
 EE318 Electronic Design Lab Project Report, EE Dept, IIT Bombay, April 2007

Secure Wireless Transmission of Data via Encryption and Frequency
Hopping

Group No: B09

Sudeep Kamath (04007019) <sudeep@ee.iitb.ac.in>
Kartik Mohta (04007023) <kartikmohta@ee.iitb.ac.in>
Rohan Raj Desu (04007036) <rohanraj@ee.iitb.ac.in>
Anil Krishna N. (04007037) <anilkris@ee.iitb.ac.in>

Course Instructors:
Prof. H. Narayanan

Prof. Dinesh K. Sharma
Prof. Madhu N. Bellur

Prof. Mukul C. Chandorkar

Abstract
The project aims at developing a medium of wireless communication between two nodes,
the communication being made secure by encryption and frequency hopping.

1. Introduction
The project aims to establish one-way wireless communication between two nodes. The
issue of security of the communication is addressed by encryption and frequency
hopping. Specifically, we look at voice transmission wherein the voice signal is sampled
at a reasonable rate and the quantized samples are transmitted in digital format. At the
receiver end, the signal is reconstructed from the samples.

Voice transmission over a wireless channel is an important challenge in view of the high
data rate required. Wireless transfer of ordinary data, in general, does not require a high
bit rate and may be achieved easily. Real-time voice transmission, on the other hand,
necessitates that the rate at which bits are being generated, be equal to the rate at which
they are being transmitted. Unless speech coding algorithms are used, a data rate of 32
kilobits/sec or 4kilobytes/sec is a reasonable requirement.

Our project has applications to wireless communication where security is an important
necessity. Conventionally, wireless systems' claim to security is solely the encryption of
data. The encrypted data stream is transmitted over the wireless channel. A possible
adversary who can “hear” the data stream still has the capability to retrieve the individual
bits of the encrypted stream. Often, algebraic attacks may be employed to decipher the
data. When security breach is a major issue, there is a need for stronger encryption. We
attempt to maintain greater security of data via the following:

• We encrypt the data by simple modulo-2 addition (⊕ : XOR addition) with a
fixed random string.

• We attempt to implement frequency hopping in a cyclic fashion. The carrier
frequency is changed in a manner, that is known only to the transmitter and the

receiver. Thus, in this case, the possible adversary would not be able to “hear”
more than a certain fraction of the input data stream at intermittent intervals of
time.

Thus, real-time LFSR encryption along with frequency hopping results in a secure
communication link.

2. Design approach and choice of components

We establish one-way wireless voice communication between two nodes. The choice of
components for the implementation was based on their properties and availability, as well
as cost.

o Wireless Module used: We use the CYWUSB6935 (WirelessUSB(TM) LR
2.4GHz DSSS Radio SoC) chip (2 nos) which constitute a 2.4GHz radio
transceiver pair. The reason for choice of this chip is primarily the ease of
interfacing with a microcontroller. This chip also allows the frequency to be
changed by changing the contents of a register within the chip.

o Microcontroller used: We use the ATmega16L microcontroller as an interface
between the analog and digital components for both the transmitter and receiver
side. The reasons for the choice of this microcontroller are:

 In-built Analog to Digital Converter(ADC)
 Serial Peripheral Interface available
 Working voltage range includes 3.3V which is the same as the voltage

required for the wireless module.

One negative point about this choice of microcontroller is the availability of four ports,
not all of which are required for this application.

3. Design of circuit
The circuit design can be broken down into independent working modules.
The modules that form the basic blocks of our circuit are as follows:

a) Conversion of sound input into electrical signal
A microphone is installed at the input. The output of the microphone, after being fed to a
second-order active low pass filter, to filter out high-frequency noise, is provided a
suitable DC offset so that the signal, for the required range of sound input amplitude at
the microphone, yields an output voltage value that fits into the input range of the A/D
converter (0V-3.3V).

b) Conversion into digital format
The ATmega16L microcontroller is equipped with an in-built 8-bit analog to digital
converter. We sample the signal at a rate of 2 kilosamples/sec, taking 8 bits per sample.

c) Encryption of digital data signal
The encryption of the sampled digital data is carried out in software by modulo-2
addition of the input data with a constant byte string. This string is chosen (quite
arbitrarily) to be 95 in the hexadecimal notation, or 1001 0101 in the binary notation. The
encryption key is known beforehand, to the transmitter and the receiver only, and is
therefore, hidden from the possible adversary.
Encryption via modulo-2 addition with a fixed string has two major advantages:

o A good encryption scheme for real-time encryption: Real-time encryption of
digital data necessitates availability of only a finite number of not-yet-transmitted
samples. Indeed, if this number is large, it will result in excessive memory
requirements at both the transmitter and receiver side in addition to producing
delay due to both the processing in software required for encryption as well as the
delay corresponding to the wait-period for transmitting blocks of data. Also,
standard encryption methods such as RSA encryption require a large number of
stored samples, to be effective enough, as, for a relatively small number of
samples, RSA may be regarded as a simple look-up table. In addition,
implementation of this is cumbersome, from the point of view of reproduction of
a signal such as a voice signal that requires a constant rate of arrival (and
departure) of samples. A trivial look-up table for every data input byte is a
reasonable encryption scheme for real-time applications.

o Easy to implement (in software or hardware): A look-up table would cost
memory. The look-up table may be simplified further by usage of XOR with a
constant pre-decided byte string to generate the encrypted string. This makes
encoding and decoding simple, as both require the same operation to be
performed.

d) Transmission of signal
The encrypted data byte is sent to the wireless module by using the Serial Peripheral
Interface. The chip transmits the data byte by using Direct Spectrum Spread Sequences
(DSSS) and provides an interrupt to the microcontroller

e) Additional security due to frequency hopping
The transmitter and receiver periodically change the frequency of transmission and
reception in a pattern that is hard-coded in both of them and hence, known to them
beforehand. This stage could NOT be implemented because of issues discussed in the “”
section. Frequency hopping could not be performed.

f) Reception of signal
The signal is received on the receiver chip which provides an interrupt to the
microcontroller indicating it to read the received byte.

g) Decryption of the digital encrypted signal
The receiver keeps generating the random strings by the same procedure as the
transmitter. As the encryption procedure is known to both, the encrypted strings received
is easily decrypted. Decryption is carried by exactly the same process: modulo-2 addition
with the random string.

h) Reconstructing the transmitted audio signal
The decrypted samples correspond to the data samples at the transmitter end. These
sampled values are fed to a digital to analog converter. The output of the DAC is filtered
and finally provided to a speaker which reproduces the input voice signal. We note that
the output fails to resemble the exact input because of the following:

o Quantization
o Strictly band-limited nature not applicable to voice signal
o Sample-and-hold kind of reproduction at the output

We discuss in the “Tests” and “Test Results” section the experimentally observed
conditions, under which the distortion due to the above are found to be negligible.

In our case, however, voice input at the transmitter end is to a large extent,
unrecognisable at the receiver end because of the low sampling rate, which itself comes
about due to constraint in data rate. However, the duration of the words is recognised
correctly. Morse code communication through voice, for instance, can be carried out.

i) Frequency hopping scheme
The frequency range for transreception can be varied in the range of 2.4GHz to
2.483GHz with 78 different possible values in between the two.
We had intended to employ a simple hopping scheme wherein after every 20 samples, the
frequency is chosen to be the next in the set of four frequencies arranged in cyclic order.
{f1=2.4GHz, f2, f3, f4=2.483GHz} This could not be implemented.

j) Synchronisation Procedure
For frequency hopping to be carried out, synchronisation becomes a very important
requirement. The synchronisation method we devised was to send a known byte, say AA
in hexadecimal, to the receiver after every 20 samples. This may act as a signal to the
receiver to change to the next frequency. As frequency hopping could not be
implemented, this is not done either.

4. Diagrams

Block diagrams:

Fig 1: Transmitter side block diagram

Fig 2: Receiver side block diagram

Circuit diagrams:

Fig 3: Tx side: Microphone converting voice to an electrical audio signal, and
filtering followed by DC-shifting of the signal to fit working range of the
microcontroller

Fig 4: Tx side: The microcontroller accepting analog input, converting using
internal ADC to a digital signal, providing the data byte after encryption to the
wireless transmitter module via the Serial Peripheral Interface

Fig 5: Rx side: The microcontroller receiving the encrypted data byte from the
wireless receiver module via the Serial Peripheral Interface, decrypting the data and
feeding to a DAC

Fig 6: Rx side: The analog current output of DAC is converted to voltage via an I-V
converter and then fed to an audio amplifier which is then given to speaker which
reproduces the input voice signal

5. Test procedure

• The microphone is given sound input of varying amplitude levels and the
maximum value at average speaking amplitude is noted.

• Calibration is done to find a reasonable position of the potentiometer to divide the
output of the I-V converter after the DAC stage. This corresponds to a reasonable
volume for the output at the speaker.

• Sampling the input voice signal at different rates with different number of bits per
sample is tried out.

• The circuits were tested for varying physical distance between transmitter and
receiver.

6. Test results

• Test results indicate that the signal peak-to-peak amplitude from the output of the
microphone is close to 40mV for average speaking level. We thus, have to
amplify this range to about 3V and have it shifted to a DC value of about 1.5 V so
that the effective range of the signal now becomes 0V to 3.3V which is the input
range of the ADC within the microcontroller.

• Test results show that upto 8 bits per sample and a sampling rate of about 8KHz
give reasonable sound reproduction.

• The circuits were found to work satisfactorily for all distances (between
transmitter and receiver) less than 5m.

7. Suggestions for further improvement

In hardware:

• Voltage levels of 15V and -15V are used in the project. Design may be done to
remove this requirement, to make 3.3V and Ground, the only voltage levels
required. This can make the transmitter and receiver circuits portable.

• One may achieve the same results as in this project by using an ATmega8 with a
fewer number of ports, resulting in smaller size and lower cost.

• Wireless modules with higher data rates (such as CC1000 or CC2500), if used,
can improve the quality of sound at the speaker output.

In software:

• The encryption may be carried out by modulo-2 addition of the input data with
strings generated by the Linear Feedback Shift Register (LFSR) sequences. Such
sequences are well-known to have pseudo-noise characteristics. They form one of
the best encryption schemes for real-time encryption and are easy to implement
too.

• If LFSR sequence encryption be used, a synchronising byte may be provided after
regular intervals so that if the receiver goes out of range, it can still decrypt the
correct input data after receiving the synchronising byte. The byte may provide
information about the current random string.

• The frequency hopping may itself be done in a randomised way with the hop-
frequency information provided within the synchronising byte.

8. Problems faced

Working on this project was found to be a great learning experience. Some of the
problems faced for the original attempts made, as well as attempts made to tackle
problems that arose are listed here:

Attempt: We tried building our own transmitter using the 74LV4046 chip as also the
HCT4046 chip.
Problem faced: An effective power amplifier stage could not be built.

Attempt: We attempted to build our own transmitter-receiver pair using analog
components. We were successful in building our own Colpitt’s oscillator working at the
desired frequency.
Problem faced: The Class C amplifier required for transmitting reasonable amount of
power could not be built. In the early experiments, we were using the BC107 transistor
for the Class C amplifier which failed because BC107 is not designed to work at the
higher range of frequencies. After realizing this, we shifted to the BF107 transistor,
however, suitable choice of inductors was not available. Upon this, we considered
designing our own inductor. However, since a quick decision was impending, we decided
at this stage, that we may look at transmitter-receiver pairs already available in the
market in the form of wireless toy cars.

Attempt: We obtained toy cars that were remote-controlled, with the transmitter and
receiver working in the citizen's band - one at 27MHz and the other at 49MHz. The idea
was to use both of these transceivers simultaneously to send the bits. The security would
come from the fact that an adversary would not be able to tune a receiver to both the
channels simultaneously and hence, won't be able to acquire the entire bit stream. We
modified the circuits for the transmitter and receiver for the toy cars to extract only the
analog component of the circuit board.
Problem faced: A good data rate could not be maintained. The car circuit allowed for a
maximum data rate of less than 300 bits/ sec. This is severely insufficient for real-time
voice communication.

Upon availability, we had decided to use the CYWUSB6935 and CYWM6935
transceiver modules.

Problem faced: The ATmega16 microcontroller, which works at 5V does not allow a
working voltage of 3.3V. To control the wireless transceiver chips at 3.3V, we
constructed voltage dividers to step down the voltage to 3.3V. Moreover, we required
voltage step-up to receive input (in to the microcontroller from the chip). The circuits
built for the same were messy and easily allowed errors while testing.
Attempt to tackle it: This is why we turned to using the ATmega16L microcontroller.

Problem faced: It was observed that universal programmers often found an error with
the ATmega16L microcontroller and reported the chip as defunct, when, in fact, it was in
perfect condition.

Attempt to tackle it: We built our own programmer board which connects to the parallel
port of a computer and used WinAVR software for burning the microcontrollers.

Attempt: A data rate of 32 kilobits/sec would have been ideal, for it would allow 4
kilosamples/sec with 8 bits/sample.
Problem faced: The data rate that we could manage to support was about 16kilobits/sec
and hence, a sampling rate of 2 kilosamples/sec. This provided considerable distortion.
Words spoken at the transmitter end are practically unrecognisable at the receiver end.
However, the duration of the words is recognized correctly. Morse code communication
through sound of mouth, for instance, can be carried out. The wireless modules allow for
data rates upto 62.5 kilobits/sec, but we were unable to implement the same.

Attempt: Frequency hopping was tried.
Problem faced: Synchronisation was the most important hurdle for frequency hopping.
Since this could not be achieved by simple transmission of “known bytes”, frequency
hopping could not be implemented.

9. Compromises
The one compromise that we did not choose to make, at the expense of all other costs, is
the transmission of real-time voice data. All the attempts made were with the primary
motivation of the challenging target of real-time voice transmission in mind.
Compromises that we did make were:

• Data rate – allowed it to fall to 16 kilobits/sec – 8bits/sample gives 2
kilosamples/sec

• Simple XOR encryption scheme instead of LFSR encryption, due to lack of
synchronisation

• Frequency hopping was not implemented at all, as synchronisation could not be
achieved

Voice transmission in real-time requires a high data rate. We could obtain rates of upto
16kilobits/sec, because of which, voice quality is poor.
Because of issues in synchronisation, we use simple XOR encryption. Also, due to the
same issues, frequency hopping could not be implemented.

10. Conclusion
Wireless transmission of voice with security brought about by encryption is implemented.
Frequency hopping was tried without success.

11. List of references

• Building a Colpitt’s oscillator : http://en.wikipedia.org/wiki/Colpitts_oscillator
• Building a Class C amplifier : http://hem.passagen.se/communication/clc.html
• Phase locked loop tutorial:

http://www.st-andrews.ac.uk/~jcgl/Scots_Guide/RadCom/part13/page1.html
• Datasheet for the ATmega16L microcontroller:

www.datasheetcatalog.com/datasheets_pdf/A/T/M/E/ATMEGA16L.shtml

• Datasheet for CYWM6935:
http://download.cypress.com.edgesuite.net/design_resources/datasheets/contents/c
ywm6935_8.pdf

• Datasheet for CYWUSB6935:
http://download.cypress.com.edgesuite.net/design_resources/datasheets/contents/c
ywusb6935_8.pdf

• LFSR sequence theory:
http://learn.ouhk.edu.hk/~mt888/url/Unit9/2/m_sequence_linear_feedback_shift_r
egister_lfsr.htm

