
EE318 Electronic Design Lab Project Report, EE Dept, IITB, April 2009

Wireless Microcontroller Programmer

Group No. B04
Varun Jog (06007012), varunjog@iitb.ac.in

Rohit Agarwal (06007014), rohitagarwal@iitb.ac.in
Robin Mandal (06007022), robinmandal@iitb.ac.in

Guide: V Rajbabu

Abstract
This project aims at facilitating wireless programming of a micro-
controller. It exploits the capability of a microcontroller to write
in its own flash memory. This is made possible by pre writing a
’Bootloader’ code in the uC which accepts serial data and writes
it in the main memory. The set structure of a hex file is used
to fabricate an error free wireless transmission-reception protocol.
Over 3 months, we have been able to design and implement such
a programmer for 28 and 40 pin microcontrollers of the Atmega
series. The following sections describe the hardware and software
aspects of the project in an organized manner.

1 Introduction

During the testing stage of a microcontroller code, programming and re-
programming of the microcontroller requires us to pluck the uC from the
circuit a large number of times. Not only is this process tiring, frequently at-
taching and detaching the uC from the circuit can cause damage to the pins.
Similar experiences during the BabyEDL project motivated us to design a
wireless microcontroller programmer. We note that an ISP could achieve
the same motive however it would require that the uC be easily accessible
to the programmer which might not always be possible. This reinforced our
decision to make a wireless programmer.
The project objective can be restated as wirelessly transmitting a hex file
from the computer to a microcontroller’s main memory. We first arrange for
the target microcontroller to be in a state where it can accept serial data at
its RXD pin. This is achieved through a Bootloader program preloaded in the
microcontroller using conventional programming methods. We use the com-
puter’s serial port to transmit the hex file to a Amplitude Shift Keying(ASK)
based transmitter which operates at 433MHz. The receiver at the other end

1

passes the data online to the target microcontroller where the Bootloader
accepts the incoming data and writes it in the uC’s main memory.
Both transmitter and receiver are powered by 5 Volt regulated supplies. The
programmer hardware entertains all microcontrollers and requires no cus-
tomization, however the Bootloader program needs to be modified suitably
for programming different microcontrollers.

2 Design Approach

2.1 Hardware

We can divide the hardware designing problem into 2 sub parts:

• Interfacing the ASK Transmitter Module with the PC

• Interfacing the ASK Receiver Module with the Microcontroller

The first part requires interfacing the serial port of the computer with the
transmitter. This is done using an RS232 connector, however, the ’High’ and
‘Low’ voltage levels of the computer are 10V and -10V respectively which
need to brought to 5V and 0V for normal circuit operation. This is achieved
by mediating using a MAX232 IC.
Interfacing at the receiving end requires just connecting the DATA OUT pin
of the receiver to the RXD pin of the microcontroller. An unregulated 12V
supply is downconverted to a 5V regulated supply using LM7805 voltage
regulator. LEDs at PORT B of the microcontroller indicate whether the uC
is being programmed or if there has been an error in programming. LEDs
at PORT A of the uC are used for testing purposes i.e. whether the uC
performs as expected after programming.

2.2 Software

Again, two different software designing problems can be identified. These
are:

• Program to send a hex file from the PC serially

• Bootloader Program to serially receive the data from the receiver and
check for bit flips

2

Figure 1: Transmitter circuit, from [2]

We used Hyperterminal and BrayTerminal [1] during the initial testing stages
to send the hex file byte by byte and line by line respectively. However, we
chose Matlab to send the complete hex file because of its high configurability.
The Bootloader program is designed to identify whether the data at the
receiver antenna is the desired hex file or noise contracted from the channel.
It accordingly instructs the uC to write the data in the memory or generates
signal for retransmission of data. When the entire hex file has been written
in the memory, it automatically jumps to the program’s starting location
(0x0000) and starts executing the program.

3 Circuit Design

3.1 Hardware Design

In this section we describe the various Hardware components that we have
used while designing the circuits and the reasons for choosing them.
We’ve used the following major components at the transmitter and receiver
side:

• MAX232

3

Figure 2: Receiver for Atmega16

Figure 3: Receiver for Atmega168

4

The High and Low level voltages from the computer are +10V and -
10V respectively. However othercircuit components interpret +5V and
0V as the high and low level voltages. Therefore, we need to bring
the voltage levels down to these values. This is done using a 16 pin
MAX232 IC.

• LM7805
We need to provide a regulated 5V power supply to various circuit
components. The supply from the source is not reliable and fluctuates
somewhat. So we use the LM7805 voltage regulator to provide a 5V
regulated supply from a 12V unregulated supply. The same is used at
the receiving end.

• ASK Transmitter and Receiver Module
We were faced with a choice between RF and Bluetooth as the possi-
ble means for wireless communication. The small range of Bluetooth
modules somewhat defeats the purpose of our project. Some ’Sparkfun’
bluetooth modules were available [3] but they were costly(around Rs.
2000). This prompted us to choose RF modules which were available
for cheap (around Rs. 330) and had a relatively higher range.
Once we were decided with this, we were faced with a choice between
ASK and FSK modules. FSKs were our first choice but the non avail-
ability of FSK modules made us try out ASK Modules. However, after
testing the ASK Modules as described in the next section, we found
that they could serve the purpose too provided we chose a suitable
Baud Rate and made some changes in the Bootloader program de-
scribed next. Also, ASK modules come cheaper than FSK Modules
(around Rs.1000) according to [4]. This made us settle at ASK Mod-
ules for setting up the RF link.

• Atmega Microcontrollers
Our programmer is capable of programming any microcontroller which
supports self programming. Since Atmega series microcontrollers are
self programmable [5] and are widely used, we chose our target uCs
from the Atmega series. For demonstration purposes we’ve made the
programmer for 28 pin Atmega168 and 40 pin Atmega16.

3.2 Software Design

In this section we describe the MATLAB code for sending a hex file from the
computer and the Bootloader program for taking serial data and writing it
in the uC’s main memory.

5

• MATLAB Code to transmit HEX file
Matlab is capable of communicating via the PC’s serial port. This is
done by defining a serial port object s and giving it suitable properties
like port number and baudrate.
Our code initially sends a string which tells the bootloader that a new
program is about to be transmitted. Then, we load the hex file to be
transmitted, and transmit it serially line by line. To ensure that each
line is received, we transmit each line three times.

• Bootloader Program
The bootloader depends heavily on the fixed structure of an intel hex
file.
Stucture of an intel hex file
Each intel hex file consists of six parts as described by [6]:

– Start code, one character, an ASCII colon ’:’.

– Byte count, two hex digits, a number of bytes (hex digit pairs) in
the data field. 16 (0x10) or 32 (0x20) bytes of data are the usual
compromise values between line length and address overhead.

– Address, four hex digits, a 16-bit address of the beginning of the
memory position for the data. Limited to 64 kilobytes, the limit
is worked around by specifying higher bits via additional record
types. This address is big endian.

– Record type, two hex digits, 00 to 05, defining the type of the
data field.

– Data, a sequence of n bytes of the data themselves. 2n hex digits.

– Checksum, two hex digits - the least significant byte of the two’s
complement sum of the values of all fields except ’:’ and checksum
byte.

The rough version of the bootloader was adapted from [7]. The boot-
loader program accepts two strings as input. “uuuu” and “bbbb”. The
first string commands the bootlloader to erase the entire program mem-
ory, and get ready to write a new program. The second string tells it to
jump to address 0x0000, that is the beginning of an existing program
and start executing it.
If the string is “uuuu”, then the bootloader creates a temporary page
in its memory whose size is 16 bytes. As the hex file line is received,
this line is stored in this temporary page. If the page does not fill
completely (owing to lesser number of bytes being sent in the line), the

6

remaining bytes are filled as 0xFF. After each line, the checksum bit is
used to verify if the line has been received without errors. If there is an
error, the bootloader generates a signal which indicates that an error
has occured and that the program should be re-transmitted. If the tar-
get uC’s TXD pin is connected to a PC’s serial port, we can observe the
output as each line is written— a code “G12T.” is transmitted as each
line gets successfully written and “G12T.*” is transmitted when the
program is completely written successfully. Also, one LED on PORTB
toggles as each line gets written, and is permanently on when the code
is completely written.
We had to implement several noise handlers in our code as the ASK
link used was very noisy. Some of them were—

– The initial code string was made “uuuu” and “bbbb” as it is very
improbable that the same character will occur as noise four times
in a row.

– The code refuses to write anything unless it receives a “:” as the
start bit

– We send each line three times to make sure that its received atleast
once. For each line we check it address characters to make sure
that it is a new line and not one that has already been written.

4 Testing Procedure and Results

• Testing the Computer’s Serial Port
To test the computer’s serial port, short the RXD and TXD pins of
the RS232 connector. Using Hyperterminal, send a character and if it
appears twice on the display then the serial port is working just fine.
In our case, we had sent stream of characters at 1200 Baud Rate and
observed it reported twice on the display.

• Testing RF link
It is quite possible that the transmitter and receiver pick up noise from
the channel. In our application , where we need 100pc accuracy in
reception of transmitted data, it becomes important that we identify
the Baud rate such that bit flips are kept to the minimum while at the
same time maintaining a decent programming time.
For testing this, we interfaced the transmitter module with BrayTer-
minal at one computer and the receiver module with BrayTerminal at
another computer. BrayTerminal allows sending a stream of characters

7

at a time. By sending data from one PC and observing it on the other,
we could make out whether the data is getting corrupted.
In our case, we noticed that the receiver was receiving noise till the
data was sent, however once the stream of data was sent, it was re-
ceived uncorrupted. This prompted us to device a mechanism which
makes out whether the data at the reciver is the data of interest or
arbitrary noise.

• Testing Bootloader program
The Bootloader function is supposed write the program in uC’s main
memory and execute it once it is written. For testing the bootloader,
we sent a LED blinking code [8] from the computer and observed the
LED blink at port C of the ATmega 168 uC after the programming
period was over. This confirmed that the bootloader was working.
Once we had all the individual links working, we sent the hex file from
the PC and observed the LEDs blinking on the PORT C of the uC. We
then sent a variety of codes to check the system.

5 Conclusion

The above description proves the feasibility of wireless programming and
suggests its potential as a viable product. We have implemented one such
programmer using ASK modules, for the Atmega series. In this section we
propose some ideas for developing the product further, making it a more
reliable and faster programmer.
Upgrading the existing ASK based RF link to an FSK or X-Bee radio based
link can increase the data rate and hence reduce programming time consid-
erably. However, this would incur an additional cost.
Also, the current transmitter circuit uses an external power supply. A circuit
can be designed to draw power from the PC’s serial port [9]. We are currently
studying its feasibility. Programming time can also be reduced by optimizing
the number of times a line is sent, by acknowledging the reception of a line,
thus reducing the average number of times a line is transmitted. However,
this would require upgrading the transmitter and receiver to transceivers
each, increasing both the size and cost of the product.

References

[1] (2008) Bray terminal. [Online]. Available:
braypp.googlepages.com/terminal

8

[2] (Feb 2007) So do it yourself. [Online]. Available:
http://sodoityourself.com/max232-serial-level-converter/

[3] (2009) Sparkfun circuits. [Online]. Available: http://www.sparkfun.com

[4] (2009) Vegakit india. [Online]. Available: http://www.vegakitindia.com/

[5] (2009) All datasheets. [Online]. Available: www.datasheetcatalog.com

[6] Wikipedia. [Online]. Available: http://en.wikipedia.org/

[7] (Oct 2007) Polulu robotics forum - super simple bootloader. [Online].
Available: http://forum.pololu.com

[8] (2009) Kartik’s home. [Online]. Available: http://kartikmohta.com/

[9] (2009) How to get power from rs-232 port. [Online]. Available:
http://www.tkk.fi/Misc/Electronics/circuits/rspower.html

6 User’s Manual

6.1 Burning the bootloader

The first step to wireless programming your atmel microcontroller is to burn
the suitable bootloader onto it. This can be achieved by using the hex file of
the bootloader provided and programming it using standard methods. Note
that to burn a bootloader and to use it, the following fusebit settings should
be used—

• Set boot reset vector to bootloader address and not the default 0x0000
address

• Burn the BOOTSZ0 and BOOTSZ1 fuses according to the size of the
bootloader, and as specified by the datasheet

Once the uC has a bootloader, it can now be programmed using a suitable
RF link

6.2 Setting up the RF link

Connect the transmitter module to PC’s serial port. Connect the receiver
module to your target uC such that the “DATA OUT” pin of the receiver
module is connected to the RXD pin of your uC. Provide an unregulated
12V supply on the transmitter side, and give suitable regulated 5V voltage

9

to the receiver pins. Connect antennae (around 15-20cm in length) to the
transmitter and receiver modules.

6.3 Programming the uC

Execute the m-file provided in matlab, replacing the test program with the
name of your program. Also, fill up the hex file of your program so that each
line has 43 characters, generally only the last 2 lines don’t have 43 characters.
In such case, fill them up with zeroes or any other character. The LED on
PORTB blinks as it programs each hex file line, and another LED on PORTB
lights up if there is a checksum error. Once the entire code is transmitted, the
bootloader automatically jumps to 0x0000 and starts executing the program.
After every reset, the uC jumps to the bootloader. If an existing program is
to be executed, simple transmit “bbbb” using matlab.

6.4 Modifying the source code

If you want to modify the bootloader source files, it can be done by making
the following changes in a winaver makefile.

• Add the line “BOOTLOAD= xxxxx” where xxxxx is the start address
of the bootloader as specified by the BOOTSZ fuse values

• Add the following line after LDF-flags—
LDFLAGS += -Wl,–section-start=.text=$(BOOTLOAD)

• Change target to bootloader

10

