
EE 318 Electronic Design Labratory-I, Elec Engg Dept., IIT Bombay, March 2007

Signal Generator Using Direct Digital Synthesizer

Group D14

Group Members

Raghavendra Bhushan Karn (04D07017) rbhushan@ee.iitb.ac.in
Sharayu Arun Moharir (04D07018) sharayu@ee.iitb.ac.in

Namrata Bandekar (04D10023) namrata@ee.iitb.ac.in

Supervisor Prof. Girish Kumar
Course Instructor Prof. H. Narayanan

Abstract

This report discusses the design of a Direct Digital Synthesizer (DDS) based Function
Generator which can generate sine waves of frequencies lower than 100 MHz with an
accuracy of 1% of the output frequency. It describes a micro-controller based interface to
the DDS Chip AD9953 for generation of user desired frequencies less than 100 MHz.

1 Introduction

Direct digital synthesis (DDS) is a method of producing an analog waveform—usually a
sine wave—by generating a time-varying signal in digital form and then performing a
digital-to-analog conversion. As the operations within a DDS device are primarily digital,
therefore it can offer fast switching between output frequencies, fine frequency
resolution, and operation over a broad spectrum of frequencies. With advances in design
and process technology, DDS devices are very compact and draw little power. For
example, the AD9953, a DDS-based programmable waveform generator, operating at 1.8
V with a 20 MHz clock, consumes a maximum power of 171 mW.

Many possibilities for frequency generation are open to a designer, ranging from phase-
locked-loop (PLL)-based techniques for very high-frequency synthesis, to dynamic
programming of digital-to-analog converter (DAC) outputs to generate arbitrary
waveforms at lower frequencies. But the DDS technique is rapidly gaining acceptance for
solving frequency- (or waveform) generation requirements in both communications and
industrial applications because single-chip IC devices can generate programmable analog
output waveforms simply and with high resolution and accuracy.

mailto:rbhushan@ee.iitb.ac.in
mailto:sharayu@ee.iitb.ac.in
mailto:namrata@ee.iitb.ac.in
http://www.analog.com/en/prod/0,2877,AD9833,00.html

2 Design Approach

2.1 Hardware

Block Diagram

Power
Supply

AT89C51
Micro-

Controller

Keypad

LCD

DDS
AD9953

LPF

Figure 1: Basic Design Blocks

2.1.1 Power Supply

230 V to 12 V Step
Down Transformer Bridge

Rectifier
Capacitor

LM 7805
Voltage

Regulator

 Figure 2: Power Supply Block Diagram

2.1.2 LCD

Figure 3: LCD

A 16x2 LCD is used to display the fr
generated by the DDS.

2.1.3 Keypad

A 4x4 matrix keypad has been used for taking user input, for entering the desired
frequency and amplitude of the signal. The LCD is used in conjunction with the keypad.
Both the LCD and the keypad have been put exclusively for this purpose.

The keypad is attached to one of the ports of the microcontroller. The Micro-controller
polls for a key press. Once a key press and key release is detected it calculates the key
code from the port value to determine which key is pressed.
The user can choose from three ranges of frequency: Hz, KHz, MHz.

equency and amplitude of the signal that is

Figure 4: Keypad

2.1.4 DDS

The AD9953 is a direct digital synthesizer (DDS) featuring a 14-bit DAC operating up to
400 MSPS. The AD9953 uses advanced DDS technology, coupled with an internal high
speed, high performance DAC to form a digitally programmable, complete high
frequency synthesizer capable of generating a frequency-agile analog output sinusoidal
waveform at up to 100 MHz. The AD9953 is designed to provide fast frequency hopping
and fine tuning resolution (32-bit frequency tuning word). The frequency tuning and

control words are loaded into the AD9953 via a serial I/O port. The AD9953 is sp
to operate over the exten

ecified
ded industrial temperature range of –40°C to +105°C.

 Filter (LPF)

e needs

to have a
esired frequency response.

2.1.5 Low Pass

The DDS chip generates high frequency noisedue to the DAC. The output therefor
to be passed through a low pass filter with bend frequency of 200 MHz. Various filters
were simulated using RFSim and a four pole Butterworth filter was found
d

Figure 5: Filter circuit

Figure 6: Filter response

2.1.6 PCB design for the DDS

The PCB needed a 50 ohms impedance for the high frequency output. A software called

ine the appropriate dimensions. According to the
anufacturer’s specifications, 1.50 mm was the appropriate width needed to create a 50

w
 10 nF capacitors to avoid any RF signal to reach the

oltage input pins of the DDS.

The circuit takes in 5V as the input voltage. Two TPS772218s have been used to obtain
digital and analog voltages of 1.8V. The analog and digital grounds have been isolated
using an inductor.

There are no low frequency lines of thickness less than twice the thickness of the board
away from the line carrying the high frequency signal to avoid any kind of interference
due to the high frequency signal.

An attenuator is used at the output of the DDS to protect the oscillator in the DDS from
open circuit or short circuit at the output. Thus, in the case of open circuit or short
circuit, the reflected waveform gets attenuated. The attenuator was designed using
RFSim.

Line Gauge was used to determ
m
ohms track. Glass epoxy (FR4) was used as the substrate.

All the supply pins have been bypassed with a large capacitor (10 μF) to provide a lo
impedance path for AC and 2
v

Figure 7: DDS PCB

3 Circuit Diagrams

Figure 8: DDS circuit

Figu for Microcontroller re 9: Circuit Diagram

4 Software

4.1 DDS

There are two phases to a communication cycle with the AD9953. Phase 1 is the
instruction cycle, which is the writing of an instruction byte into the AD9953, coincident
with the first eight SCLK rising edges. The instruction byte provides the AD9953 serial
port controller with information regarding the data transfer cycle, which is Phase 2 of the
communication cycle.
The Phase 1 instruction byte defines whether the upcoming data transfer is read or write
and the serial address of the register being accessed. The first eight SCLK rising edges of
each communication cycle are used to write the instruction byte into the AD9953. The
remaining SCLK edges are for Phase 2 of the communication cycle. Phase 2 is the actual
data transfer between the AD9953 and the system controller. The number of bytes
transferred during Phase 2 of the communication cycle is a function of the register being
accessed.
After transferring all data bytes per the instruction, the communication cycle is
completed. At the completion of any communication cycle, the AD9953 serial port
controller expects the next eight rising SCLK edges to be the instruction byte of the next
communication cycle. All data input to the AD9953 is registered on the rising edge of
SCLK when the I/O update pin is high.

4 Port pins were used to communicate with the DDS. The four lines being SCLK, SDIO,
Reset and I/O update.

Algorithm to send a bit to the DDS

1. Put data on SDIO.
2. Hold data on SDIO, make SCLK high.
3. Make SDIO and SCLK low.

Algorithm to write to a control register of the DDS

1. Send the instruction byte in the following format

R/Wb—Bit 7 of the instruction byte determines whether a read or write data transfer
ill occur after the instruction byte write. Logic High indicates read operation. Logic

ates a write operation.
X, X—Bits 6 and 5 of the instruction byte are Don’t Care.

Cos wave output

rd of the DDS

w
0 indic

A4, A3, A2, A1, A0—Bits 4, 3, 2, 1, 0 of the instruction byte determine which
register is accessed during the data transfer portion of the communication cycle.

2. Send the appropriate number of bytes of data.

3. Make I/O update high for this data to get transferred into the registers from the I/O

buffers.

4.1.1 Initialization of the DDS

The DDS is initialized for the following specifications

a)
b) MSB first mode of data transfer
c) Crystal Frequency (20 MHz) multiplied by a factor of 20 to get the system

clock frequency (400 MHz)

Calculation for the Frequency Tuning Wo

(1)

(2)

Where

ing Word

>

 if(b==0)
 return 1;
 else{
 for(j=0;j<b;j++)

fo = Output frequency of the DDS
fs = Frequency of the system clock (400 MHz in this case)

TW = Frequency TunF

4.2 Microcontroller code

#include <AT89X51.H
#include <stdio.h>

double pow(a,b)
 {

 int j=0;
 double result=1;

}

DDS functions

oid one();

voi

void one()
{
 P2=
 P2=

P2=8;

}

/* output a '0' to DDS */

oid zero()

P2=8;

r byte)

for (i = 0; i < 8; i++)
{

(byte & 128) == 128)
 one();

te << 1;

 result=result*a;

}
return result;

//
void byte_out(unsigned char byte);
v
void tuning_word_out(unsigned int tuning_word);

d zero();

/* output byte, MSB first */

/* output a '1' to DDS */

9;
0x0B;

v
{

 P2=0x0A;
 P2=8;
}

void byte_out(unsigned cha
{

 int i=0;

 if (

 else
 zero();
 byte = by
 }
}

//LCD functions

mall

0;

D=0x01;
while(a!=0)

 TL0=0x00;

 while(TF0==0)

 TF0=0;
 a=a-1;

 }
 return ;

id initdis (char a)small

P0_2=1;
P0_2=0;

oid dtdis (int a)small

;
return ;

void delay (int a)s
{
 TR0=
 TF0=0;
 TMO

 {

 TH0=0xFF;
 TR0=1;

 {
 }
 TR0=0;

}

vo
{
 P1=a;
 P0=0x00;

 delay(10);
}
v
{
 P1=a;
 P1_5=1;
 P1_4=1;
 P0=0x01;
 P0_2=1;
 P0_2=0;
 P0_0=0;
 delay(10)

}

void chrdis (char a)small

P1=a;
P0=0x01;

P0_0=0;

d str (char *str)small{
')

chrdis(*str);
;

}

signed char *x) small

if (P3==0xF0)
return 0;

t ky (ar y)small

ED,0xEE,0xD7,0xDB,0xDD,0xDE,0xB7,0xBD,0x7E,0x7D,0
B,0x77,0xBE};

for(z=0;z<16;z++)

])

float unit=1;//default unit Hz

{

 P0_2=1;
 P0_2=0;

 delay(10);
 return ;
}

voi dis
while (*str != '\0
 {

 ++str

}

int test0(un
{
 *x=P3;

 return 1;
}

in unsigned ch
{
 unsigned char
k[]={0xBB,0xE7,0xEB,0x
x7
 int z;

 {
 if(y==k[z
 return z;

 }
}

void main(void)
{

 float freq=0;//default frequency (0 Hz)

CD variables
 a0,a1,a2,a3,a;

= &a0;
1= &a1;
2= &a2;
3= &a3;

int p;
int count=0;

,6,7,8,9};

ase2;
 int delta_phase3;

unsigned int delta_phase4;
int j=0;
float clock_in=400000000;

unsigned char b;

P1=0x00;
TR0=0,TF0=0;

EA=0;

);
;

;

;

on
b=0x00;

//L
 unsigned char
 unsigned char* x0
 unsigned char* x
 unsigned char* x
 unsigned char* x
 int number[6];
 int state=0;

 int key[]={0,1,2,3,4,5

//DDS variables
 unsigned int delta_phase1;
 unsigned int delta_ph
 unsigned

 double delta_phase;

//LCD initialization
 P0=0x00;

 TR1=0,TF1=0;

 delay(200);
 initdis(0x38);
 initdis(0x0F
 initdis(0x01)
 initdis(0x06);
 P3=0x00
 P3=0xF0;
 strdis("ENTER UNIT")

//DDS initializati

 /* set all pins low */

 P2=0;
 clock_in=400000000;

0x01);

delay(100);
f (state==0){

est0(x0)==1){
te=1;

0);

else{
=0;

00);

){

 if(test0(x1)==1){
 if(a0==a1){
 state=2;
 a=a1;

 a=a|0x0F;
P3=a;
a=P3;

 /* main program loop */

 byte_out(0x00);
 byte_out(0x02);
 byte_out(0x00);
 byte_out(0x02);
 byte_out(0x42);
 P2=0x0C;
 delay(1);
 P2=8;

 byte_out(
 byte_out(0x00);
 byte_out(0x00);
 byte_out(0xA0);
 P2=0x0C;
 delay(1);
 P2=8;

 while(1) {

 i

 if(t
 sta
 delay(10
 }

 state
 delay(1

 }
 }

 if(state==1

 P3=0xF0;
00);

 }
e{

state=0;
lay (1);

ay (1);

2)==1){
(a2==a1){

te=2;
delay (1);
}

}

e=3;
(1);

 }

(a2==a3){
2;

;

 }

ky(a);
 if(count!=6 && p<11){

+;
 number[count-1]=p;

 delay(1

 els

 de
 }
 }
 else{
 state=0;
 del
 }
 }

 if (state==2){
 if(test0(x
 if
 sta

 else{
 stat
 delay
 }

 if(state==3){
 if(test0(x3)==1){
 if
 state=
 delay (1)
 }

 else{
 p=

 count+

 }

 if(p==0){
 dtdis('0');
 freq=freq*10;
 }

 if(p==1){
 dtdis('1');

+1;

dis('2');

freq*10+2;

(p==3){
dtdis('3');

 freq=freq*10+3;

(p==5){
'5');

*10+5;

if(p==6){
 dtdis('6');

req*10+6;

*10+7;

 if(p==9){
 dtdis('9');

 freq=freq*10
 }

 if(p==2){
 dt
 freq=
 }

 if

 }

 if(p==4){
 dtdis('4');
 freq=freq*10+4;}

 if
 dtdis(
 freq=freq
 }

 freq=f
 }

 if(p==7){
 dtdis('7');
 freq=freq
 }

 if(p==8){
 dtdis('8');
 freq=freq*10+8;
 }

 freq=freq*10+9;
 }

 if(p==10)

 chrdis('.');

0x00);
 byte_out(0x00);

;
 delay(1);

0x00);
 byte_out(0x00);

 delay(1);

 freq=freq*unit;
0000000){

se = (freq * pow(2, 32)) / clock_in;
elta_phase1 = delta_phase/pow(2,24);

delta_phase1;

ase-

 b=(unsigned char)delta_phase2;

elta_phase-delta_phase1*pow(2,24)-

ed char)delta_phase3;
 byte_out(b);

lta_phase-delta_phase1*pow(2,24)-
);

phase4;
b);

 if(p==11){
 byte_out(0x00);
 byte_out(

 byte_out(0x02);
 byte_out(0x42);

 P2=0x0C

 P2=8;

 byte_out(0x01);
 byte_out(

 byte_out(0xA0);

 P2=0x0C;

 P2=8;

 byte_out(0x04);

 if(freq>16
 freq=0;
 }
 delta_pha
 d
 b=(unsigned char)
 byte_out(b);
 delta_phase2 = (delta_ph
delta_phase1*pow(2,24))/pow(2,16);

 byte_out(b);
 delta_phase3 = (d
delta_phase2*pow(2,16))/pow(2,8);
 b=(unsign

 delta_phase4 = de
delta_phase2*pow(2,16)-delta_phase3*pow(2,8
 b=(unsigned char)delta_
 byte_out(

 P2=0x0C;
 delay(1);

 if(p==12){
display

 initdis(0x80);

 initdis(0x01);//clr display

 unit=1000;

 P2=8;

 freq=0;
 count=0;
 }

 initdis(0x01);//clr
 initdis(0x8E);
 strdis("Hz");

 unit=1;
 }

 if(p==13){

 initdis(0x8D);
 strdis("KHz");
 initdis(0x80);

 }

 if(p==14){
 initdis(0x01);//clr display
 initdis(0x8D);
 strdis("MHz");
 initdis(0x80);
 unit=1000000;
 }
 if(p==15){
 chrdis('a');
 }

 state=0;
 delay(1);
 }
 }

 }
}

4.3 State diagram

Figure 10: Keypad state diagram

l Storage Oscilloscope and a Spectrum
Hz are shown in Appendix I.

y. Distortion was observed for higher
 of the DDS chip suggested that up to 40% of the

f this circuit contradict this claim as all
ortion could not be

the circuit.

ve been attached to the output to get higher frequencies in

structions

1) Connect plug to 230 Volts, 50 Hz supply.
2) Switch on the device using the red button in the front.

5 Test Procedure and Results

The output of the DDS was observed on a Digita
analyzer. The results for frequencies from 10 Hz to 120 M

6 Discussion of the results

The output waveforms till 100 MHz were satisfactor
values of frequency. The manufacturers
clock frequency can be generated. Observations o
waveforms above 100 MHz were found to be distorted and this dist
removed by adding a low pass filter to

7 Suggestions for improvement

A frequency multiplier could ha
the range of GHz.

8 Users Manual

In

Poll for Key
press

Key press
detected

Key release
detected

Poll for Key
release

3) Enter the unit using keypad.
) Enter the desired frequency. It should be less than 100 MHz.
) Pr
) Connect one end of a probe at the output.

 Reference

) Analog Devices, AD9953 Datasheet, “400 MS
ynthesizer”, 2007.

) Atmel, AT89C51 Datasheet, “8-bit Microcontroller with 4K Bytes Flash”, 2000.

) Texas Instruments, LM 7805 Voltage regulator Datasheet.

) M ng Reference Page”, m.

4
5 ess ‘Enter’.
6

9 s

1 PS, 14-Bit, 1.8 V CMOS, Direct Digital
S

2

3

4 yke Predko, “LCD Interfaci http://www.myke.com/lcd.ht

) Analog devices, “A Technical Tutorial on Digital Signal Synthesis”, 1999. 5

Appendix I

10 Hz

100 Hz

1 KHz

10 KHz

100 KHz

 MHz

1

10 MHz

50 MHz (Without Filter)

50 MHz (With Filter)

100 MHz (Without Filter)

100 MHz (With Filter)

120 MHz (Without Filter)

120 MHz (With Filter)

	4) Myke Predko, “LCD Interfacing Reference Page”, http://www.myke.com/lcd.htm.
	

