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 Abstract  
 
This EDP aims at designing a low cost device for small message encryption using 
microcontrollers. The device has the capability to do fast encryption using SHA-1 
and to securely protect and rotate secrets. The project can be used in situations where 
resources are limited to provide strong small-message encryption and peer-to-peer 
authentication between subsystems. 
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1. Introduction: 
 
When systems communicate telemetry or control information between peers the security 
and authenticity of the communicated data may be important. If the medium is public or 
could be subject to compromise, securing the communications path becomes an issue. 
But encrypting control and status messages that are passed between subsystems on 
networks, telephone lines, or RF channels usually requires extensive microcontroller 
resources, and the maintenance of secrets (keys) is usually the weak point in the system. 
Changing or customizing critical system secrets is often impossible in ROM-based 
equipment, which further reduces the security of the system. 

We need low cost devices that contain fast, powerful cryptographic engines. 
Some of these devices need to have the ability to perform the SHA-1 hash very quickly, 
and to securely store, protect, and rotate secrets. These devices can be used with small 
microcontrollers and limited resources to provide strong small-message encryption and 
peer-to-peer authentication between subsystems. 
 
1.1 Cryptography with Microcontrollers: 
 
When a subsystem component has limited processing power and memory, advanced 
cryptography is usually not possible. Secure exchange of data and peer-authentication 
requires secrets, and microcontrollers are not very good at keeping secrets from clever 
hardware and software attacks. This project will discuss the application of a device that 
perform SHA-1 hash functions to provide a low-cost, low-overhead cryptographic 
solution for small message encryption and authentication. 
 
To optimize microcontroller code space, we will use a simple fundamental cryptographic 
concept called the one time pad. Given an array of bytes that comprise a message, it can 
be said that the byte-wise XOR (Exclusive-OR) result of that array of bytes against an 
array of random bytes results in an array of bytes that are equally random. In other words, 
no information about the message remains in the resulting array. To put it another way, a 
byte when XOR’ed against a random byte results in an equally random byte. If one was 
to generate an array of truly random bytes (called a pad), one could then XOR that array 
against any valid message and the result would be an encrypted message that is 
unbreakable by any cryptographic means (so long as the pad is held secret and known 
only to the valid participants in the conversation). This result, when XORed again against 
the same pad, will be restored to the original message. This is a basic tenet of 
cryptography—the function is simple (XOR) and the power is entirely in the quality and 
security of the pad, not in the algorithm by which it is applied to the message. 
 
This would seem to be a very simple, very powerful way to perform message encryption, 
but there are certain constraints: 
1) The pad must be passed from the sender to the recipient in a way that it cannot be 
compromised. Both parties to the conversation must share the same pad. 
2) If the pad is used on more than one message, its strength is greatly diminished—if not 
wholly compromised. A new pad must be created for each message. 
 



What is needed is the ability to generate an array of bytes (a pad) at will, and then to pass 
some key with the message that can be used by the recipient to regenerate the same pad. 
This means that each legitimate participant in the conversation must hold some secret that 
allows the pad to be regenerated given the key, and the secret must be protected. 
 
The pad generator that we have described is a function called a one-way hash. This 
function takes input data and generates a digest from it. This digest is entirely affected by 
every bit of the input data, and yet is derived in such a way that the input data cannot be 
discovered given the algorithm and the digest.  
 
2 Design: 
 
2.1 The Method : 
The following algorithm is being employed 
1) The microcontroller generates a random number and sends it to the device. 
2) The microcontroller directs the device to generate a SHA-1 digest using the random 
number and the secret. 
3) The microcontroller reads the 160-bit digest from the device. 
4) The microcontroller XORs each byte of the message with a byte of the digest (the pad) 
to obtain the encrypted message. 
5) The microcontroller concatenates the random number and the encrypted message and 
transmits the result to the peer. 
 

 
Figure 2.1 Block diagram transmitter 
 
When an encrypted message arrives, the following algorithm is employed: 
1) The random number portion of the message is sent to the device. 
2) The microcontroller directs the device to generate a SHA-1 digest using the random 
number and the secret. 
3) The microcontroller reads the 160-bit digest from the device. 
4) The microcontroller XORs each byte of the message with a byte of the digest (the pad) 
to obtain the original message. 
5) The microcontroller processes the decrypted message. 



 
 

 
Figure 2.1.2 Block diagram receiver 
 
Security is assured by the strength of the SHA-1 function. Because the SHA-1 hash 
function is not reversible, the secret cannot be derived from the message traffic. Without 
the secret, there is no way to decipher or falsify a message. The random seed value used 
with each message makes every message unique, and makes the deciphering messages all 
but impossible. 
 
The SHA-1 hash function provides a 160-bit (20-byte) result. When the message to be 
encrypted exceeds this length, the system may simply perform another SHA operation (to 
obtain another 20 bytes of pad data). 
 
2.2 SHA Computational algorithm: 
 

 
 

 
 



 

 
 

 
 
The master can read the Message Authentication Code (MAC) with the Read 
Authenticated Page command in a register and bit sequence. With the Copy Scratchpad 
command the bit transmission sequence is the same, however, the master has to compute 
the MAC and send it to the DS1963S. With the Compute Next Secret command the MAC 
is not exposed. Instead, the content of the SHA computation registers E and D is directly 
copied to the secret register. 
 
2.3 1-Wire bus system: 
 
The 1-Wire bus is a system, which has a single bus master and one or more slaves. In all 
instances the DS1963S is a slave device. The bus master is typically a microcontroller. 
The discussion of this bus system is broken down into three topics: hardware 
configuration, transaction sequence, and 1-Wire signaling (signal types and timing). A 1-
Wire protocol defines bus transactions in terms of the bus state during specific time slots 
that are initiated on the falling edge of sync pulses from the bus master. 
 
 
 
 
 
 



 
2.4 Schematic: 
  

 
 
2.5 Hardware configuration of the 1-wire interface: 
 
The 1-Wire bus has only a single line by definition; it is important that each device on the 
bus be able to drive it at the appropriate time. To facilitate this, each device attached to 
the 1-Wire bus must have open drain or 3-state outputs. The 1-Wire port of the DS2432 is 
open drain with an internal circuit equivalent to that shown in Figure below multidrop 
bus consists of a 1-Wire bus with multiple slaves attached.  
 



At regular speed the 1-Wire bus has a maximum data rate of 16.3k bits per second. The 
speed can be boosted to 142k bits per second by activating the Overdrive Mode. The 
DS1963S requires a 1-Wire pull-up resistor of maximum 2.2 kΩ for executing any of its 
memory and SHA function commands at any speed. When communicating with several 
DS1963S simultaneously, e. g., to install the same secret in several devices, the resistor 
should be bypassed by a low-impedance pull-up to VPUP while the device transfers data 
from the scratchpad to the EEPROM and updates the tamper-detect register. 
 
The idle state for the 1-Wire bus is high. If for any reason a transaction needs to be 
suspended, the bus MUST be left in the idle state if the transaction is to resume. If this 
does not occur and the bus is left low for more than 16 µs (Overdrive Speed) or more 
than 120 µs (regular speed), one or more devices on the bus may be reset. 
 

 
Figure 2.5: Hardware configuration of the 1-Wire device 
 
 
2.6 Transaction sequence and 1-Wire Commands: 
 
The protocol for accessing the DS1963S via the 1-Wire port is as follows: 

• Initialization 
• ROM Function Command 
• Memory or SHA Function Command 
• Transaction/Data 
 

1-wire commands: 
 

• Write Scratchpad Command [0Fh] 
• Read Scratchpad Command [AAh] 
• Copy Scratchpad [55h] 
• Read Memory [F0h] 
• Erase Scratchpad [C3h] 
• Match Scratchpad [3Ch] 
• Read Authenticated Page [A5h] 
• Compute SHA [33h] 



 
 
2.7 RS-232 Protocol 
 
Introduction 
 
In the early 1960s, a standards committee, today known as the Electronic Industries 
Association, developed a common interface standard for data communications 
equipment. At that time, data communications was thought to mean digital data exchange 
between a centrally located mainframe computer and a remote computer terminal, or 
possibly between two terminals without a computer involved. These devices were linked 
by telephone voice lines, and consequently required a modem at each end for signal 
translation. While simple in concept, the many opportunities for data error that occur 
when transmitting data through an analog channel require a relatively complex design. It 
was thought that a standard was needed first to ensure reliable communication, and 
second to enable the interconnection of equipment produced by different manufacturers, 
thereby fostering the benefits of mass production and competition. From these ideas, the 
RS232 standard was born. It specified signal voltages, signal timing, signal function, a 
protocol for information exchange, and mechanical connectors. Over the 40+ years since 
this standard was developed, the Electronic Industries Association published three 
modifications, the most recent being the EIA232E standard introduced in 1991. Besides 
changing the name from RS232 to EIA232, some signal lines were renamed and various 
new ones were defined, including a shield conductor. 
 
2.7.1 Pin Assignments 
 
If the full EIA232 standard is implemented as defined, the equipment at the far end of the 
connection is named the DTE device (Data Terminal Equipment, usually a computer or 
terminal), has a male DB25 connector, and utilizes 22 of the 25 available pins for signals 
or ground. Equipment at the near end of the connection (the telephone line interface) is 
named the DCE device (Data Circuit-terminating Equipment, usually a modem), has a 
female DB25 connector, and utilizes the same 22 available pins for signals and ground. 
The cable linking DTE and DCE devices is a parallel straight through cable with no 
cross-overs or self-connects in the connector hoods. If all devices exactly followed this 
standard, all cables would be identical, and there would be no chance that an incorrectly 
wired cable could be used. This drawing shows the orientation and connector types for 
DTE and DCE devices: 



 
Figure 2.7.1: EIA232 communication function and connector types for a personal 
computer and modem. DCE devices are sometimes called “Data Communications 
Equipment” instead of Data Circuit-terminating Equipment. 
 
Here is the full EIA232 signal definition for the DTE device (usually the PC). The most 
commonly used signals are shown in bold. 
 
Remark: 
Signal names that imply a direction, such as Transmit Data and Receive Data, are named 
from the point of view of the DTE device.  

 
Figure 2.7.2: Pin assignments for db-9 male connector. 

 
 
 
 



If the EIA232  standard were strictly followed, these signals would have the same name 
for the same pin number on the DCE side as well. Unfortunately, this is not done in 
practice by most engineers, probably because no one can keep straight which side is DTE 
and which is DCE. As a result, direction-sensitive signal names are changed at the DCE 
side to reflect their drive direction at DCE. 
 
2.7.2 Converting from 232 levels to TTL levels 
Signal State Voltage Assignments 
 
Voltages of -3v to -25v with respect to signal ground (pin 7) are considered logic ‘1’ (the 
marking condition), whereas voltages of +3v to +25v are considered logic ‘0’ (the 
spacing condition). The range of voltages between -3v and +3v is considered a transition 
region for which a signal state is not assigned. 
 
2.7.3 MAX232 IC 
 
The MAX220-MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E 
and V.28/V.24 communications interfaces, particularly applications where 12V is not 
available. 

 
Figure 2.7.3: MAX232 IC 
 
Dual Charge-Pump Voltage Converter: 
 
The MAX232 has two internal charge-pumps that convert +5V to ±10V (unloaded) for 
RS-232 driver operation. The first converter uses capacitor C1 to double the +5V input to 
+10V on C3 at the V+ output. The second converter uses capacitor C2 to invert +10V to -
10V on C4 at the V- output. 
 



 

 
 
Figure 2.7.4: hardware configuration of RS 232 part  
 
 
2.7.4 RS-232 Drivers: 
 
The typical driver output voltage swing is ±8V when loaded with a nominal 5k RS-232 
receiver and VCC = +5V. Output swing is guaranteed to meet the EIA/TIA- 232E and 
V.28 specification, which calls for ±5V minimum driver output levels under worst-case 
conditions. These include a minimum 3k load, VCC = +4.5V, and maximum operating 
temperature. Unloaded driver output voltage ranges from (V+ -1.3V) to (V- +0.5V). 
 
2.7.5 RS-232 receivers 
 
EIA/TIA-232E and V.28 specifications define a voltage level greater than 3V as a logic 
0, so all receivers invert. Input thresholds are set at 0.8V and 2.4V, so receivers respond 
to TTL level inputs as well as EIA/TIA-232E and V.28 levels. The receiver inputs 
withstand an input overvoltage up to ±25V and provide input terminating resistors with 
nominal 5k values. The receivers implement Type 1 interpretation of the fault conditions 
of V.28 and EIA/TIA-232E. The receiver input hysteresis is typically 0.5V with a 
guaranteed minimum of 0.2V. This produces clear output transitions with slow-moving 
input signals, even with moderate amounts of noise and ringing. The receiver propagation 
delay is typically 600ns and is independent of input swing direction. 
 
 
 
 
 
 



3. Cryptanalysis: 
 
Different attack scenarios on this device and the security of the device  
 
Basic Terms: 
 
Hash 
A hash is a distillation of a message. This distillation is typically much smaller than the 
message and is a constant size. A cryptographically strong hash must be nonreversible; 
meaning that by looking at the hash result there is no way to derive any part of the 
original message. It must also change significantly with any small change, even a single 
bit, in the input message. This is called the avalanche effect. The hash should also be 
collision-resistant, meaning that it is impractical to find two messages with the same 
hash. A hash with these properties can be used to verify that a message has not been 
altered. 
 
MAC 
A MAC (message authentication code) is a hash where a portion of the input message is 
secret. Only participants that know the secret can re-compute and verify the authenticity 
of the MAC.  
 
MAC generation: 
 

 
 
Participants in a system (secret known) can therefore verify a message and MAC 
combination to be authentic. The transient ones and zeros mentioned earlier are now 
trusted without resorting to encryption. 
 
SHA-1 takes in one or more blocks of 512 bits (64 bytes) and creates a 160-bit (20-byte) 
hash. 
 
Copy Attack 
 
The Copy Attack is done by copying valid service data from a device that is part of the 
service and writing it to another device that may or may not be part of the service. A 
device is part of the service if it has the correct authentication secret installed. The 
purpose of this attack is to take a valid token and create another one from it, thus creating 



two valid tokens. This could also be done to copy the attributes such as identity or 
monetary value  to another device to create more money or give access where none was 
provided. 
 
 
Conditions How the attack is defeated 
Target device is not 
part of system the 
(authentication 
secret not set) 
 

Since the authentication secret of the target device is not set 
to the correct value, then the device will not be accepted by 
the service no matter what the data is. 
 

Target device is part 
of the system 
(authentication 
secret set correctly) 
 

The target device will pass the authentication test. However 
there is a second MAC (message authentication code) which 
is embedded in the service data. This MAC (Service Data 
Signature) has the token’s ROM ID as part of the SHA-1 
calculation. Since the target device has a different ROM ID, 
then the data will be considered invalid and the device will 
be rejected. 
 

  
 
Replay Attack 
 
The Replay Attack attacker makes a copy of the service data of a valid device. The 
attacker then uses up other usage fields. The saved data is then copied back to the device. 
This way, the old data is replayed. 
 
 

 

Conditions How the attack is defeated 
None 
 

Each page used for secure data has a read-only non-rollingover 
page write-cycle counter associated with it. While the 
device still has a correct secret to generate the authentication 
MAC, the second MAC (Service Data Signature) that is 
embedded in the service data will be invalid. This MAC 
includes the write-cycle counter and a page number that it 
resides on. Writing old data back into that page or another 
page will invalidate it. Even rewriting the same data will 
invalidate it since the write-cycle counter advances. 
 

None 
 

The target device has a write protection feature that requires 
a valid MAC to copy data to it. Since the attacker does not 
know the secret, copying to the device is not possible. 
 

 



Eavesdrop Attack 
 
The Eavesdrop Attack is a technique where the communication is monitored to reveal the 
secret or a repeating pattern that could be replicated. 

 

Conditions How the attack is defeated 
Monitor and log  
communication 
during a valid 
transaction 
 

When authenticating a device to verify whether it is part of 
the service, a random challenge is presented to be included 
in the MAC calculation. This random value changes the 
communication traffic significantly with each transaction. Also, at 
no time is the secret ever sent over the device except when 
installing the secrets in a protected environment. 
 

 
A-B-A Attack 
 
The A-B-A Attack tries to play two different monetary SCU (service control unit) off each 
other to fool them into giving more product then was paid for. This attack starts with the 
token being presented to the first SCU ‘A’. It is then removed before the debit can be 
performed but close enough to the end so that the SCU thinks it was complete but without 
verification. This could be accomplished by monitoring the communication and 
interrupting the sequence at the appropriate time. SCU ‘A’ will then wait for the token to 
be reintroduced to verify the debit was complete. The token is then presented to another 
SCU ‘B’ and a complete debit is performed with product produced. The token is then 
taken back to the first SCU ‘A’ and it is allowed to verify that the transaction was 
complete. This fools ‘A’ into thinking it did the debit and product is given again. 
Consequently, two products were delivered for only one debit. 
 
 

 

Conditions How the attack is defeated 
The transaction 
taking place on SCU 
‘A’ must be stopped 
at the critical time. 
 

A random value called a Transaction ID is part of the service data 
to make every monetary instance unique. When SCU ‘A’ goes 
back to verify that it’s debit was complete, it will fail due to an 
incorrect Transaction ID.  
 

 
Emulation Attack 
Use a microprocessor to emulate the behavior of the token. The emulator must be fast 
enough to respond to the master as if it was a real device. As shown below there is no risk 
as long as the attacker does not know the authentication secret. This risk is further 
reduced by the technique of making each authentication secret unique by including the 
ROM ID as a component in the calculation of the secret (Unique Authentication Secret). 
 



Conditions How the attack is defeated 
Authentication secret 
is not known. 
 

The emulated device can not create the correct MAC for a 
given challenge so would not be accepted as part of the 
service. 
 

Authentication secret 
is known. 
 

None 
Communicate with the SHA device at the fastest possible 
data rate. The master (SCU) will expect a SHA computation in 
1ms to 2ms. This makes creating an emulator very challenging. 
Never disclose or expose the authentication secret. 
 

 
Brute Force Attack (MAC) 
 
A Brute Force Attack is an inelegant enumeration of all possibilities to get a desired 
result. The MAC variation of this attack consists of enumerating through all of the 
challenge-response pairs and keeping the results in a database to be used by an emulator. 
This requires access to a valid device that is part of the service. The random challenge is 
three bytes long giving the number of possible challenge response pairs at over 1.6 
million. Since the resulting SHA-1 MAC is 20 bytes long, the data created from this 
would be: 0xFFFFFF (challenge) * 20 (size of MAC) = 335,544,300 bytes (320MB). 
This creates a pre-computed MAC look-up table that could be used by an emulator. 
 
Conditions How the attack is defeated 
Dynamic data. Each 
time the device is 
presented, a new 
service record with a 
Service Data 
Signature is created 
and written 
 

The new service record must be reread and authenticated 
after it is written to the token. Since there is a different MAC 
for authentication of the new service record, the emulator 
would have to know this also. The service record should 
contain a random value called a Transaction ID so the 
emulator will not be able to predict what the new service 
record will be so it could not brute force this new MAC. 
 

Static data. Data is 
not changed, it is 
only authenticated. 
 

After authentication of the static data, write random data to 
an unused page and do another authentication from that 
page. The emulator will not know this new MAC. 
 

 
Brute Force Attack (Secret) 
 
The Secret Brute Force Attack enumerates through all possible secrets until a correct 
MAC is produced. A token that is part of the service supplies what a correct MAC is. If 
the secret is found it could be used in an emulator as long as it has a SHA-1 coprocessor 



that could do the hash in a millisecond. The secret is eight bytes long 
(FFFFFFFFFFFFFFFF hex). If it takes one microsecond to compute SHA-1 on a fast 
computer then it would take 580 thousand years to enumerate through all of the secrets. 
 
 

 

Conditions How the attack is defeated 
Computing power 
and a virtually 
unlimited amount 
of time. 
 
 
 
 

Using unique secrets (Unique Authentication Secret) in each 
device mitigates the severity of the problem. This is accomplished 
by using the devices unique ROM ID as part of the secret 
generation. If the secret is discovered the system does not have a 
‘class break’. Only the one device with that particular ROM ID can 
be emulated. Putting that ROM ID on a black-list will prevent its 
use forcing the attacker to do another brute force attack on a 
different device. 
 

 
Microprobe Physical Attack (Secret) 
 
The physical attack is an attempt to probe the internal silicon chip to read the Unique 
Authorization Secret. This is very difficult to do, the EEPROM devices. Usually losing 
contact with the battery will erase the onboard secrets. As with the brute force attack, if 
the secret is discovered it could be used in an emulator to make what appears to be a valid 
device in the service. This emulated device could then be used to replay previous data. 
The conditions and partial solution is the same for this attack as the brute force secret 
attack above. 
 
Host/SCU Attack (Secret) 
 
Take the SCU that does the authentication and probe it for the Master Authentication 
Secret and Master Signing Secret. 
 
Conditions How the attack is defeated 
Must have physical 
access to the SCU. 
 

Keep the SCU secure. For example, use a secure 
Microprocessor. 
 

Must have physical 
access to the SCU. 
. 
 

A partial solution is to use a ‘coprocessor’ for the device 
authentication and data validation in the SCU. 
The secrets are safe from detection. However this 
coprocessor could be used to create valid Service Data 
Signatures if the padding data (Initial Signature) is known. 
 

 



Competitor Attack 
 
The Competitor Attack is an attempt to discredit a system by maliciously and 
intentionally destroying or disrupting data. 
 
Conditions How the attack is defeated 
Token must be 
presented to a 
malicious reader. 
 

Any data can be overwritten which could invalidate the 
token. However, writes to a secret can be detected by 
checking the write-cycle counter associated with it. The 
device can be reused if it is reloaded with the correct data 
and secrets. 
 

Token must be 
presented to a 
malicious reader. 
 

The target device has a protection feature that requires a 
valid MAC to write data to the user memory area. Since the 
attacker does not know the secret, writing to the device is 
not possible. The target device also has a write protect 
mechanism for the secret. To prevent the attacker from 
overwriting the secret, this feature must be enabled. 
 

 
 
4. Testing: 
 
4.1 1-WIRE SIGNALING 
 
The DS1963S requires strict protocols to ensure data integrity. The protocol consists of 
four types of signaling on one line: Reset Sequence with Reset Pulse and Presence Pulse, 
Write 0, Write 1, and Read Data. Except for the presence pulse the bus master initiates all 
these signals. The DS1963S can communicate at two different speeds: standard speed and 
Overdrive speed. If not explicitly set into the Overdrive mode, the DS1963S will 
communicate at standard speed. While in Overdrive Mode the fast timing applies to all 
waveforms. 
 
To get from idle to active, the voltage on the 1-Wire line needs to fall from VPUP below 
the threshold VTL. To get from active to idle, the voltage needs to rise from VILMAX past 
the threshold VTH. The voltage VILMAX is relevant for the DS1963S when determining a 
logical level, but not for triggering any events. The initialization sequence required to 
begin any communication with the DS1963S is shown in Figure below. A Reset Pulse 
followed by a Presence Pulse indicates the DS1963S is ready to receive data, given the 
correct ROM and memory function command. In a mixed population network, the reset 
low time tRSTL needs to be long enough for the slowest 1-Wire slave device to recognize it 
as a reset pulse. This duration is 480µs at standard speed and 48µs at Overdrive speed.  
After the bus master has released the line it goes into receive mode (RX). Now, the 1-
Wire bus is pulled to VPUP via the pullup resistor. 
 



 
Figure 4.1: Initialization procedure 
 
4.2 Read/Write Time Slots 
 
Data communication with the DS1963S takes place in time slots that carry a single bit 
each. Write time slots transport data from bus master to slave. Read time-slots transfer 
data from slave to master. The definitions of the write and read time slots are illustrated 
in Figure below. All communication begins with the master pulling the data line low. As 
the voltage on the 1-Wire line falls below the threshold VTL, the DS1963S starts its 
internal timing generator that determines when the data line will be sampled during a 
write time slot and how long data will be valid during a read time slot. 
 
Master to Slave 
 
For a write-one time slot, the voltage on the data line must have crossed the VTHMAX 

threshold after the write-one low time is expired. For a write-zero time slot, the voltage 
on the data line must stay below the threshold until the write-zero low time tW0LMIN is 
expired.  
 
READ/WRITE TIMING DIAGRAM 
 

 
 



 
 

 
 
Slave to Master 
 
A read-data time slot begins like a write-one time slot. The voltage on the data line must 
remain below VTLMIN until the read low time tRL is expired. During the tRL window, when 
responding with a 0, the DS1963S will start pulling the data line low; its internal timing 
generator determines when this pull-down ends and the voltage starts rising again. 
 
4.3 Windmill comDebug Software 
 
Using comDebug software 
4.3.1 Entering Communication settings 
 

• Comm Port: Select the port to which the instrument is connected. 
• Baud Rate: The baud rate must be the same as that used by the instrument. Check 

the instruments Manual for details of which rate to choose. (9600) 
• Stop Bits: May be 1 or 2-if in doubt start with 2. 1 was used. 



 
 

 
4.3.2 Using Prompt Grid: 
 
Use this grid to enter commands to send to the instrument. The Byte column numbers 
each byte sent. The Char column shows the printed value of the byte. The Hex column 



shows its equivalent Hex value. One can type either into the Char or the Hex column. 
Click the cell where data has to be entered: it turns green. Simply type the characters to 
be sent. 
 
4.3.3 Checking RS-232 Port 
 
I connected the db-9 connector to the COM 3/4 port on the PC and connected the RXD, 
TXD and GND lines appropriately. Then to test the system, a simple code in the 
Microcontroller that sends back all data received was used. 
 
5. Applications 
 
Authentication is the process of proving to a host that a device, person, or message is 
valid and authentic. The authentication technique that takes advantage of a MAC is called 
challenge and response. A challenge is random data that is presented by a host to the 
device to be authenticated. The challenge is then included in the MAC calculation. This 
allows for every authentication session to be different and non-deterministic. 
 
What can be authenticated? A message between two pieces of equipment could be 
authenticated if the secret is known by both pieces. A portable token could be 
authenticated to a door to allow access to a controlled room. See Table below for a list of 
potential applications including both the host and authentication target. 
 

 
 
Status:   

• The circuit was tested on the bread board. 
• Boxed PCB is made. 
• The device is working for a baud rate of 9600 bps. Due to the unavailability of the 

smd device further testing is pending. 
 



6. Future Scope and conclusions: 
 
This device can do small message encryption with microcontrollers. This device can be 
used to provide strong encryption and authentication of control and status messages, 
telemetry, or sensitive process control information. For low cost and low overhead, it 
provides nonvolatile memory, secure secret storage, secret sharing and rotation, fast 
SHA-1 pad generation, and a globally unique serial number. 
 
A few features that can be incorporated in the design to enhance its capability such as: 
 

• Using a microcontroller with two RS 232 ports for optimizing the resources. 
• Providing external interrupts to actually monitor the data and providing data taps 

so that testing can be done more easily. 
• Error correcting code algorithms 
• Inclusion of port for Infrared transmit/receive data. 
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