
DEPARTMENT OF ELECTRICAL ENGINEERING, IIT BOMBAY

EDL Final
Report

Roomba: The Robo-vac

D4: Sunny Mahajan, Himesh Joshi, Arun Mukundan and
Ankit Mehta
1st Dec ‘09

The Objective of this project was to design a vacuum cleaner that

can pick up dirt autonomously, while intelligently avoiding
obstacles as well as cliffs and covering the entire room.

Final system comprises of the following blocks

 Sensors for wall, cliff and obstacle detection

 Differentially Driven DC Motors

 An LCD interface for scheduling tasks
 The vacuum mechanism

 An intelligent algorithm to manage the allotted task.

Individual contributions:

 Sunny Mahajan – Cliff Sensor, Wall Sensor, Obstacle
Sensor, Bump Sensor, Vacuum Unit, Motor Control Unit,

Navigation Algorithm, Bot Design and ergonomics

 Himesh Joshi – Cliff Sensor, Bot Design and Motor Control
Unit.

 Arun Mukundan – LCD Display Unit and Bot Design.

 Ankit Mehta – Cliff Sensor.

Bill of Materials

So far, we have only purchased bump sensors and a cheap USB

powered vacuum. All other components were designed using the

components available in the laboratory.

IEEE Code of Ethics

In our designs, we have not violated any patent or trade secret to

the best of our knowledge. All our designs and testing has been

completed indigenously.

Hardware Accomplishments

1. Sensors

 Cliff sensors
 Obstacle detection

 Bump Sensors

2. Motors

 Basic working

 Routines

3. LCD Interface and System Scheduling Unit.

4. Vacuum Interface(Remotely Controllable)

5. Control Algorithm

Summary

With this project, we intend to learn about making a

deliverable, and also to face the technical and design

challenges that go into this process. We chose to make an
indigenous autonomous robotic vacuum cleaner with the

objective of usage in a real world environment replete with

static and moving obstacles, walls, cliffs, etc.

Block Diagram

1. Sensors

The designs have been tested and the boards fabricated. The sensor
placement and the final design we’ve envisioned is depicted in the

followingimage:

1. Cliff Sensor
This sensor adds the capability to avoid cliffs such as stairs in a house

and makes our bot more applicable to real world situations. As this

sensor is located at the bottom of the bot, there is no issue of ambient

light based false detections and so, IR led/photodiode pair was used to
keep the cost at a minimum.

2. Obstacle Sensor

This gives the ability to decide when the bot is on a collision course

and make adaptive decisions to navigate accordingly. For this purpose,

ultrasonic transceiver pair was utilized as audio waves are known to
have maximum configurable range and are reflected by most materials

as compared to IR which is absorbed easily by objects. This enhances

the applicability of our robot.

The sensor design comprises of a Piezoelectronic Ultrasonic

Transmitter fed off a 40kHz 555. The reflected waves are received by

an Ultrasonic receiver and our amplified by a CE amplifier(bypassed

emitter resistor) and the output is buffered and passed on to the next

comparator stage where the sinusoid is converted to a pulse train. But
since, we need uniform output on detection, we added a retriggerable

monostable which gives positive dc on detection.

Transmitter Circuit

Receiver Circuit

3. Bump Sensor

These are used in case the bot actually collides. For this, we used leaf

switches which close on contact on a throw condition. The `bumps’ are
made using Lego builder strips connected to tactile leaf switches,

which trigger on contact. Mechanical bounce is taken care of.

2. Motor Control Unit

The bot employs the use of DC motors which are being interfaced

with the help of a microcontroller, ATMega32.

The programming has been done in order to provide for different

modes of motion of the bot. For example, for turning, the concept

of differential drive has been used where one of the side wheels is
turned off, enabling the bot to rotate at its own position.

Pulse Width Modulation technique has been incorporated
whenever spiraling is required, i.e. motion in a circle of a given

radius, which is essential to the Roomba’s room filling algorithm

that shall be employed later on.

For employing pulse width modulation, the output compare

register OCR1A is used. Basically, the value set at the OCR1A
register is used as a means of comparison and compared with a

uniformly ramped waveform, as shown in the figure below

Thus, OCR1A can be set anywhere between 0 and 256, which
happen to be the top and bottom values.

To get a duty cycle of 50%, the value is set at 128, which is the
middle value. The signal thus obtained is fed to the enable pin of

the first motor driver IC (L293D) and complement is fed to the

second motor driver IC.
With the help of such a setup at the enable pins, the spiral motion

of the bot becomes simple where a change in the value of the

compare register will cause opposite shifts in the duty cycles for
the two motors.

The advantage of this system is that the calibration is much easier

because the sum of both the duty cycles is unity.

We have defined the following routines for moving the bot

 Move_straight
The bot moves straight. This is done by balancing the duty

cycle for both wheels.

 Turn_left, turn_right
Takes a 90 degree turn to the left by stopping one wheel and

letting the other one run.

 Spiral_out_left, spiral_out_right
This movement is to take slight turns, by slowing down one

wheel in steps.

It is needed as turns near walls should be gentle, and also our
room filling algorithm requires a spiral motion.

Schematic: consists of an Atmega32, two L293D’s,a 7805, a

7809 and an LCD display interface.

Motor Control Unit Board :

3.LCD Interface

The LCD we are using is a 16X2 character display LCD. We are

using this, as it is only for debugging purposes.

The refresh rate is fast enough compared to the times the bot
takes to react to and stimulus to observe the necessary stimulus

on the screen.

4. Navigation Algorithm

The control algorithm receives inputs from the different sensors

and runs the appropriate motor routine.

In order to get the inputs, the outputs from the various sensors
are fed to the Port C which is continuously polled to detect the

presence of any obstacle/cliff. Once it is known that which

sensor was activated, appropriate decisions can be taken to
avoid the erroneous path.

The following is the control we use

1. Obstacle Sensor
Bot should reverse and then pursue a path in either direction.

In order to make the decision of which path to pursue a fair

one, we introduce some randomness so that the decision will
be left or right with probability .5

2. Cliff Sensor

Bot should figure out which of the cliff sensors fired use the
information to avoid the cliff

 Left sensor – Reverse and turn right to avoid

 Right sensor – Reverse and turn left to avoid

 Centre sensor – Reverse and again turn in any direction
3. Bump sensor

In case the bot does bump into something, it must reverse and

turn away. This decision is similar to the one in case of the
cliff sensor.

5. Vacuum Control Unit
In order to take care of the vacuum action, we procured a

local handheld USB powered vacuum. We modified it in
order to interface it to the microcontroller by using one pin to

activate/deactivate the vacuum, and used a magnetic relay to

open or short the switch that powers the vacuum.

The vacuumed dust can then be cleaned by opening the flap

of the bot and emptying out the garbage cache.

6. Power

Our bot is powered by a 12V 1.2A-hr lead acid battery.

7. Testing and calibration
 The bot needed the following calibration to be done.

1. Sensors
The sensor ranges needed to be calibrated. This was

done while testing as there was a provision by means of

pots to change the ranges.
2. Motors

The motors needed to be calibrated to ensure that the

time for the different operations described was optimal,
such as turning and spiraling.

In order to do this, while testing, we changed the delay

in the code in order to get the timing correct.

 Finally, we tested the bot in a variety of situations

1. Straight line motion – Negligible curve observed
2. In presence of cliffs – The bot appropriately turned away

and did not fall

3. In presence of obstacles – The bot avoids static obstacles
well. Due to a provision in the code, that incorporates a

counter, we can tell if an obstacle is static or moving, thus

moving obstacles are not accounted for, and only static
ones are reacted to. Therefore, in a household situation,

the bot will not be disturbed from its route by people

walking about, or the presence of pets, etc.
4. Real world testing – We let the bot run in our wing, in the

presence of stairs, obstacles and moving objects, and
found that it behaves in a satisfactory manner.

End of Report

