
GPS NAVIGATION SYSTEM
GROUP D5

Apoorv Tiwari (05D07001)
Chetankumar Phulpagare(05D07013)

Kedar Chandrayan(05D07030)

EDL Stage II
Date: 29th November 2008

DESCRIPTION
The objective of our project is to build a GPS navigation system that can be
used for simple consumer use. Over the previous semester we built a system
which consists of a GPS module, a display element (color LCD), a storage
element (SD card), a USB interface to communicate with a computer and a
user interface. As the user moves from place to place the corresponding
location is displayed on a map on the lcd. The map has been pre-downloaded
into the system by the user. Also a travel log is kept which can be accessed
later. New Features that have been added to the device are:

1. The device besides showing the path taken by the user on the LCD screen
can also navigate for the user, by asking for a destination and pointing the
way
2. It would save the travel log on the SD card plugged into the device.
3. The user can download the map of the area on the SD card through the
USB interface provided. Also the user can zoom in and out of the map
making the device easier to use.
4. A keypad has been added to the device for user convenience.
5. Packaging of the device into a convenient size on a single PCB

SPECIFICATIONS

Hardware

• GPS Module: ZX4125 with active antenna
• Microprocessor: MSP430F1611 (2 UART with SPI mode)
• Sandisk SD card (2 GB)
• USB to UART bridge controller: CP2102
• Graphic LCD screen: Nokia 6610

Software

• Reading serial data from the GPS module and storing the log in the SD
card.

• Reading the map from the SD card and displaying it on the LCD.

• Plotting the points using the coordinates received from the GPS.
• Identifying the current location and classifying it as a “node”.
• Navigation from one node to another.
• Downloading map via USB interface and saving it on SD card.
• Responding to commands issued by the user through the keypad.
• Zoom in/zoom out , scroll functions for the map.

Block Diagram:

Progress Plan:

• Identifying and working on a new LCD: Since for a user friendly
navigational aid, the display element (lcd screen) should be large
enough to provide a convenient user experience. We felt that our
existing LCD(Nokia 6610) is not large enough and started looking for
suitable alternatives. We had looked at the Nokia 9200 and the
Nokia E61 LCD last semester and had also considered using a Nokia
6600 LCD, however that was not possible due to lack of availability of
proper documentation for these LCDs. (one reason why we worked
with Nokia 6610 lcd was that its information was properly documented
and was easily available)This semester, we decided to use a Sparkfun

LCD 08335 and connector. But lack of a suitable controller meant that
detailed pixel by pixel colour coding and other driver options needed to
be written which would have needed a lot more time than 1 semester.
Thus we decided to stay with the nokia 6610 lcd and improve other
features of the device.

• Choosing our microcontroller: Our hardware needs a controller that
has at least 2 USARTs. Since we decide to use another LCD we needed
more processing power to make the higher resolution (and also
requiring more computing resources) run at a decent speed. Thus we
decided to get another faster microcontroller preferring an ARM
controller. We decided to go for a SAM 9 Series processor. However
since the new LCD was not employed and the older one worked
sufficiently well with our existing controller, we decided to continue
with the MSP430F1611 chip. The microcontroller is run at 8MHz
clock speed.

• Other Hardware Elements: We did not need much change in the
other hardware that our device has. The external USB controller was
the CP2102 chip by Silabs which had an internal EPROM as well as an
inbuilt voltage regulator to independently act as a USB to UART
Bridge Controller. Interfacing the USB chip with the MSP was through
a simple UART serial interface with a baud rate of 9600.We also
designed a separate PCB for the CP2102 chip based on the circuit
obtained from its datasheet. The chip drivers for windows (Virtual
COM Port driver) was obtained from the Silabs website.
The memory element used was an SD Card. A 2 GB card was chosen
as in there are some compatibility issues between systems using SD
cards of capacity 1 GB and below and those using 2 GB and above. So
as we wanted an option to expand our memory capacity at a later
date, we selected a 2 GB SD card. The SD card has been interfaced
with the MSP using an SPI interface using a power supply of 3.3v.
A Keypad was added to make user interfacing easier(earlier user
instructions were entered through the comp.)

• Adding Software Features: To make our device more user friendly
newer features needed to be added. Features added were:
 A navigation software: It calculates its present position/asks the

user for the source position and describes the path to the
destination.

 Map features: To somewhat compensate for the lack of a large
enough lcd,zoom in zoom out features were implemented. Also a
scroll feature was implemented.

 A primitive was implemented. We tried to implement a FAT16 file
system but it did not work properly. So we settled for a less complex
system.

• Designing External Dimensions for the Device: We approached a
person working for a design firm and got a rough design for the whole
product keeping in mind all the dimensions and components and their
relative location to each other. The design tried to keep in mind the
aesthetics of the product while also ensuring ease of use and proper
functional coherence for the different components in the device.

• Designing a Final PCB: The final PCB was then designed keeping in
mind the external design already made and the physical limitations of
the components and the device itself. This PCB was then made and
tested.

Detailed Descriptions Along with Testing Procedures:

Hardware Testing

UART Testing:
• MSP was programmed using JTAG programmer through parallel port.

• MSP UART were tested using sample codes provided on TI website.

• Then MSP <-> GPS interface was tested by using an LED as indicator.
The LED was made to toggle when “$GPRMC…” messages were
received.

• Once CP2102 PCB was made, its on-chip voltage regulator was used to
power MSP430 and other elements in the circuit except GPS module.

• Before connecting the CP2102 PCB to desktop, USB drivers should be
installed so that Virtual COM port is created when we connect CP2102
using USB cable.

• For testing the USB side of CP2102 we short the Rx Tx pin and check
for echo of character in hyper terminal (or minicom in Linux).

• For testing the UART side of CP2102 we sent a char via USB (hyper
terminal) to MSP, then incremented it and then sent it to the desktop.

• Then we developed s/w for the interface: Desktop USB CP2102

UART MSP430. Then we developed the interface: MSP430 UART

GPS Module

• We also tested simultaneously the above two interfaces on different
UARTs of MSP, thus were able to see the GPS coordinates on comp
hyper-terminal screen through USB interface.

SD Card testing:

C library for interfacing SD card with MSP430 was available on a link given in
references. It had functions for initialization of SD card, block-read and block-
write. We tested these functions and verified using Card Reader on Laptop.
For verifying that a proper read/ write has taken place we used the “dd”
command available in Linux.
Synopsis of dd command:

$ dd bs=512 count=num_of_blks seek=output_offset skip=input_offset if=input_file_path
of=output_file_path
e.g.
$ dd bs=512 count=1 skip=512 if=/dev/mmcblk0 of=/tmp/mmc

We also tried different implementations of FAT16 file system on SD card but
none worked.

LCD testing:

We got a sample code for the LCD interfacing with MSP430 family controller
from olimex.com.
Sample code worked as expected. We played with the menu pointer defined
in the code. We changed the shape and colour of the pointer to a rectangle.
Different values for LCD commands were tested such as “ACCESSCTRL” that
changes orientation of axis on LCD. Then various colour patterns were tried.
Different images including IITB map (132x132) were shown on LCD. Image
raw data was stored on SD card and converted to required colour format for
LCD using MSP.
Since LCD is small, roads on map could not be seen clearly. So a higher
resolution map was to be shown. Same map with higher resolution
(256x256) was used. Only a part of this map that can be seen through a
128x128 window was displayed on LCD and this window could be scrolled in
all four directions to view the complete map.
This enables us to see any high resolution map on same LCD.

We also developed functions to show ASCII chars with desired foreground
and background colour on LCD.

Keypad Testing:

Originally we started with a 4X4 keypad which had a layout like this:
E00E D00E B00E 700E

 0 4 8 C
E00D D00D B00D 700D

 1 5 9 D
E00B D00B B00B 700B

 2 6 A E
E007 D007 B007 7007

 3 7 B F

After this, since we did not need 16 buttons, it was reduced to 9 buttons as
below:

// |===|===|===|
// | 0 | U | 1 |
// |===|===|===|
// | L | CR | R |
// |===|===|===|
// | + | D | - |
// |===|===|===|

External Package Design:
Before designing the final PCB, we first decided the external casing
specifications and then designed the PCB in order to meet them. The design
for the external package is:

Body dimensions: 90x50x30
LCD window dim: 30x30
USB 'A' type female opening: 8x14
SD Card Slot: 28x3
Antenna connector opening: circular diameter = 9
Battery: 35x10

Final PCB Design:
The final design consists of 2 double layered PCBs held back to back. First
board has LCD and keypad laid out in a fashion we should have on a mobile
handheld device. Other board carries the processor and other required
components. SD card can be inserted in or out sidewise into the device. The
PCB sizes are made according to the external casing size.

LCD, SD card and keypad:

Processor and other components

Software

Navigation:
This is one of the most important aspects of this device and is the one
feature that makes it the most useful. The whole map is divided into a
series of nodes showing important locations(likes hostels departments
etc.). The user inputs his present location (or its read directly from the map
by the device) and enters the location he wants to travel to. The device
provides instructions in terms of which node to travel to next until the
destination is reached.

To calculate which node to travel to next in order to obtain the shortest
possible path, we use distributed graphs. Each sub-graph is either a line or
a loop(all sub-graphs are so chosen). To reach a node from another one in a
line graph, there can be only one direction of travel. To reach one node
from another in a loop graph, there are 2 possible paths, one in either
direction. (eg the hostels and sac form a loop around the main playing field).
This direction is decided by the cost functions taken according to the
distances between adjacent nodes. Thus within a sub-graph the optimized
paths are calculated.

To go from 1 sub-graph to another, the person must go through some
common nodes called key nodes. Thus, to optimize travel over the whole
graph, optimization is done in each sub-graph and then over key nodes and
the whole graph.

Some of the defined nodes are:
Hostels(1 to 13)
Departments
Main Building
Convocation Hall
Convocation Hall Turn
Library
Library Turn
Swimming Pool
BJC Turn
SOM
Canara Bank
Kresit
Main Gate
YP Gate

LCD Functions:
Zoom In/Out: The user can vary the detail level of any part of the map at will.
Zoom in Zoom out have been implemented using the simplest method
possible.
We have stored images of all zoom levels in SD card and read the
appropriate image accordingly. This enables for a richer user experience and
a convenient easy to use product. The current zoom levels of the IIT Bombay
map are:
I. 256x256
II. 512x512
III.768x768
IV.1024x1024
The zoom level is visible on the screen.

Scroll: The scroll function (up, down, right, left) has also been
implemented. The user can go to any part of the map he wants to.

 Screen Layout:

File System
File System Details are as follows:
block 1:
1. no of files [2 bytes]
2. entry corresponding to each file

a. File ID [4 bytes]
b. File name [max 12 chars]
c. Starting block of file. [4 bytes]
d. File Size [4 bytes]

Files now present:
1. font8x16.img [file ID=1]
2. Menu.img [file ID=2]
3. iitb.map [file ID=3]

Starting block of the file may contain detailed information about the file,
depending on the file type or just the data in the file. file ID = 0 implies the
file does not exists. File entries are stored in this table in increasing order of
file IDs. When a file is to be deleted, just the file ID for this file is made 0. The
file iitb.map stores maps of resolutions 128, 256, 512 and 1024.

File System Functions:
Open File: locates the file ID and reads the data
Close File: Close the file
Delete File: Deletes the data as well as the file ID

Reading Data from USB to the SD Card using Matlab:
Since CP2102 is usb-to-serial bridge, it's virtual serial port could be accessed
through matlab. Since it is very easy to do image manipulations in matlab, it
was possible to take any image, convert it to format suitable for our purpose
and then download it on the device.

Purpose of the usb interface:
1. to download map on the sd card from desktop.

2. to view the log files that are stored in the sd card

Handshakes:
First of all the user will press a button on the keypad which will tell the
device to enter in COM mode. After entering into COM mode it will poll for a
command from the desktop.
There will be some standard set of commands to start some particular form
of data transfer. I will number them as C0, C1, C2, etc.
Notation: Desktop (D) <USB> MSP (M) <SPI> SD

Gather information about the SD data:
First D sends C0 to M, which is in COM mode. M gathers the information
about the SD card memory allocation and passes this info to D. I think
maintaining the current memory info (that is which file in the SD card is
stored where) can be loaded at the SD_init itself and then we can update this
info in the RAM of M. The format of data which will be transferred to D will as
follows:
numOfFiles'$'filename1'$'startBlkAdd1'$'EndBlkAdd1'$filename2............EOF
numOfFiles: 2 bytes
filename: 16 bytes
startBlkAdd: some bytes
'$' is our special character which will not be allowed in the file name. This will
be standard procedure: M enters in COM mode--> D sends C0 to M and M
responds by giving the memory info to D in the format described above.
After receiving EOF D stops reception of data, M again enters in the COM
mode.

Write data to SD:
For this we implement a command C1. D sends C1 to M which was in COM
mode polling for commands. After this D sends the start block addr and the
number of blocks to be written. M then polls for these many number of
blocks to recieve data and do blockwise write to SD. After tx of each block
the matlab code on D should wait for some time. In the meantime, M writes
the block to the proper block address.

Read from SD:
For this we will implement a command C2. D sends C2 to M which was in
COM mode polling for commands. After this D (matlab code) enters in polling
state expecting the number of blocks first and then data.

Update SD info:
For this we will implement a command C3. D sends C3 to M which was in
COM mode polling for commands. After this M expects the update due to the
last write which is written by M to the first block of the SD. An update is
necessary after every C1.

Having done this, we can look at SD card as if directly connected to D and as
if M doesn't exist in between. -- ie. prepare a capsule matlab code!

DOWNLOAD of map:
First send C0. find where the sufficient amount of memory is available, then
issue C1 then provide the necessary protocol info and the map data and then
C3 and then necessary protocol data.

READ LOG file:
simple enough. just C2

Assumptions:
1. All our files are of integer number of block length.
2. File names will have proper extension to specify that it is a map file or a
log file etc.

To display the location of the person on the map, the following algorithm was
worked out:

Conclusion:
We have tried to build on the work done in the previous semester and make
our navigator into a more complete product. Functional though as it is, the
product suffers from a drawback: the LCD is too small to make a good
commercial product. Although this device can be marketed as a low cost
(about Rs. 3500 – 4000) solution, it needs to have a better LCD and a faster
processor to be a huge commercial success. To add further value to this,
other features like voice instructions and colour coded LEDs can be used to
enhance user experience. With a large number of calibrated maps along with
these added features, this low cost device will have the potential to become
commercially successful.

References:

SD Card:

www.cs.ucr.edu/~amitra/ sdcard /Additional/ sdcard _ appnote _foust.pdf

LCD:

http://www.olimex.com/dev/msp-4619lcd.html

http://dev.ivanov.eu/projects/msp430-4619lcd_sample/index.html

http://www.opencircuits.com/SFE_Footprint_Library_Eagle

FAT:

http://www.digitalspirit.org/file/index.php/obj-
download/docs/fat/appnote_fat16.pdf

http://www.digitalspirit.org/file/index.php/obj-download/docs/fat/appnote_fat16.pdf
http://www.digitalspirit.org/file/index.php/obj-download/docs/fat/appnote_fat16.pdf
http://www.opencircuits.com/SFE_Footprint_Library_Eagle
http://dev.ivanov.eu/projects/msp430-4619lcd_sample/index.html
http://www.olimex.com/dev/msp-4619lcd.html
http://www.cs.ucr.edu/~amitra/sdcard/Additional/sdcard_appnote_foust.pdf

