on a 
division of CLKIN input. Moreover, retiming delays can be introduced, which can 
be used to de-skew the TAP signals to target scan chains that are electrically 
distant (due to cabling delays, etc). 

3. Status 
The status of the eTBC is reported fully and updated continuously in the status 
register. The TDI-buffer status & TDO-buffer status report the readiness of TDI 
buffer to a host read and that of the TDO buffer to a host write. 

4. Command 
Apart from providing the software reset, this register can also be used to issue 
high level commands by the host to cause the eTBC to generate the TMS 
sequences necessary to move the test bus from any stable TAP-controller state to 
any other such stable state.  

5. TDO buffer 
The TDO buffer is the 4 × 8-bit-parallel-to-serial FIFO that accepts scan data 
from the host in 8-bit-parallel format and serializes it onto the TDO pin during 
scan operations. Scan data is expected to be transferred from the host in least-
significant-byte-first order to meet IEEE Std. 1149.1 requirements for LSB-first 
scan order. Any partial byte to be written should be justified to D0. The TDO 
buffer is cleared upon command initiation, so no scan data should be written to 
the TDO buffer before writing a scan command to the command register. 
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6. TDI buffer 
The TDI buffer is the serial to 4 × 8-bit-parallel FIFO that serially receives data at 
the TDI pin and makes it available in 8-bit-parallel format for reading by the host. 
Scan data is expected to be transferred from the IEEE Std. 1149.1 targets in LSB-
first order and is made available for host read in least-significant-byte-first order. 
The last data available for host read during a scan command may be a partial byte, 
in which case it is justified to D0. 

7. Counter 
The counter register, while only 8 bits wide like any other eTBC register, 
provides read/write access to the full 32-bit eTBC counter. Writes to the counter 
register are accomplished by four complete host access cycles. 

8. Discrete control. 
The discrete-control register is used to program the state of the TAP outputs 
(TCK, TDO, TMS and TRST) and to poll the state of the TAP input (TDI) when 
the eTBC is in its discrete-control mode. 

 
5.3. PROGRAMMING OF CPLD 
 
All the IEEE Std. 1149.1 target devices have JTAG compatibility. Such devices can be 
programmed or erased by accessing their appropriate registers and then sending the 
required commands. A simple JTAG programming will involve the following steps: 

1. Check whether the device is connected 
2. Load the bypass register 
3. Enable in system programming (ISP Enable) 
4. Erase the device 
5. Load the program 
6. Verify (if required) 
7. Disable in system programming (ISP Exit) 
 

We successfully programmed an XC9572XL_PC44 CPLD using its JTAG port. 
Complex Programmable Logic Device (CPLD) provides a simple low density 
programmable logic solution. These logic devices are characterized by an architecture 
offering high speed, predictable timing and simple software. The in-system programming 
of CPLD requires an understanding of their BSDL files. All IEEE Std. 1149.1 target 
devices support boundary scan logic and have a boundary scan description file (BSDL). 
These BSDL files contain the opcode for instruction registers like IDCODE 
(Identification Code), ISPEN (ISP Enable), etc. The data and instruction registers of these 
devices can be accessed by proper movement in the TAP state machine, and a data 
register scan is done to read back or write into that data register. 

The data to be programmed into a CPLD is stored in its ‘jedec’ file. Jedec file 
shows the location of all the transistors in the array which need to be fused. These 
locations are displayed by 1’s and 0’s. We can use our jed2svf program or XILINX 
impact tool to convert the jed file to svf file. The serial vector format (SVF) files contain 
the actual data that needs to be sent through the TDO pins of eTBC. The svf file shows 
the bit stream that will be required to program the CPLD. The svf file also contains the 
proper order in which these bits must be sent to the target device to program or erase it. 
This data is used to move the eTBC from one state to another. Every scan operation of 
CPLD through eTBC requires that the counter is loaded. Next we load the command 
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register, and finally send the data required for IR scan or DR scan through the TDO pins. 
We divide the svf file into small chunks which in itself could do a complete scan 
operation. That is to say, each chunk consists of a counter value, along with the command 
register opcode and the data (TDO). 

 
5.3.1. APPLICATION FIRMWARE CODE 
 

In the initial part of the firmware the eTBC was loaded with Configuration A and B 
values. The rest of the data was sent to eTBC in chunks using the interrupt handlers of 
TUSB. As soon as new data arrives to the TUSB it sets the NAK bit which is reset at the 
end of the interrupt handler routine. A simple flow chart to describe this process is shown 
in Fig. 5.2. 
 

 
 

Fig.5.2 A flow chart for the firmware code 
 

The code for the interrupt handler is as below: 
 
void OEP1InterruptHandler(void) { 
BYTE bSize, bTemp, bCode; 
int count, tdobytes, delaypresent; 
BYTE temp=0xff; 
 
if(bOEP1RecieveLength == 0) { 
 bOEP1RecieveLength = pbOEP1XBufferAddress[0]; 
 bOEP1RecieveLength += ((int)pbOEP1XBufferAddress[1]<<8); 

bSize = tOutputEndPointDescriptorBlock[0].bEPBCTX & 
EPBCT_BYTECNT_MASK; 

 for(bTemp=3; bTemp<bSize; bTemp++) { 
  bCode = pbOEP1XBufferAddress[bTemp]; 
  abOEP1SaveBuffer[bOEP1SaveBufferPosition] = bCode; 
  bOEP1SaveBufferPosition++; 
  } 
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 } 
else { 

bSize = tOutputEndPointDescriptorBlock[0].bEPBCTX & 
EPBCT_BYTECNT_MASK; 

 for(bTemp=0; bTemp<bSize; bTemp++) { 
         bCode = pbOEP1XBufferAddress[bTemp]; 
         abOEP1SaveBuffer[bOEP1SaveBufferPosition] = bCode; 
         bOEP1SaveBufferPosition++; 
         } 
   } 
 
//code for moving the state of TAP controller 
//first byte = 0 => Full instruction without delay  
//first byte = 1 => Full byte instruction byte with delay 
//if first byte = 0 
//next 4 bytes counter followed by command register’s opcode 
 
count=0; 
P2=0xff; 
if(abOEP1SaveBuffer[count]==0) { 
  P2_3=0; 
         count=1; 
         tdobytes=setcounter(count); 
         count=count+4;   //6th byte counter 
         setcommand(count); 
         count++; 
         settdo(count,tdobytes);  //and finally the tdo bytes 
         count=count+tdobytes; 
        } 
else { 
      count=1; 
     P2_2=0;             //to show delay loop 
     givedelay(count); 
     count=count+2; 
     } 
P2_0=~P2_0; 
tOutputEndPointDescriptorBlock[0].bEPBCTX = 0x00; 
//waits for next packet of instruction 
bOEP1SaveBufferPosition=0x00; 
return; 
} 

 
5.3.2. HOST SIDE PROGRAMMING 
 
We need to send the svf file to TUSB, but such huge file cannot be sent all in one piece. 
Hence, we need to divide the svf file into small pieces. Each piece is then programmed to 
obtain a chunk of data as shown in table 5.2. 

These chunks were made using a Perl script which takes a svf file as an input and 
generates a temporary file. A file called counter.txt is also created which contains the size 
of each chunk. Host side program must read these chunks and send them to the TUSB, 
which processes it for further use. 
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Table 5.2 
 Operation of svf2temp script 

 
Piece of  Instruction from 

svf file 
Chunk 
of data 

Explanation 

00 00  not a delay function 
01  a delay function 

20 
00 
00 
00 

 
  This gives a 32 bit counter value and it is    
   written starting with the least significant  byte 
 

18 The value to be loaded in command register 
dd 
cc 
bb 

 
 
 
 
SDR  32  TDI(aabbccdd) 

 
 
 

aa 

 
   The TDO data to be loaded starting from the    
    least significant byte 

 
 

The complete send program is provided in the appendix. A piece of send code is 
produced here: 

 
firmposition=0;  //keeps track of the number of bytes sent 
for(i=0;i<countlen;i++) //mycount keeps track of size of each 
chunk 
{ 
    if((retval=usb_bulk_write(tusb, 1, &firmware1[firmposition], 
mycount[i], 500000)) < 0) 
       { 
         printf("retval %i\n", i); 
         die("Error downloading firmware"); 
        } 
    firmposition+=mycount[i]; 
    } 
} 
 
After the firmware is loaded in the TUSB, the send program is executed on the host side, 
which changes the state of the TAP controller accordingly. Complete programming flow 
is shown in Fig. 5.3 
 
5.3.3. ERASING THE CPLD 
 
To erase the XC9572XL_PC44, the procedure remains the same as explained above. 
Again we use the svf file generated by either the jed2svf code or by the impact software. 
Once we have the svf file we convert it into chunks and then send them to the TUSB by 
the send program. Firmware as well as the send program remains same because they are 
designed so as to enable the TAP controller to move from one state to another; states 
being determined by the chunks that the host sends. 
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Fig. 5.3 The programming flow followed 
 
5.3.4. VERIFYING THE CPLD 
 
To verify whether the CPLD has been programmed successfully or not, the instruction 
opcode for the verify instruction is used. It reads back the state of transistors (whether 
fused or not) at the specified address. The algorithm for this involves loading the bypass 
register, followed by ISPEN and the verify instruction. In the next step we send the 50 bit 
configuration register that we used while programming the device. The next input scan 
returns the state of fuses for the specified location given in the configuration register 
loaded. 

To implement the above scheme, we need to modify the interrupt handler such 
that it checks the returned value of the configuration register from the device. The send 
program on the host side should keep sending the chunks of data, each chunk 
representing 1 scan operation, and consists of a counter value, command register value 
and the data or instruction for that command. 
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6. CONCLUSIONS 
 
The project gave a good overview of the communication through the JTAG port. The 
PCB, as described, was implemented and gave the results expected. We could program as 
well as erase and verify the program loaded onto CPLD (XC9572XL_PC44). This JTAG 
programmer can be used to program any IEEE Std. 1149.1 compliant target if the BSDL 
file of that target is available. The USB interface provided to the device makes it easier to 
program as well as read back the device configuration registers. Thus our hardware can 
program devices, removing the requirement of complex, multi purpose and highly 
expensive JTAG emulators available in the market. 
 
 
FUTURE SCOPE 
 
The hardware produced can be used to program any IEEE Std. 1149.1 compliant device. 
All that remains is to write down appropriate software for sending proper instructions to 
that particular target device, based on its BSDL file. In our case we could develop the 
software for XC9572XL_PC44 CPLD, using its BSDL file. This software can be used as 
a basic building block for more complex codes that can program any device. Further, this 
hardware can be used to program a chain of such devices, but this capability of the 
hardware is yet to be tested. 
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APPENDIX 
 

Appendix A: The send program to transmit chunks of data from the host to TUSB 
 
This program reads the file supplied as an argument and sends the read bytes after 
packing them into chunks. The size of each chunk is read from the counter.txt file. The 
code is written in line with the bootloader program available on TI website. To compile 
the code, libusb should be installed on the host PC and reference for its library should be 
mentioned while making the executable from this code. 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <sys/stat.h> 
#include <usb.h> 
#include "tusb.h" 
#ifndef min 
#define min(a,b) (((a)<(b))?(a):(b)) 
#endif 
#define die(x) do { perror(x); return 1; } while(0) 
 
 
int chartoint(unsigned char input) 
{ 
  int returnvalue; 
  returnvalue=input-48; 
  if(returnvalue<10) 
 return returnvalue; 
  else 
 return (returnvalue-39); 
} 
 
int convert(int b,int a) 
{ 
  int returnvalue; 
  a=a<<4; 
  returnvalue=b|a; 
  return returnvalue; 
} 
 
int main(int argc, char *argv[]) 
{ 
  FILE *in; 
  FILE *cf; 
  int I,len,retval,finallen,countlen,countlentemp,firmposition; 
  unsigned char firmware[8195]; 
  unsigned char firmware1[8195]; 
  unsigned char mycount[8195];  //this part imposes 
  unsigned char mycount1[8195];  //a constrint on the size of 
  unsigned char temp2,temp1;   //file to be transmitted 
  if(argc!=2) { 
    fprintf(stderr,"Usage: %s filename\n",*argv); 
    fprintf(stderr,"Sends chunks of data\n"); 
    return 1; 
  } 
 
  if((in=fopen(argv[1],"rb"))==NULL) 
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    die(argv[1]); 
 
  if(fstat(fileno(in),&s)<0)  
    die(argv[1]); 
 
  if((i=tusb_init())!=0) { 
    fprintf(stderr,"Error initializing USB\n"); 
    fclose(in); 
    return i; 
  } 
 
  /* When sending data directly to endpoint 1: 
     - the first two bytes specify the length (LSB first);  
     - the third byte specifies the checksum 
     - the data follows 
     - each packet can be up to 255 bytes. 
  */ 
 
  /* Read the data */ 
  cf=fopen("counter.txt","r"); 
  countlentemp=fread(&mycount1[0],1,8192,cf); 
  countlen=0; 
  for(i=0;i<countlentemp;i++) 

{ 
 if(mycount1[i]!=10) 
  { 
  if(mycount1[i+1]==10) 
  mycount[countlen]=(unsigned char)chartoint(mycount1[i]); 
  else 
   { 
   temp1=(unsigned char)(chartoint(mycount1[i])); 
   temp2=(unsigned char)(chartoint(mycount1[i+1])); 
   mycount[countlen]=convert(temp2,temp1); 
   i++; 
   } 
  countlen++; 
  } 
 } 
  
  len=fread(&firmware[3],1,8192,in); 
  fclose(in); 
  if(len==0) { 
    fprintf(stderr,"Error: input file is empty!\n"); 
    return 1; 
  }  
  else if(len<0) { 
  die("Error reading input file"); 
  } 
 
  finallen=3;   
  for(i=3;i<len+3;i=i++) 
  { 
  if(firmware[i]!=10)  
 { 
      temp1=(unsigned char)chartoint(firmware[i]); 
  temp2=(unsigned char)chartoint(firmware[i+1]); 
  firmware1[finallen]=convert(temp2,temp1); 
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 finallen++; 
 i=i+1; 
 } 
  } 
  /* Store the length */ 
  firmware1[0] = (unsigned char)((finallen-3) & 0xff); 
  firmware1[1] = (unsigned char)(((finallen-3) & 0xff00) >> 8); 
 
  /* Calculate the checksum */ 
  firmware1[2]=0; 
  printf("firmware1[0]=%d\n",firmware1[0]); 
  printf("firmware1[1]=%d\n",firmware1[1]); 
  for(i=3;i<finallen;i++) 
    { 
    firmware1[2] += firmware1[i]; 
    printf("i=%d, value=%d\n",i,firmware1[i]); 
    } 
 
  /* Send the header and data to endpoint 1 in 255-byte chunks. */ 
firmposition=0; 
for(i=0;i<countlen;i++) 
{ 
    if(i==0) 
    { 
 if((retval=usb_bulk_write(tusb, 1, &firmware1[0], mycount[i]+3, 
500000)) < 0) 
       { 
         printf("retval %i\n", i); 
         die("Error downloading firmware"); 
       } 
    firmposition=mycount[i]+3; 
    } 
    else 
    { 
 if((retval=usb_bulk_write(tusb, 1, &firmware1[firmposition], 
mycount[i], 500000)) < 0) 
       { 
         printf("retval %i\n", i); 
       die("Error downloading firmware"); 
        } 
    firmposition+=mycount[i]; 
    } 
    printf("Sent %d\n",firmposition); 
} 
 
printf("Wrote %d bytes.  Data send.\n",firmposition); 
return 0; 
} 
 
tusb.c and tusb.h – Other files required while compiling 
It contains the various vendor and device specific details of TUSB3210 and is used to 
initiate the communication with the device. 
 
tusb.h – Header file required by send program 
#ifndef TUSB_H 
#define TUSB_H 
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#include <usb.h> 
 
typedef unsigned short u16; 
typedef unsigned char u8; 
extern usb_dev_handle *tusb; 
 
int tusb_init(void); 
void tusb_close(void); 
 
#define BTC_GET_BOOTCODE_STATUS  0x80 
#define BTC_EXECUTE_FIRMWARE  0x81 
#define BTC_GET_FIRMWARE_REVISION 0x82 
#define BTC_PRE_UPDATE_HEADER  0x83 
#define BTC_UPDATE_HEADER  0x84 
#define BTC_REBOOT   0x85 
#define BTC_FORCE_EXECUTE_FIRMWARE 0x8F 
#define BTC_EXTERNAL_MEMORY_READ 0x90 
#define BTC_EXTERNAL_MEMORY_WRITE 0x91 
#define BTC_I2C_MEMORY_READ  0x92 
#define BTC_I2C_MEMORY_WRITE  0x93 
#define BTC_INTERNAL_ROM_MEMORY_READ 0x94 
 
#endif /* TUSB_H */ 
 
tusb.c file – Header file required by bootloader 
#include <stdio.h> 
#include <stdlib.h> 
#include <sys/stat.h> 
#include <usb.h> 
#include "tusb.h" 
 
#define die(x) do { perror(x); return 1; } while(0) 
 
usb_dev_handle *tusb = NULL; 
 
void close_tusb(void) { 
  if(tusb!=NULL) 
    usb_close(tusb); 
} 
 
int tusb_init(void) { 
  struct usb_bus *bus; 
  struct usb_device *dev; 
  struct usb_device *tusb_dev = NULL; 
  int x; 
 
  usb_init(); 
  if(x = usb_find_busses()) { 
    printf("Busses found: %i\n", x); 
    //    die("Bus scan"); 
  } 
  if(x = usb_find_devices()) { 
    printf("Devices found: %i\n", x); 
    // die("Device scan"); 
  } 
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  for (bus = usb_busses; bus; bus = bus->next) { 
    for (dev = bus->devices; dev; dev = dev->next) { 
      if(dev->descriptor.idVendor==0x0451 &&       /* TI */ 
  (dev->descriptor.idProduct==0x3210 || 
   dev->descriptor.idProduct == 0x2136) 
   ) {      /* TUSB2316/3210 */ 
 if(tusb_dev!=NULL) { 
   fprintf(stderr,"Multiple TUSB2316/3210s found, bailing 
out.\n"); 
   return 1; 
 } 
 tusb_dev=dev; 
      } 
    } 
  } 
  if(tusb_dev==NULL) { 
    fprintf(stderr,"TUSB2316/3210 not found.\n"); 
    return 1; 
  } 
  if((tusb=usb_open(tusb_dev))==NULL) { 
    fprintf(stderr,"Error opening USB device.\n"); 
    return 1; 
  } 
  /* Setting the configuration and interface isn't really necessary  
     since there are only one of each in the boot ROM, but it's a good 
     way to make sure we can send data to the device. */ 
 
  if(usb_set_configuration(tusb, 1)) { 
    perror("Can't set configuration"); 
    fprintf(stderr,"(make sure you have write access to the 
device)\n"); 
    return 1; 
  } 
  if(x = usb_claim_interface(tusb, 0)) 
    printf("Claim inteface %i\n", x); 
    //die("Can't claim interface"); 
 
  return 0; 
} 
 
Other requirements of send program: 
A libusb version-0.1.7 or greater needs to be installed for compiling the send.c file. A 
make file should also mention the location of libraries required by send program. The 
make file for compiling send.c will look like this: 
bootload : bootload.c bootload.o tusb.c tusb.o 
   gcc -L/root/libusb-0.1.8/.lib/ -lusb -o bootload 
bootload.o tusb.o 
 
tusb.o : tusb.c tusb.h 
   gcc -I/usr/local/include -L/root/libusb-0.1.8/.lib/ -
c tusb.c 
 
bootload.o : bootload.c 
   gcc -I/usr/local/include -L/root/libusb-0.1.8/.lib/ -
c bootload.c 
 
clean  : rm myusb.o 
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Appendix B: Using RS-232 as a debuggers resource 
 
A serial interface for reading data from the firmware is provided with the device. 
Firmware must define functions like rs232PutChar(char), to send data through the RS-
232 port. On the host side one can use the getbuf program to monitor the inputs coming 
from RS-232 port. Care must be taken to set the P3_0 and P3_1 pins to high in the 
firmware before using RS-232 port for debugging purposes.  
 
getbuf.c – File to be compiled on the host side 
#include <stdio.h> 
#include <termios.h> 
#include <fcntl.h> 
#include <limits.h> 
#define BAUDRATE B9600 
#define TARGET_PORT "/dev/ttyS0" 
 
int open_port(char *port, speed_t baudrate) { 
  int fd; 
  char *target_port; 
  struct termios options; 
 
  /* Set the target port */ 
 
  fd = open(port, O_RDWR | O_NOCTTY); 
  if (fd <0) {perror(port); exit(-1); } 
 
  tcgetattr(fd, &options); 
 
  cfsetospeed(&options, baudrate); 
  cfsetispeed(&options, baudrate); 
   
  options.c_cflag &= ~CSIZE; // Mask the character size bits 
  options.c_cflag |= CS8; //Select 8 data bits 
  options.c_iflag = (IGNPAR | IGNBRK); 
  options.c_iflag &= ~(IXON | IXOFF | IXANY); 
  options.c_cflag |= (CLOCAL | CREAD | CS8 | CSTOPB); 
  options.c_cflag &= ~HUPCL; /* Will not drop DTR on hangup */ 
  options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); 
  options.c_oflag &= ~OPOST; 
  options.c_cc[VMIN] = 0; 
  options.c_cc[VTIME] = 1; 
 
  tcsetattr(fd, TCSADRAIN, &options);//changed TCSANOW 
  tcflush(fd,TCIOFLUSH); 
  return(fd); 
} 
 
/* Close the serial port */ 
void close_port(int fd) { 
  tcflush(fd,TCIOFLUSH); 
  close(fd); 
} 
 
void printbuff() { 
  int nread_bytes = 0; 
  unsigned char read_array[130]; 
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  int fd; 
  int i; 
  struct termios options; 
 
  fd = open_port(TARGET_PORT, BAUDRATE); 
  if(fd<0) 
 printf("ERROR\n"); 
 
  tcgetattr(fd, &options); 
  options.c_cc[VMIN] = 3; //minimum number of bytes to read 
  options.c_cc[VTIME] = 100; //minimum amount of time to wait 
  tcsetattr(fd, TCSANOW, &options); 
  for (i=0;i<128;i++) 
 read_array[i]=0xff; 
  nread_bytes += read(fd, &read_array[0], 128); 
  for(i=0; i<128; i++) 
    printf("%04x\t%02x\n", i+0x80, read_array[i]); 
  printf("%i\n", nread_bytes); 
} 
 
void main() { 
  printbuff(); 
} 
 
A simple compilation of this program using gcc will make the executable, which will 
wait for data from the RS-232 port. On the firmware, functions like rs232PutChar, 
send_buffers, rs232Inititalization, etc. must be defined. A detailed function list used by 
RS-232 on the device side is given at www.ti.com. 




